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Acute respiratory distress syndrome (ARDS) represents an acute diffuse inflammation of 
the lungs triggered by different causes, uniformly leading to a noncardiogenic pulmonary 
edema with inhomogeneous densities in lung X-ray and lung CT scan and acute hypoxemia. 
Edema formation results in “heavy” lungs, inducing loss of compliance and the need to 
spend more energy to “move” the lungs. Consequently, an ARDS patient, as long as the 
patient is breathing spontaneously, has an increased respiratory drive to ensure adequate 
oxygenation and CO2 removal. One would expect that, once the blood gases get back 
to “physiological” values, the respiratory drive would normalize and the breathing effort 
return to its initial status. However, in many ARDS patients, this is not the case; their 
respiratory drive appears to be upregulated and fully or at least partially detached from 
the blood gas status. Strikingly, similar alteration of the respiratory drive can be seen in 
patients suffering from SARS, especially SARS-Covid-19. We hypothesize that alterations 
of the renin-angiotensin-system (RAS) related to the pathophysiology of ARDS and SARS 
are involved in this dysregulation of chemosensitive control of breathing.
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INTRODUCTION

Per definition, acute respiratory distress syndrome (ARDS) is characterized by an inhomogeneously 
distributed, noncardiogenic pulmonary edema and acute hypoxemia. Its presence is still 
associated with a high mortality. ARDS is triggered by various stimuli, such as sepsis, major 
trauma, and pneumonia. The underlying pathophysiology involves activation of the immune 
system, pneumocyte injury, surfactant dysfunction, and coagulopathies. It markedly impairs 
adequate exchange and consecutively oxygenation and carbon dioxide removal (Balibrea and 
Arias-Diaz, 2003; Ranieri et  al., 2012; Fanelli and Ranieri, 2015). Patients with ARDS may 
present with alterations of the breathing pattern, and its regulation might not directly correlate 
with the O2 or CO2 partial pressures measured in the arterial blood (Spinelli et  al., 2020). 
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Of note, despite normalizing arterial pO2 and pCO2 by 
mechanical ventilation and/or extracorporeal lung support, 
patients might still present with respiratory rates far higher 
than expected or needed (Crotti et  al., 2017). These patients 
might require high doses of sedation or even muscle relaxants 
and controlled ventilation to prevent patient self-inflicted lung 
injury (P-SILI). Interestingly, in acute cases of COVID-19 
pneumonia (SARS), similar observations were made. Despite 
normalization of the arterial blood gases, COVID-19 patients 
continued to show forced breathing patterns that might 
additionally harm the already virus-altered lungs (Cruces 
et  al., 2020; de Vries et  al., 2020; Li et  al., 2020; Marini and 
Gattinoni, 2020; Smit et  al., 2020).

In this hypothesis and theory paper, we  discuss potential 
mechanisms that might disturb respiratory chemosensitivity in 
patients with ARDS or SARS.

THE RENIN-ANGIOTENSIN-SYSTEM IN 
ARDS

The renin-angiotensin-system (RAS; Figure  1) or renin-
angiotensin-aldosterone system (RAAS) appears, apart from 
regulation of blood pressure, to be  also involved in the 

pathogenesis of ARDS (Magalhães et  al., 2019). Its main 
mediator, Angiotensin II (Ang II), is involved in inflammatory 
and fibrogenic processes in the lungs (Marshall et  al., 2004; 
Hagiwara et al., 2009; Fletcher et al., 2017). Animal experiments 
in ARDS models demonstrate that the reduction of Ang II 
formation by inhibition of ACE exerts a protective effect 
(Imai et  al., 2005, 2008; Shen et  al., 2009). For example, 
the ACE inhibitor captopril is able to diminish oleic acid-
induced severe acute lung injury in rats (He et  al., 2007). 
Likewise, pharmacological inhibition or genetic deletion of 
AT1a receptors significantly mitigates lung injury (Raiden 
et  al., 2002; Imai et  al., 2005, 2008).

The angiotensin-converting enzyme 2 (ACE2; Donoghue 
et  al., 2000; Tipnis et  al., 2000), a homolog to the classical 
ACE, is also expressed in the lung (Hamming et  al., 2004; Jia, 
2016). The lack of ACE2 expression in ACE2-KO animals increases 
ARDS susceptibility, and moreover, inactivation of ACE in 
ACE2-deficient mice attenuates ARDS (Imai et al., 2005). ACE2 
catalyzes the formation of angiotensin Ang-(1–7), which acts 
via the Mas-Receptor (Mas-R; Zambelli et  al., 2012). 
Pharmacological activation of Mas-Rs or administration of 
recombinant ACE2 has been shown to exert lung-protective 
effects (Imai et  al., 2005; Wosten-van Asperen et  al., 2011). In 
addition, ACE activity is increased in ARDS-lungs, and ACE2 
activity is reduced (Li et al., 2008; Wosten-van Asperen et al., 2011).

Taken together, these observations suggest that the ACE2-
product Ang-(1–7) via the Mas-Receptor promotes protective 
effects in the lung, and shifting the RAS toward ACE/Ang II/
AT1R has deleterious effects (Wang et  al., 2019). Finally, ACE2 
also cleaves Ang-(1–10) to angiotensin 1–9 acting via the AT2R, 
which has been shown to exert protective effects on ARDS 
development (Imai et  al., 2005) and pulmonary hypertension 
(Cha et  al., 2018).

Although in ARDS mice Ang II serum levels are elevated 
(Imai et  al., 2005; Chen et  al., 2013; Zou et  al., 2014), data 
for humans are less clear. The Ace gene insertion/deletion 
(I/D) polymorphisms correlate with the susceptibility for 
and severity of ARDS (Marshall et  al., 2002; Jerng et  al., 
2006; Adamzik et  al., 2007; Tsantes et  al., 2013) with those 
patients carrying a lower risk that are homozygous for the 
insertion (II) genotype (Adamzik et  al., 2007). Since the 
ACE II genotype is associated with a lower serum ACE 
concentration (Rigat et  al., 1990), one would expect lower 
ANG II serum levels. However, serum Ang II levels in 
humans are quite variable in ARDS as well as in control 
patients. Significantly higher Ang II serum levels in ARDS 
patients have never been reported (Wiberg-Jorgensen et  al., 
1983; Reddy et al., 2019). Nevertheless, a significantly higher 
Ang-(1–7) to Angiotensinogen [Ang-(1–10)] ratio as well 
as Ang-(1–9) to Ang-(1–10) ratio in ARDS survivors (Reddy 
et  al., 2019) gives a hint of a protective effect of the ACE2. 
In addition, a pilot clinical trial using recombinant human 
angiotensin-converting enzyme 2 in ARDS revealed increased 
Ang-(1–7) levels but “did not result in improvement in 
physiological or clinical measures of ARDS in this small 
study” (Khan et  al., 2017). Unfortunately, in this study, 
Ang-(1–9) levels were not tested.

FIGURE 1 | Differential effects of mediators of the renin-angiotensin system 
involved in acute respiratory distress syndrome (ARDS). ACE,  
angiotensin-converting enzyme; ACE2, angiotensin-converting enzyme 2;  
Ang, angiotensin; AT1-R, angiotensin II receptor type 1; AT2-R,  
angiotensin II receptor type 2; Mas-R, Mas-Receptor.
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THE RENIN-ANGIOTENSIN-SYSTEM IN 
SARS

Coronavirus disease 2019 (COVID-191) is a zoonotic disease 
caused by the novel SARS-CoV2 (Zhu et  al., 2020). Although 
causing, in many cases, only mild symptoms, some patients 
develop a severe acute respiratory syndrome (SARS), which 
resembles ARDS in some but not all aspects (Gattinoni et  al., 
2020b,c; Marini and Gattinoni, 2020). The angiotensin-converting 
enzyme 2 is the receptor for SARS-CoV (Li et  al., 2003) and 
SARS-CoV2 (Hoffmann et  al., 2020).

In the initial phase of the COVID-19 pandemic, concerns 
about an increased risk for patients treated with ACE-inhibitors 
or angiotensin-receptor-blockers (ARBs) were raised (Kuster et al., 
2020). Meanwhile, this topic has been studied extensively. In brief, 
no increase in the severity of COVID-19 or SARS-CoV2 infections 
have been found (Reynolds et  al., 2020); in contrast, studies 
confirm a potential protective effect (Hippisley-Cox et  al., 2020).

Interestingly, a considerable number of patients do not experience 
shortness of breath or dyspnea in the early phase of COVID-19 
despite an already markedly impaired gas exchange, a status called 
silent hypoxia or silent or happy hypoxemia (Couzin-Frankel, 
2020; Dhont et al., 2020; Ottestad et al., 2020). This phenomenon 
appears when lung compliance is still near normal but gas exchange 
is already impaired by ventilation/perfusion mismatch and functional 
shunt [non-ARDS type 1 (or type L); Gattinoni et  al., 2020b]. 
SARS-CoV2 does not only infect the pulmonary epithelium, but 
heavily alters the vascular endothelium, causing impairment of 
its antithrombotic properties (McFadyen et al., 2020; Teuwen et al., 
2020); thus micro-angiopathy and micro-embolisms can explain 
the alteration of the ventilation/perfusion ratio that is caused 
(Merrill et al., 2020). Moreover, pulmonary vasoplegia suspending 
partially or totally hypoxic pulmonary vasoconstriction leads to 
reasonable functional shunt (Chau et  al., 2020).

However, these patients show mostly tachypnea (Chandra 
et  al., 2020; Ottestad et  al., 2020), clearly favoring the concept 
of an already increased respiratory drive and conflicting with 
the concept of a “failure to trigger the centrally mediated increase 
in respiratory rate” as put forward by Soliz (Soliz et  al., 2020). 
The nearly normal compliance of the type L lung can explain 
the lack of dyspnea: As long as breathing efforts are not limited 
by the lungs’ elastance or external factors (Albashir, 2020). 
However, the increased respiratory drive can lead to severe 
hyperventilation with breathing efforts that create large negative 
pressure swings that lead to self-inflicted lung injury (P-SILI), 
thus promoting a shift to the H-type of COVID-19 pneumonia 
(Cruces et  al., 2020; Gattinoni et  al., 2020a; Smit et  al., 2020).

Apart from this clinical alteration, it has been shown that 
plasma levels of angiotensin II of SARS-CoV2 infected patients 
were elevated (Liu et al., 2020; Wu et al., 2020), and moreover, 
plasma levels correlated to the viral load as well as to the 
degree of lung injury (Liu et  al., 2020). An explanation for 
this is that the binding of SARS-CoV2 to virus-receptor ACE2 
led to a downregulation of enzyme ACE2  in the lung tissue 

1 Novel Coronavirus (2019-nCoV). Situation Report – 22, WHO, February 12th, 2020,  
PDF downloaded July 28th 2020.

(Silhol et  al., 2020), a mechanism that had been described 
already for SARS-CoV1 (Kuba et  al., 2005).

RAS AND THE REGULATION 
BREATHING

Ang II and Ang-(1–7) exert differential effects on the carotid body 
(CB) glomus cells. In CB glomus cells, Ang II increases the respiratory 
drive by activation of NADPH oxidase (NOX) and mitochondrial-
mediated O2-production with the consequence that K+-channels 
are inhibited and voltage-gated Ca2+ channels are activated (Allen, 
1998; Schultz, 2011). In contrast, Ang-(1–7) exerts an inhibitory 
influence on glomus cells via activation of nNOS and NO-mediated 
activation of K+ channels (Schultz, 2011; Fung, 2014). It is of note 
that chronic hypoxia upregulates the expression and function of 
AT1-receptors in the carotid body (Leung et  al., 2000).

However, the stimulation of breathing by i.v. application of 
Ang II in dogs could not solely be  attributed to alterations 
in the carotid body activity (Potter and McCloskey, 1979), 
thus suggesting a role of central chemosensory pathways. 
Injection of Ang II into the nucleus of the solitary tract (NTS), 
which relays the chemosensitive information from the CB, is 
able to increase the respiratory rate (Paton and Kasparov, 1999). 
Moreover, Ang II receptors are expressed on many neurons, 
including serotonergic neurons in the raphe nuclei (Allen et al., 
1991), which contain central CO2-chemosensor neurons (Severson 
et  al., 2003; Richerson, 2004; Bhandare et  al., 2020). Although 
the mechanism of Ang II action in these neurons is not yet 
completely understood, it is known that Ang II regulates release 
and synthesis of serotonin in raphe neurons (Nahmod et  al., 
1978) and that Ang II decreases the resting K+ conductance 
in other types of brainstem neurons (Li and Guyenet, 1996).

ACE2 is also expressed in the mouse brainstem (Lin et  al., 
2008), particularly in raphe neurons (Doobay et  al., 2007). The 
functional role of the Ang II or Ang-(1–7) in primary respiratory 
neurons of pre-Bötzinger Complex in the medulla has not been 
investigated yet, but solid evidence exists that Ang II or Ang-(1–7) 
modulate the activity of cardiac neurons neighboring the respiratory 
neurons in the ventral lateral medulla (de Moura et  al., 2010) 
as well as neurons in the nucleus of the solitary tract (Diz et  al., 
2002). Several recent studies demonstrate that ACE2/Ang-(1–7)/
MasR interacts in the CNS with different neurotransmitter systems, 
including GABA, dopamine, and norepinephrine (Gironacci et al., 
2004; Stragier et  al., 2005; Wang et  al., 2016). MasR are robustly 
expressed in GABAergic neurons in the basolateral amygdala 
(BLA), and ACE2 overexpression increases the spontaneous 
postsynaptic inhibitory currents in this region (Wang et al., 2016).

A NOVEL HYPOTHESIS: SYNTHESIS OF 
THE OBVIOUS

Based on the literature reviewed above, we suggest the following 
hypothesis: In acute respiratory distress syndrome (ARDS) and 
in severe acute respiratory syndrome (SARS/COVID-19), 
alterations of the renin-angiotensin-system (RAS) signal a change 
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of the chemosensitive reflex control of breathing, which results 
in an increase of the respiratory drive, which becomes independent 
from alterations of blood gases. Our hypothesis is based on 
the following key observation: In ARDS and especially in SARS/
COVID-19, the RAS is dysregulated and shifted toward the 
ACE/Ang II/AT1R axis. This dysregulation is expected to 
stimulate, apart from any potential effect on the lung tissue, 
chemosensitive neurons in the brainstem and also chemosensitive 
cells in the carotid body (Figure 2), making them more sensitive 
to changes of CO2 and O2 and, thus, shifting their baseline 
activity and response curves to higher values.

DISCUSSION

Confirmation of this hypothesis requires a joint effort of clinical 
and basic scientists with broad knowledge in physiology and 
neurosciences. Experimental approaches should include in vivo 
and ex  vivo studies in animal models of ARDS.

What Types of Animal Models Are 
Available?
In general, so far, only animal models for the “classical” ARDS 
have been established and used, trying to mimic the uniform 
pathophysiology of this syndrome, characterized by a marked 
shunt volume and heavy, hard-to-move lungs. A COVID-19 

affliction might – in the early phase – present with nearly 
normally compliant lungs but a heavily altered ventilation/
perfusion (V/Q) ratio and a marked functional shunt volume, 
leading to severe hypoxia. The classical ARDS models have 
their clear limitations with regard to their transferability to 
clinical practice; they are what they are: models. To the best 
of our knowledge, a model for mimicking low V/Q and functional 
shunt does not exist and seems difficult to develop (Matute-
Bello et al., 2008). Some of the “classical” ARDS models require 
intravenous application of agents, e.g., oleic acid (Schuster, 1994), 
and in others, the lung injury is induced by intratracheal 
application of the toxic agent, e.g., of acid (Imai et  al., 2005) 
or bleomycin (Moore and Hogaboam, 2008). Data about alteration 
of respiratory control in animal models of acute lung injury 
and ARDS are limited. In the bleomycin model, alteration of 
the respiratory drive is described, which is independent of the 
impairment of oxygen exchange in the lung tissue (Jacono et al., 
2006; Hsieh et  al., 2020; Litvin et  al., 2020). Alteration of Ang 
II serum levels have yet not been analyzed in the bleomycin 
model but are confirmed, among others, in the acid-instillation 
model (Imai et  al., 2005; Chen et  al., 2013; Zou et  al., 2014).

Mouse models for COVID-19 that allow the analysis of 
breathing regulation are more complicated to develop, not only 
because the animal experiments are hindered by the need of 
laboratories with high biosafety levels, but because the spike 
proteins of SARS-CoV and SARS-CoV2 have a much lower 

FIGURE 2 | Alterations of renin-angiotensin-system (RAS) in the patient with acute respiratory distress syndrome or coronavirus-induced severe respiratory 
syndrome (SARS) led to an increase of respiratory chemosensitivity by an Angiotensin II (Ang II) mediated shift of the activity of the chemosensitive cell population in 
the carotid body and the medullary raphe. ACE2, angiotensin-converting enzyme 2; N. IX, glossopharyngeal nerve; preBötC, pre-Bötzinger complex.
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binding affinity to the murine ACE2 than to its human homolog 
(Lutz et al., 2020). However, transgenic mice have been developed 
that express the human ACE2 (McCray et  al., 2007; Bao et  al., 
2020; Sun et  al., 2020). To our knowledge, no experiments on 
chemosensitivity have been performed in later mouse models yet.

How to Test Change of Chemosensitivity in 
ARDS Models?
Based on this hypothesis, it will be  necessary to determine how 
the shift of the RAS toward the ACE/Ang II/AT1R axis influences 
the target cell population of the chemosensitive reflex. Therefore, 
experiments in animal models of ARDS and SARS are necessary 
to establish the cellular basis of alteration of neuronal control 
of breathing. There is a wide range of experimental tools available 
that allow addressing chemosensitivity of the respiratory network 
at different levels. Experiments could be  performed in acutely 
isolated brainstem slices, allowing measurement of the direct 
response of cells to alteration of CO2 or O2 (Gourine et  al., 
2010; Rajani et  al., 2018).

Alteration of chemosensitivity in mice with ARDS can also 
be  tested in vivo using whole body plethysmography, where 
alteration of tidal volume and respiratory rate can be  analyzed 
in animals exposed to different levels of CO2 or and/or O2 
(Bissonnette and Knopp, 2004; Hsieh et  al., 2020). Moreover, 
the whole respiratory network can be  analyzed in an arterially 
perfused preparation [the working heart brainstem preparation, 
WHBP (Paton, 1996; Dhingra et  al., 2019)], which has the 
advantage that it allows testing for alterations of the chemosensitivity 
and respiratory drive that are independent from the injury of 
the lung since blood gas can be  controlled via the perfusate.

Alternative Mechanisms of Modulation of 
Respiratory Drive in ARDS
Ang II might increase respiratory drive via activation of carotid 
body (CB) glomus cells (Allen, 1998; Schultz, 2011, chemosensitive 
neurons of the raphe Severson et  al., 2003 #3721; Richerson, 
2004 #4146; Bhandare et al., 2020 #304), and in the relay nucleus 
of the solitary tract (NTS; Paton and Kasparov, 1999 #14118). 
However, further experiential effort is necessary to identify 
ARDS-dependent changes in other areas of the respiratory 
network, whether RAS may be  involved directly or indirectly. 
This includes retrotrapezoid body (RTN) and the parafacial 
respiratory group, the pontine parabrachial/Kölliker-Fuse complex 
(pB/KF) as well as the ventrolateral medulla with BötC, preBötC, 
and VRG (Li and Guyenet, 1995).

Apart from its action on neurons, Ang II might be  involved 
in alterations of astrocytes-dependent modulation of the respiratory 
network. Indeed, in many regions of the brain, AT-receptors 
have been found to be  expressed on astrocytes (Sumners et  al., 
1991; Tallant et al., 1991; Gebke et al., 1998). Moreover, sequencing 
data indicate MasR-expression in astrocytes at least in older 
animals (Clarke et al., 2018). Whether the O2-sensitive astrocyte 
population in the medulla (Gourine and Funk, 2017; Rajani 
et  al., 2018) or the population of CO2-sensitive astrocytes in 
the retrotrapezoid nucleus [RTN; (Gourine et  al., 2010)] also 
expresses AT1R, AT2R, or MasR remains to be  investigated.

From the beginning of the 1970s, it has been postulated 
that lung fibrosis can change breathing by alteration of lung 
reflexes (Guz and Widdicombe, 1970; Mansoor et  al., 1997; 
Schelegle, 2003). Recently, lung reflex receptors, e.g., J-reflex, 
head deflation reflex, and Hering-Breuer inflation reflex, 
were again suggested to contribute to ARDS- and SARS-
induced modulation of ventilatory response in patients  
(de Vries et  al., 2020).

Are There any Potential Secondary Effects 
of Elevated Angiotensin II?
Focus of the research should be extended beyond the direct effects 
of, e.g., Ang II on the target cells. Since Ang II is involved in 
the inflammatory response of the body, secondary 
neuroinflammatory effects that might modulate the neural control 
of breathing have to be  considered as well (Pena-Ortega, 2019). 
Indeed, the elevated level of pro-inflammatory cytokines in critically 
ill COVID-19 patients sheds new light on this topic (Herold et al., 
2020; Huang et  al., 2020; Schett et  al., 2020). Many of these 
mediators have also be  found to be  elevated in classical ARDS 
(Tzouvelekis et  al., 2005), and their expression is often stimulated 
by Ang II (Han et  al., 1999; Nakamura et  al., 2002; Luther et  al., 
2006; Qi et  al., 2011). For IL 6, IL-1β, and TNF-α, stimulatory 
effects in the carotid body have been demonstrated (Fan et  al., 
2009; Del Rio et  al., 2012), and there is little doubt that these 
three cytokines can have potentially stimulating effects also on 
respiratory and chemosensitive neurons in the brainstem (Kawasaki 
et  al., 2008; Pena-Ortega, 2019). Along with this, it has been 
recently shown that ARDS is associated with a specific modulation 
of the post-hypoxic frequency decline, a component of the respiratory 
chemoreflex (Hsieh et  al., 2020). Further, it has been previously 
shown that carotid body chemosensitivity is upregulated even 
before the presence of severe lung injury pathology (Jacono et al., 
2006). Similarly, 2nd-order NTS neurons have also been implicated 
in mediating a sensory-plasticity after lung injury (Getsy et al., 2019).

CONCLUSION

In summary, imbalance of the renin-angiotensin-system in 
ARDS and SARS is expected to have substantial impact on 
the neuronal control of breathing and the chemosensitive reflex 
of the human body. While our hypothesis awaits experimental 
confirmation, it might lead to new therapeutic concepts and 
treatment options for intensive care patients with acute lung injury.
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