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Modeling the Interactions Between
Sodium Channels Provides Insight
Into the Negative Dominance of
Certain Channel Mutations
Echrak Hichri†, Zoja Selimi† and Jan P. Kucera*

Department of Physiology, University of Bern, Bern, Switzerland

Background: Nav1.5 cardiac Na+ channel mutations can cause arrhythmogenic
syndromes. Some of these mutations exert a dominant negative effect on wild-type
channels. Recent studies showed that Na+ channels can dimerize, allowing coupled
gating. This leads to the hypothesis that allosteric interactions between Na+ channels
modulate their function and that these interactions may contribute to the negative
dominance of certain mutations.

Methods: To investigate how allosteric interactions affect microscopic and macroscopic
channel function, we developed a modeling paradigm in which Markovian models of
two channels are combined. Allosteric interactions are incorporated by modifying the
free energies of the composite states and/or barriers between states.

Results: Simulations using two generic 2-state models (C-O, closed-open) revealed
that increasing the free energy of the composite states CO/OC leads to coupled
gating. Simulations using two 3-state models (closed-open-inactivated) revealed that
coupled closings must also involve interactions between further composite states.
Using two 6-state cardiac Na+ channel models, we replicated previous experimental
results mainly by increasing the energies of the CO/OC states and lowering the energy
barriers between the CO/OC and the CO/OO states. The channel model was then
modified to simulate a negative dominant mutation (Nav1.5 p.L325R). Simulations of
homodimers and heterodimers in the presence and absence of interactions showed
that the interactions with the variant channel impair the opening of the wild-type channel
and thus contribute to negative dominance.
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Conclusion: Our new modeling framework recapitulates qualitatively previous
experimental observations and helps identifying possible interaction mechanisms
between ion channels.

Keywords: cardiac electrophysiology, sodium channels, sodium current, allosteric interactions, computer
modeling, Markov models, statistical mechanics

INTRODUCTION

Voltage-gated ion channels form the biophysical basis of action
potential (AP) generation and propagation. Under physiological
conditions, the sodium (Na+) current (INa) carried by voltage-
gated channels of the Nav1.X family ensure swift depolarization
and rapid AP propagation in nerve axons, skeletal muscle,
and cardiac muscle (Hodgkin, 1964; Hille, 2001; Barnett and
Larkman, 2007; Matthews, 2013; Lieve and Wilde, 2015).
In a voltage-dependent manner, Na+ channels change their
conformation between permeable (open) and not permeable (e.g.,
closed, inactivated) states (Hille, 2001), ultimately leading to the
upstroke of the AP. Because of this crucial role in AP generation,
genetic variants of voltage-gated Na+ channels are frequently
associated with pathologies of the central nervous system such
as epilepsy (Wei et al., 2017; Nolan and Fink, 2018) or pain
syndromes (Rühlmann et al., 2020), of skeletal muscle such as
paramyotonia (Ke et al., 2017), and of the heart, where they can
cause arrhythmias (Lieve and Wilde, 2015; Veerman et al., 2015).

In cardiomyocytes, Nav1.5 channels represent the principal
Na+ channel isoform expressed. The pore-forming α-subunits
of Nav1.5 channels are encoded by the SCN5A gene. Certain
mutations of this gene are linked to life-threatening arrhythmias
such as Brugada syndrome and long-QT syndrome type 3
(Lieve and Wilde, 2015; Veerman et al., 2015). Intriguingly, in
cellular expression models, some SCN5A mutations negatively
affect wild-type channel function leading to an effect called
the dominant-negative (DN) effect. Although it was suggested
that the DN effect is linked to a trafficking defect (Sottas and
Abriel, 2016), it can occur even when both wild-type and variant
channels are trafficked properly to the cell membrane (Clatot
et al., 2018). Therefore, the detailed understanding of the function
of cardiac Na+ channels is of high importance, not only for
cardiac physiology but also for cardiology practice.

It was reported that Nav1.1, Nav1.2, and Nav1.5 channels
form dimers, where their α-subunits interact physically with each
other, leading to coupled channel gating (Clatot et al., 2017). To
identify this interaction, biochemical and molecular biological
approaches (crosslinking and photo-bleaching experiments)
were combined with whole-cell electrophysiological recordings
(binomial analysis based on Na+ current densities in cells
transfected with different ratios of wild-type and DN variant
genes), and single-channel recordings. The results indicate that
two α-subunits can interact both directly and indirectly via the
cytoplasmic protein 14-3-3. Mutating the 14-3-3 interaction sites
and inhibiting 14-3-3 by difopein disrupted the molecular and
biophysical interactions between two Na+ channel α-subunits
(Clatot et al., 2017). More recently, evidence of dimerization
and functional interaction was provided for Nav1.7 channels

(Rühlmann et al., 2020). Altogether, these results strongly
suggest that Na+ channels operate and gate as dimers. This
notion challenges the conventional paradigm that these channels
function as separate, individual, and non-interacting entities.
To fully understand the consequences and implications of this
paradigm shift, new analyses and models need to be developed
in which the functional unit underlying the Na+ current is a Na+
channel dimer rather than a single channel.

Clatot et al. (2017) analyzed their single-channel recordings
from channel pairs by counting the number of sweeps exhibiting,
at predefined times after a voltage clamp activation step, 1
(level 1, L1) or 2 (level 2, L2) open channels. They showed
that the L2 count is decreased and the L1 count is increased
upon disrupting the interaction between the Na+ channels
by difopein, indicating that the channels tend to be open
together. In the present work, we analyze these L1 and L2
counts further using the χ2 test and Fisher’s exact test to
establish the significance of this observation. We also quantify
the interaction using Shannon’s entropy, a measure from
information theory.

Next, we designed models of ion channel function
incorporating interactions between two channels with the
aim to recapitulate the findings of Clatot et al. (2017). The first
biophysical model for the gating of Na+ and K+ currents was
proposed by Hodgkin and Huxley (1952) and their formalism is
still used in many cardiac cell models (Courtemanche et al., 1998;
ten Tusscher et al., 2004; O’Hara et al., 2011). Markovian models
however are more versatile (Colquhoun and Hawkes, 1995b;
Hille, 2001; Bondarenko et al., 2004; Milescu et al., 2005; Fink
and Noble, 2009; Perissinotti et al., 2018; Asfaw and Bondarenko,
2019), because they permit simulations of both stochastic single-
channel behavior and macroscopic ensemble currents, and more
precisely account for the binding of drugs to specific states (Rudy
and Silva, 2006; Silva et al., 2009; Moreno et al., 2011).

Thus, we implemented a framework combining two
Markovian ion channel models. Allosteric interactions between
channels are then introduced in agreement with principles of
statistical mechanics by changing the free energies of composite
states and of the energy barriers between composite states. This
approach allows simulating and describing the effect of the
interactions on both the microscopic (stochastic single-channel
gating) and the macroscopic (ensemble average) behaviors of the
Na+ current. We conducted simulations and sensitivity analyses
for a 2-state (closed-open), 3-state (closed-open-inactivated),
and a full cardiac sodium channel model (Clancy and Rudy, 1999,
a 6-state channel model). The sensitivity analyses pinpointed
that an increased free energy of composite states consisting
of one closed and one open channel is a key factor leading
to coupled gating.
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We furthermore modeled the consequences of the p.L325R
variant of Nav1.5, a variant which was reported in a patient
with Brugada syndrome and which is known to exert a DN
effect (Keller et al., 2005; Clatot et al., 2017). When we
incorporated the biophysical properties of the p.L325R variant
into our channel pair framework, our model showed that the DN
variant negatively affected the biophysical function of the wild-
type channel through the allosteric interaction. This highlights
the notion that DN effects can arise directly from molecular
interactions between Na+ channels.

MATERIALS AND METHODS

Quantification of the Interaction
Between Two Channels Under
Non-stationary Conditions
Various methods have been developed to demonstrate or quantify
the interactions between two or more ion channels based on
recordings at the single-channel level (Yeo et al., 1989; Fredkin
and Rice, 1991; Chung and Kennedy, 1996). These approaches
however presuppose that the system of channels is at equilibrium
and its behavior is stationary. These assumptions clearly do not
pertain to the Na+ current upon an activation protocol because
the ensemble average current changes with time.

Clatot et al. (2017, 2018) analyzed their recordings of voltage-
gated Na+ channel pairs by counting the number of sweeps
containing 1 and 2 open channels (called Level 1 (L1) and Level
2 (L2), respectively) as a function of time and reported the
time course of L1 and L2. Note that L0 (zero open channels)
corresponds to n–L1–L2, n being the number of sweeps. In the
following, we elaborate on further analyses that can be conducted
on such L0, L1 and L2 counts.

We consider f0, f1, and f2, the fractions of sweeps with 0, 1,
and 2 open channels at a given time during the sweeps, calculated
as L0/n, L1/n, and L2/n, with f0 + f1 + f2 = 1. These fractions
represent finite sample approximations of the true probabilities
of observing 0, 1 or 2 open channels, and converge to the true
probabilities p0, p1, and p2 as n is increased. Thus, at a given time
t, each triplet {L0(t), L1(t), L2(t)} forms a sample (i.e., a finite
sample approximation) from a discrete 3-element distribution
with expectation values n·p0(t), n·p1(t) and n·p2(t).

For two non-interacting (independent) channels labeled A and
B, f0, f1, and f2 can be described as follows (for large n and in the
limit as n goes to infinity):

f0 = fA,shut · fB,shut

f1 = fA,open · fB,shut + fA,shut · fB,open

f2 = fA,open · fB,open (1)

where fA,shut, fA,open, fB,shut, and fB,open represent the fractions of
sweeps with channel A, respectively B, shut (non-conducting, i.e.,
closed or inactivated), respectively open at a given time.

If the two channels are identical and non-interacting, then
fA,shut = fB,shut = fshut and fA,open = fB,open = fopen (with
fopen + fshut = 1), and the following is expected:

f0 = f2
shut

f1 = 2 · fopen · fshut

f2 = f2
open (2)

For interacting channels, Eqs. 1 and 2 do not necessarily hold
and f0, f1, and f2 must be described in a more general manner as

f0 = fA,shut;B,shut

f1 = fA,open;B,shut + fA,shut;B,open

f2 = fA,open;B,open (3)

If the two channels are identical (interacting or non-
interacting), and if only one channel is open, it is impossible to
distinguish in a patch clamp experiment which of the channels
is open. Thus, if the channels are identical and indistinguishable,
the probability that it is either A or B open is 0.5:

P(A open | one channel open) = P(B open | one channel open) = 1/2. (4)

We underline that this equal probability of A or B being
open is not only valid for two identical non-interacting channels,
but also for two identical interacting channels, as long as the
interaction is symmetric (the action of A on B is the same as the
action of B on A).

Thus, for identical channels (interacting or not),

fA,open;B,shut = fA,shut;B,open (5)

From Eqs. 3 and 5, fshut and fopen, the fraction of sweeps in
which a given channel is shut, respectively open (at a given time),
can be estimated individually for each identical indistinguishable
channel as

fA,shut = fA,shut;B,shut + fA,shut;B,open = f0 + f1/2

fB,shut = fA,shut;B,shut + fA,open;B,shut = f0 + f1/2

fA,open = fA,open;B,shut + fA,open;B,open = f1/2 + f2

fB,open = fA,shut;B,open + fA,open;B,open = f1/2 + f2 (6)

with fA,shut = fB,shut = fshut and fA,open = fB,open = fopen.
Therefore, given a triplet of observed f0, f1, and f2, fopen and

fshut can be estimated for identical indistinguishable channels as

fshut = f0 + f1/2
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fopen = f1/2 + f2 (7)

Note that the same result is obtained for non-interacting
channels from Eq. 2. Thus, Eq. 7 pertains to any pair of identical
indistinguishable channels irrespective of whether the channels
interact or not.

In a next step, we estimate from fopen and fshut (calculated
in Eq. 7) the fractions f0, f1, and f2 that would be expected in
the absence of any interaction (the overbar denotes the expected
fraction). For this purpose, we use Eq. 1 (underlining that fopen
and fshut are now the values calculated from f0, f1, and f2 using
Eq. 7). Thus, we define

f0 = f2
shut = (f0 + f1/2)2

f1 = 2 · fopen · fshut = 2 · (f1/2 + f2) · (f0 + f1/2)

f2 = f2
open = (f1/2 + f2)

2 (8)

From these expected fractions, the L0, L1 and L2 counts
expected in the absence of interaction can then be calculated
by multiplication with n. The significance of the difference
between the observed distribution {f0, f1, f2} and the distribution
{ f0, f1, f2 } calculated in Eq. 8 assuming the null hypothesis
of independence (absence of interactions) can be ascertained
using the χ2 test, a statistical method typically used to ascertain
independence (Howell, 2011). Similarly, the significance of the
difference between the observed distribution {L0, L1, L2} and
the calculated distribution {L0, L1, L2} can be ascertained using
Fisher’s exact test (Sprent, 2011).

In summary, the flow of the analysis is as follows. First, we
divide the observed L0, L1 and L2 counts by n to calculate f0,
f1, and f2. Then we calculate fshut and fopen according to Eq. 7.
Next, using fshut and fopen, we calculate f0, f1, and f2 according
to Eq. 8, and L0, L1 and L2 are calculated from f0, f1, and
f2 by multiplication with n. Finally, {L0, L1, L2} and {L0, L1,
L2} are compared statistically. In the Supplementary Material,
we illustrate and support our derivation of Eqs. 1–8 using
contingency tables, elaborate on the suitability of the χ2 test and
Fisher’s exact test, and provide a numerical example.

The difference between the distributions {f0, f1, f2} and { f0, f1,
f2 } can also be quantified using measures based on information
theory, starting from Shannon’s entropy (Shannon, 1948). For
indistinguishable interacting channels, Shannon’s entropy is
obtained from the observed values of f0, f1, and f2 as

S = −
(

f0 log
(
f0
)
+ 2

f1

2
log

(
f1

2

)
+ f2 log

(
f2
))
, (9)

and using the values f0, f1, and f2 calculated by assuming the
absence of interaction, the entropy is

S̄ = −

(
f0 log

(
f0

)
+ 2

f1

2
log

(
f1

2

)
+ f2 log

(
f2

))
. (10)

The entropy difference

1S = S− S̄ (11)

quantifies the information lost by assuming independence in the
calculation given by Eqs. 7 and 8. If the channels are independent,
1S is expected to be 0; otherwise, 1S is expected to be negative,
which will reflect the presence of a phenomenon that generates
order (lower entropy) in the distribution of f0, f1, and f2.

The ensemble average current Iaverage can be reconstructed
from fopen (see Eq. 7) as

Iaverage = f1ich + 2f2ich = 2 · fopen · ich (12)

where ich is the single-channel current (assumed to be the same
for the 2 channels). It can equivalently be reconstructed as

Iaverage = f1ich + 2 f2ich = (2 · fopen · fshut + 2 · f2
open)ich =

2 · fopen · (fshut + fopen)ich = 2 · fopen · ich, (13)

since, by definition of f0, f1, and f2 (Eq. 8), f0, f1, f2 and f0, f1, f2
correspond to the same fshut and fopen. Thus, 1S also quantifies
the information lost when computing the ensemble average,
because this computation disregards the interdependence of f0,
f1, and f2.

Of note, the analyses presented in this section can be
conducted separately at any time point during the voltage clamp
protocol, even if the system is not at equilibrium. For these
analyses to be valid, the only condition is that the system must
be ergodic, that is, it must exhibit statistically the same behavior
over repeated successive experiments (recording sweeps).

Markovian Modeling of Channel Pairs
From Markovian Models of Single Channels to a
Markovian Model of a Channel Pair
We start with the formulation of a single ion channel as a
continuous-time discrete-state Markov model, a widely accepted
approach in ion channel electrophysiology (Colquhoun and
Hawkes, 1981; Qin et al., 2000; Milescu et al., 2005; Keener,
2009; Siekmann et al., 2012). Such a model consists of N
possible conformational states (e.g., closed, open, inactivated)
that can be graphically represented by a state diagram, that
is, a directed graph in which labeled nodes represent the
states and bidirectional arrows represent possible transitions.
Mathematically, the probabilities of the individual states are
described by an N-dimensional probability column vector p,
whose elements sum up to 1, and a N × N matrix Q (which is
voltage-dependent, and, if voltage changes, also time-dependent)
representing the transition rate coefficients (hereafter referred to
as transition rates, or simply as rates) of the possible transitions
between the different states. The dynamics of the model are then
described by the following master equation:

dp
dt
= Qp, (14)

where the element qij in the ith row and the jth column of Q
represents the transition rate from state j to state i (or 0 if this
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transition is not possible) and the diagonal elements of Q are
constructed such that the sum of every column of Q is 0 to,
which guarantees that the sum of p remains 1. Note that for the
master equation, we adopted here the form favored in physical
chemistry, which is also the form used by Keener (2009). Other
work on Markovian ion channel modeling (e.g., Colquhoun and
Hawkes, 1981; Qin et al., 2000; Milescu et al., 2005; Siekmann
et al., 2012) use the transposed notation dp/dt = pQ in which
p is a row vector and in which the rows of Q sum to 0.
Both formulations are, however, equivalent because they are the
transpose of each other.

To construct a compound model of two channels, we consider
that any state of the first channel can be associated to any state of
the second, assuming that no additional state is generated. We
furthermore consider that any transition occurring within one
channel can occur when the other channel is in any of its possible
states. Graphically, such a composition can be represented by the
Cartesian product of the corresponding graphs (Figure 1A) for
two 2-state models (closed-open), two 3-state models (closed-
open-inactivated), and two 6-state models of the cardiac Na+
channel model of Clancy and Rudy (1999). If the channels do
not interact, the corresponding rates within each channel (i.e.,
columns of horizontal red arrows and rows of vertical blue
arrows in Figure 1A) are equal to those in the original single-
channel models. The two channels are thus paired into a single
functional unit. Any two Markovian models can be combined
in this manner, even if they have different numbers of states or
different graphs.

Mathematically, the composition of two non-interacting
channels A (with NA states) and B (with NB states), determined
by rate matrices QA and QB and probability vectors pA and pB,
can be constructed as

QAB = QA ⊕QB = QA ⊗ IB + IA ⊗QB (15)

where ⊕ denotes the Kronecker sum, ⊗ denotes the Kronecker
tensor product, and IA and IB are the NA × NA and NB × NB
identity matrices, respectively (Siekmann et al., 2016). The result,
QAB, is an NANB × NANB rate matrix describing the compound
model as

dpAB
dt
= QABpAB (16)

with pAB being the NANB-dimensional probability vector
of composite states. The two summands in Eq. 15 correspond
to the transitions within one channel while the state of the
other channel is fixed, in Figure 1A represented respectively
by the red horizontal and blue vertical sets of arrows. In the
Supplementary Material, we provide the definitions of the
Kronecker product and sum and we write out the terms in Eqs.
15 and 16 for two 2-state C↔O Markovian models to illustrate
the block structure of the matrices.

From pAB, the separate probability vectors pA and pB for
each individual channel can be obtained by summing over
corresponding elements of pAB using matrix operators OA and
OB (consisting of ones and zeros) as

pA = OApAB and pB = OBpAB (17)

with
OA = IA ⊗ 1T

B and OB = 1T
A ⊗ IB (18)

where 1T
A and 1T

B are row vectors of ones (the superscript T

denotes transposition) with NA and NB elements, respectively
(not to be confused with the identity matrices IA and IB). In
the Supplementary Material, we provide an example of the
construction of OA and OB for a composite model of two 2-
state channels.

If the channels do not interact but are subject to the
same experimental conditions, pAB obeys the following relation
(Siekmann et al., 2016):

pAB = pA ⊗ pB (19)

This relation asserts the independence of both channels by
stating that the probability of finding channel A in state i and
channel B in state j is equal to the product of the probability of
finding channel A in state i and the probability of finding channel
B in state j, if both channels are considered separately.

For any model Q, the equilibrium (steady-state) probability
vector s can be found by solving the system

Qs=0 (20)

under the constraint that all elements of s sum up to 1. Without
interaction, Eq. 19 is also valid for the equilibrium probability
vector sAB of QAB:

sAB = sA ⊗ sB, (21)

where sA and sB are the steady-state probability vectors of QA and
QB, respectively.

Pair of Identical and Indistinguishable Channels
If the two channels are identical, then QA = QB, pA = pB,
and a symmetry appears. This symmetry can be conceptualized
graphically by the symmetry of the compound graphs in
Figure 1A about their diagonal. The symmetry exchanges the
colors of the arrows and symbols, but does not change the
compound model. If, in addition, the dynamics of the two
channels (or the channels themselves) cannot be distinguished
by any available experimental procedure, they are de facto
indistinguishable, and a physical, conceptual, or mathematical
permutation of the channels will not change the paired system.
Because proteins are chiral, a geometrical symmetry is likely to
appear (Cintas, 2013), as illustrated in Figure 1B. Note that if
we considered interacting objects that are themselves symmetric
(e.g., upon reflection in a plane), further arrangements having a
plane symmetry would also be possible. However, Na+ channels
do not possess a plane of symmetry, and the only symmetric
structure that can be built is one with a rotational symmetry
of 180◦.

Consequently, the probability of finding channel A in state
i and channel B in state j is equal to the probability of finding
channel A in state j and channel B in state i. From this, in the
absence of any further information (i.e., if all possible open states
have the same conductance and the only available experimental
observation is that only one of the two channels is conductive),
Eq. 4 can be deduced. Note that this is a consequence of A and B
being identical and does not rely on chirality.
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FIGURE 1 | Modeling a pair of channels. (A) Composition of two Markovian channel models. Top left: Two generic 2-state models. Top right: Two generic 3-state
models. Bottom: Two instances of the Na+ channel model of Clancy and Rudy (1999). The symbol “2” denotes the Cartesian graph product. Note the symmetries
about the diagonals (dashed lines). (B) Cartoon of a channel dimer (viewed from an axis perpendicular to the membrane). a: direct contact; b: linked by two 14-3-3
proteins; c: linked by a 14-3-3 dimer. Because proteins are chiral, a symmetry is expected for the binding pattern and a rotation by 180◦ is expected to leave the
entire structure unchanged. In this situation, identical channels are indistinguishable. (C) Cartoon illustrating how interaction between channels may change the free
energy of certain combinations of states. In this example, opening of one channel stretches the 14-3-3 linker (represented as a green spring) and the potential energy
accumulated in the stretched linker is added to the free energy of the composite CO and OC states.

Incorporating Conservative Interactions (Preserving
Microscopic Reversibility)
One important principle in Markovian modeling is the principle
of microscopic reversibility, also known as detailed balance
(Kelly, 1979; Hille, 2001). This principle states that at equilibrium,
the flux of probability from state X to state Y (the product of the
steady-state probability of X and the rate constant going from X
to Y) is equal to the flux of probability from Y to X (Kelly, 1979;
Hille, 2001). It can be formalized mathematically as

QS = SQT, i.e., QS is symmetric (22)

where S is a diagonal matrix formed with the elements of the
steady-state probability vector s (satisfying Qs = 0). Equivalently,
this principle can be formalized by Kolmogorov’s criterion (Kelly,
1979): for every loop in the Markovian model, the product of the
transition rates in one direction along the loop must be equal to
the product of the transition rates in the reverse direction; thus,
there is no preferential motion in a given direction around a loop.
From the viewpoint of statistical mechanics, this principle states

that, in the long term, no energy is produced or consumed by the
channel (conservation of energy).

Transition rates (i.e., rate coefficients) are usually described
by Arrhenius’ and Eyring’s theories (Tsien and Noble, 1969; Jack
et al., 1975; Hille, 2001; Sigg and Bezanilla, 2003; Sigg, 2014). The
transition rate rij from state i to state j is related to the height
of the energy barrier 1G‡

ij (considered at the level of the single
molecule, not at the molar level) encountered when transiting
from i to j as

rij = κ
kT
h
e−1G‡

ij/kT (23)

where k is Boltzmann’s constant, h is Planck’s constant, κ is
a constant factor (transmission coefficient) and T is absolute
temperature (we consider in this work a constant physiological
temperature of 37◦C = 310.15 K). The transition rate rij then
appears as element qji in the jth row and the ith column of Q.
Taking the logarithm of Eq. 23 shows that the barrier height is
related to the logarithm of the rate. Thus, Kolmogorov’s criterion
can also be expressed as follows: the sum of the ascended energy
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barriers in one direction along the loop must be equal to the sum
of the ascended energy barriers in the reverse direction, and no
net energy is gained or lost after completing the loop.

By construction, the composition of models presented in
Figure 1A and the mathematical formulation of non-interacting
models in Eq. 15 preserve microscopic reversibility if the
original models also do so (a proof outline is provided in the
Supplementary Material).

Concerning allosteric interactions, energy may be exchanged
between interacting units (e.g., between the α-subunits of Na+
channels or between the α-subunits and a linker protein), but
in the long term, no net energy (e.g., metabolic, chemical) is
generated or dissipated. Consequently, we consider that allosteric
interactions must preserve microscopic reversibility. Using the
energy landscape analogy, it can be understood that modifying
the energy level of a state (represented by a trough in the
energy landscape), the energy of a barrier (the altitude of a
barrier), or any combination of such operations will preserve
microscopic reversibility.

Raising the energy of a state by an amount E corresponds to
scaling all rates of the transitions exiting that state by eE/kT. For
E > 0 (the energy of the state is raised), the exiting transitions
are accelerated. For example, for E = kT, these transitions
are accelerated e-fold. For E < 0 (the energy of the state is
lowered), the exiting transitions are slowed. Mathematically, this
corresponds to multiplying the corresponding column of Q by
eE/kT. If Q represents a composite model of two channels having
each the same state diagram (e.g., Figure 1A), the energy of two
corresponding state compositions SaSb and SbSa (e.g., CO and
OC in Figures 1A,C) must be changed by the same amount
(unless a = b). For this case, two columns of Q are multiplied by
eE/kT. Figure 1C provides an example illustrating how the change
in free energy of a composite state relates to potential energy
accumulated in the interaction between the channels.

Conversely, raising the energy of a barrier by an amount
E corresponds to scaling the two transition rates between the
two states separated by this barrier by e−E/kT. For E > 0, these
transitions are slowed, and for E < 0, these transitions are
accelerated. This corresponds to scaling the two corresponding
entries of Q (four entries if Q describes a symmetric composite
model) and recalculating the diagonal entries of Q such that the
sum of each column of Q remains 0.

The operations of changing the energy of a state and
changing the energy of a barrier preserve Kolmogorov’s criterion.
Furthermore, these operations commute and can thus be
applied on Q in any order. In the Supplementary Material,
we provide a few examples of such operations and illustrate
their commutativity. Any other change to Q that cannot be
decomposed as a combination of these elementary operations
violates microscopic reversibility.

Deterministic and Stochastic
Simulations of Ion Channel Function
Deterministic Simulations
We ran both deterministic and stochastic simulations of ion
channel function in response to a voltage step applied at time

t = 0, mimicking a voltage clamp step protocol. In deterministic
simulations of single channels and of composite non-interacting
or interacting channels, the vector of state probabilities was
computed using matrix exponentials (Colquhoun and Hawkes,
1995a; Siekmann et al., 2012) as

p (t) = etQp(0), (24)

where p(t) is the vector of state probabilities at time t and
p(0) is the initial condition at time 0 (start of the voltage step).
Eq. 24 is the analytical solution of Eqs. 14 and 16 when Q
does not change with time (as during a voltage step protocol
to a given potential). For existing Na+ channel models (e.g.,
Clancy and Rudy, 1999) subjected to a voltage clamp activation
protocol, Q was computed as a function of the step potential
and p(0) was computed as the steady-state solution s of Eq. 20
with Q as function of the holding potential. In simulations of
compound channels (A and B, non-interacting or interacting),
the separate probability vectors pA and pB for each individual
channel were computed according to Eqs. 17 and 18. Macroscopic
currents were reconstructed by extracting the elements of pA
and pB corresponding to open states and multiplying them by
the corresponding maximal conductance or maximal current.
Similarly, the probabilities (as a function of time) to observe 0,
1, or 2 open channels (p0, p1, and p2) were obtained from pA
and pB. The probabilities p0, p1, and p2 represent the expectation
values of the fractions f0, f1, and f2 (see section “Quantification
of the interaction between two channels under non-stationary
conditions”) when the number of sweeps tends toward infinity.

Stochastic Simulations
Stochastic simulations of transitions between different states were
carried out as described previously (Milescu et al., 2005; Lemay
et al., 2011). In brief, if the state of a model (single or compound
channel) is known at time t, then the probability to find the model
in any given state at time t + 1t is determined by the transition
probability matrix A given by

A = e1tQ (25)

Unless specified otherwise, we used a time step1t of 0.001 ms.
The element in the ith column and jth row of A represents
the probability of the model to be in state j at time t + 1t
if the model is in state i at time t. Every column of A sums
to 1. The state of the model at time t + 1t was therefore
simulated by drawing a state at random from the multinomial
distribution given by the corresponding column of A. The
stochastic behavior of the model during a predefined simulation
time was then obtained by sequential iteration. Single-channel
currents or currents from a channel pair were then computed by
adding unitary currents through open states. The entire process
was repeated n times to simulate n sweeps, from which ensemble
average currents were computed. For every time step 1t, the
sweeps containing 0, 1, or 2 open channels were counted (L0, L1,
and L2). From these counts, the probabilities f0, f1, and f2 were
estimated by respectively dividing L0, L1, and L2 by n. As initial
conditions, channels were set in the closed state for 2-state and
3-state models (see Figure 1A). For Na+ channel simulations,
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the initial state was obtained by drawing it randomly from the
multinomial distribution given by the steady-state vector s at
holding potential.

Simulations were validated by reducing 1t 10 times. No
difference in the results was observed, indicating that the 1t
of 0.001 ms was sufficiently small. To validate our framework,
we also implemented Gillespie’s algorithm (Gillespie, 1977) and
repeated selected simulations (detailed in the “Results” section).

Quantitative Analyses
Quantification of the Synchrony of Gating
Clatot et al. (2017, 2018) also examined the proportion
of simultaneous openings (or closings) by calculating the
proportion of consecutive openings (or closings) separated by a
time interval shorter than a predefined threshold value.

In our stochastic simulations, rather than using a threshold
value, we examined histograms of the distribution of the time
interval between consecutive openings of the two channels
(without any other event in between and without regard to which
channel opened first) and between two consecutive closings,
respectively. The distributions were then summarized by their
mean and median, as markers for subsequent analysis.

For stationary channel behavior, these distributions can
be derived analytically for any given Markovian model (e.g.,
Yeo et al., 1989; Fredkin and Rice, 1991; Colquhoun and
Hawkes, 1995b). However, for a non-stationary situation, to
our knowledge, no analytical method exists to compute such
distributions. In addition, these distributions may vary with time.
Thus, the histograms were computed explicitly in the stochastic
simulations over the entire duration of the voltage step.

Markers for Macroscopic/Ensemble Average
Currents
We defined different markers to characterize the influence
of interactions between channels on the kinetics of
macroscopic or ensemble average currents (determined from
deterministic simulations).

For the compound of two C↔O models (Figure 1A, left),
we computed the steady-state level of the current, its maximal
derivative, the peak of p1 and the timing of this peak, and the
maximum of p2. For the compound of two C↔O↔I models
(Figure 1A, right) and of two Clancy-Rudy models (Figure 1A,
bottom), we computed the peak and the time of the peak current,
the maximal and minimal derivative (during activation and
inactivation), the time constant of fast inactivation, and the peaks
of p1 and p2 with the timing of these peaks.

Sensitivity Analysis
The energy of individual states and barriers were systematically
varied to determine the influence of these energy changes on the
markers defined above, in a manner similar to that described by
Sobie (2009). For each state or barrier, the energy was changed
by an amount going from –2 kT to +2 kT in steps of 1 kT
(kT corresponds at physiological temperature to 0.616 kcal/mol
or 26.7 meV). The sensitivity of a given marker to the energy
change was then quantified as the regression slope of the natural
logarithm of the marker vs. the energy. The quality of the

correlation was assessed using the square of the correlation
coefficient r2. We note that this sensitivity analysis is local (in the
sense that it starts from an already parametrized Markov model),
hence exploring sensitivity around this particular point.

Computational Aspects
All simulations and analyses were conducted in MATLAB
(R2015b, The MathWorks, Natick, MA, United States). Unless
specified otherwise, simulations were run for 3 ms with a
constant time step 1t of 0.001 ms. In stochastic simulations,
n = 1000 sweeps were simulated for each model/interaction.
Matrix exponentials and Kronecker products were computed
using the functions “expm” and “kron.”

The MATLAB code is available on Zenodo (doi:
10.5281/zenodo.4064027).

RESULTS

Quantitative Analysis of the Interaction
Between Na+ Channels in Published
Experimental Data
To demonstrate how our proposed analyses provide insight into
the interaction between two Na+ channels, we applied them in
Figure 2 to patch clamp data from pairs of human wild-type
(WT) cardiac Na+ channels (Nav1.5) reported by Clatot et al.
(2017). These experiments were conducted in the presence vs.
absence of difopein, a protein believed to disrupt the interaction
between the channels via 14-3-3. In their recordings, Clatot et al.
(2017) counted at every sampling time the number of sweeps with
one open channel (L1) and two open channels (L2). Dividing L1
and L2 by the number of sweeps n yields f1 and f2, the fractions
of sweeps with one or two open channels (solid curves in the
top panels of Figure 2A). From f1 and f2, we then computed f1
and f2, the expected fractions if the channels were independent
(dotted curves in the top panels of Figure 2A). Reconstructed
ensemble average currents are shown in the second row of panels
in Figure 2A. From the onset of the average Na+ current and
around the Na+ current peak, f1 was smaller than f1 and f2
was greater than f2, confirming the tendency of the channels
to be open together rather than separately. Interestingly, later
during inactivation, these differences suggestive of Na+ channel
interaction disappeared (overlap of dotted and solid curves).
With difopein, moreover, similar (although smaller) differences
are apparent between f1 and f1 as well as between f2 and f2,
which suggests that difopein did not fully disrupt the interaction
between the two channels.

We then computed the statistical significance of the
difference between observed L1 and L2 counts and counts
expected for independent channels using the χ2 test
and Fisher’s exact test. Both tests yielded p-values very
close to 0 during the onset and peak of the average
Na+ current without difopein (for some time points,
p < 10−20), statistically confirming the interaction between
the channels. The significant difference disappeared during
inactivation after about 1 ms following the peak of the
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FIGURE 2 | Analysis of single-channel data published by Clatot et al., 2017, (Supplementary Figure S8), licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/). In patch clamp recordings from wild-type cardiac Na+ channel pairs submitted to an activation
step to −20 mV, Clatot et al. (2017) counted at every sampling time the number of sweeps with one open channel (L1) and two open channels (L2). L1 and L2 were
extracted from the vectorized figure. Dividing L1 and L2 by the number of sweeps yields f1 and f2, the fractions of sweeps with one or two open channels at a given
time. (A) Analysis of experimental data in the absence (left) vs. presence (right) of difopein. Top row: Raw fractions f1 and f2 (solid cyan and magenta lines) and
fractions f1 and f2 that would be expected in the absence of interaction (Eqs. 7 and 8, dotted cyan and magenta lines). Second row: Ensemble average currents
computed using Eqs. 12 and 13 (assuming a single-channel current ich of −1 pA). Third row: p-value (as a function of time) of the χ2 test (green) and Fisher’s exact
test (orange) for independence. Intervals during which p < 0.01 are highlighted in gray. Fourth row: Entropy difference 1S computed using Eqs. 9–11. (B) Plots of f2
vs. f1 (dots) for experiments without (left) and with (right) difopein. The curved arrows indicate the direction of the trajectories. The black curves represent the
expected relationship in the absence of interactions (f2 vs. f1).

ensemble average current. With difopein, the significant
interaction at the onset and peak of the average Na+ current
was also present.

To quantify the interaction using information theory, we
computed the entropy difference 1S (Eqs. 9–11), shown in the
fourth row of Figure 2A. The negative 1S around the peak
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average Na+ current corroborates the interaction. Consistent
with the other data shown in Figure 2A,1S returned to 0 during
inactivation and1S was less negative in the presence of difopein.

Another approach to graphically reveal the interaction
between the channels is to plot f2 vs. f1 (Figure 2B). During
activation, f2 increased considerably faster than f1. After passing
the peak average Na+ current, f2 rapidly decreased while
f1 continued to increase. Importantly, the data points were
initially located far from the curve corresponding to a binomial
distribution for independent channels, but collapsed onto this
curve later during inactivation. In the f2 vs. f1 phase space,
the fractions thus followed a clockwise loop trajectory bounded
below by the curve for independent channels. With difopein,
the loop was still apparent, albeit with a reduced magnitude.
Altogether, our analysis substantiates the interaction between
Na+ channels, indicates that this interaction vanishes during
inactivation, and shows it is only partially suppressed by difopein.

Lessons From a Composite Pair of
2-State Markov Models
We first formulated a composite model consisting of the two
simplest Markov channel models consisting each of one closed
(C) and one open state (O). The channels (labeled A and B) are
identical, and without interaction their opening rate is 1 ms−1

and their closing rate is 2 ms−1. We conducted deterministic and
stochastic simulations after placing both channels in the C state
as initial condition. Intuitively, the notion that Na+ channels tend
to open and to close together suggests that composite CO and OC
states must be relatively unstable with a decreased probability.
This decreased stability could result from increased free energy of
these composite states, as illustrated in Figure 1C. We therefore
ran control simulations in the absence of interactions, and
simulations in which the free energy of the composite CO and
OC states was raised by 2 kT. Note that the CO and OC states
can be distinguished in the simulations, but in a patch clamp
experiment, such composite states would be indistinguishable.

Figure 3A shows corresponding state diagrams, individual
realizations of stochastic simulations (sweeps), individual
fractions fA and fB of the n = 1000 sweeps with channels A
or B being open, and corresponding fractions f1 and f2. The
bottom panels of Figure 3A also show the fractions f1 and f2
computed from f1 and f2 under the assumption that the channels
are independent. For the non-interacting pair, the sweeps
illustrate that individual channel openings and closings are
uncorrelated. For the interacting pair, the gating behavior clearly
differs: in the sweeps, channels visibly tend to be open together
and consecutive openings and closings tend to occur in closer
temporal proximity. Irrespective of the presence or absence of
interaction, the fractions fA and fB (top panels of Figure 3A)
evolve from 0 to their stationary equilibrium (reflecting
activation) with fA ≈ fB because the channels are identical. For
the interacting channels, the steady-state probability is lower
(∼0.21) compared to the non-interacting channels (0.33). The
plots of f1, f2, f1, and f2 (Figure 3A, bottom) show that, for
the non-interacting pair, f1 remains close to f1 and f2 remains

close to f2, as expected. Introducing the interaction increased
f2 and decreased f1. Moreover, for the interacting pair, f1 < f1
and f2 > f2, consistent with the finding shown in Figure 2A
during activation.

Figure 3B shows the average Na+ current, the entropy
difference and the p-value (Fisher’s exact test) computed as in
Figure 2A. Consistent with the observation that the interaction
increases fA and fB, the ensemble average current was about
50% larger (in absolute value) for the interacting pair. The
entropy difference converged to a negative value near –0.21
for the interacting pair, while it remained 0 as expected for
the non-interacting pair. The p-value immediately dropped near
0 for the interacting channels (refuting the null hypothesis of
independence), while it fluctuated between 0 and 1 without
interaction. Figure 3C shows histograms of the latency between
successive openings and closings and cumulative histograms of
these latencies. The interaction drastically skewed the histograms
toward shorter latencies and decreased severalfold the mean
and median latency between successive openings and successive
closings. Lastly, the f2 vs. f1 plots (Figure 3D) show that the
interaction shifted the trajectory upwards and leftwards from
the theoretical expectation for independent channels, while the
trajectory remained near the theoretical attractor in the f1-f2
phase space in the absence of interaction. These observations
are consistent with the analysis conducted on experimental data
(Figure 2A) during the activation phase.

In simulations in which the opening rate of the single-
channel model was set to 2 ms−1 and its closing rate to
1 ms−1 (Supplementary Figure S1), the effects of channel
interaction were qualitatively similar, with the exception that it
increased, rather than decreased, the fractions fA and fB and the
ensemble average current. Taken together, the simulations of a
pair of 2-state channels suggest that an increased free energy
of composite CO/OC states may be involved in the biophysical
mechanism leading to coupled gating and the experimentally
observed behaviors of f1 and f2.

In Figure 3, only the energy of the composite CO/OC states
was changed. However, an interaction between the channels
may involve changes in the free energies of other composite
states and/or barriers between composite states. To explore
systematically the effects of such changes, a sensitivity analysis
was conducted in Figure 4 for the model presented in Figure 3,
in which these free energies were varied individually. This
involved three composite states (CC, CO [identical to OC and
hence referred to as CO/OC or simply CO] and OO), and
two barriers (between CC and CO and between CO and OO),
given the symmetry of the model (Figure 1A). Ion current
parameters (maximal current, maximal activation slope, mean
and median latencies of successive openings/closings, peak p1,
peak p2 and time of peak p1 (p1 and p2, the expectation values
for f1 and f2 were obtained from deterministic simulations) were
then correlated to the free energy changes (Figure 4). Positive
values (green bars) indicate that raising the free energy of a
state/barrier increased the corresponding parameter; conversely,
negative values (red bars) indicate that raising the free energy
of a state/barrier decreased the corresponding parameter. For
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FIGURE 3 | Simulated gating behavior of a pair of 2-state channels (C: closed↔ O: open; opening rate: 1 ms−1; closing rate: 2 ms−1) in the absence of interaction
and upon raising the energy of the composite CO and OC states by 2 kT. As initial condition (t = 0), the channels were all put into the C state. (A) Top row: Fractions
fA and fB of the individual channels A and B being open in the absence (blue/red, left) and presence (cyan/magenta, right) of the interaction, reconstructed from
n = 1000 simulated sweeps. Second row: Simulated sweeps. The simulated current is represented in black; the intervals during which the channels were open are
marked by colored overbars. Third row: Corresponding graphs of the composite Markovian models of non-interacting and interacting channels (numbers
correspond to rates in ms−1; colored arrows indicate the rates accelerated by the interaction). Bottom row: Fractions f1 and f2 of finding one or two channels open
for non-interacting and interacting channels (color legend in the inset), and expected fractions without interaction (lighter hues) computed from Eqs. 7 and 8.
Continuous lines were computed using deterministic simulations. (B) Ensemble average current (top), entropy difference (middle) and p-value of Fisher’s exact test
(bottom) for the non-interacting (green) and interacting (orange) channel pair. The continuous lines were generated by deterministic simulations. (C) Histograms of
the latency between successive openings (top) and closings (bottom), and cumulative histograms of this latency (solid curves) for the non-interacting (green) and
interacting (orange) channel pair. Filled triangles and solid vertical lines indicate means; open triangles and dashed vertical lines indicate median values. (D) f2 vs. f1
plots without (green) and with channel interaction (orange). The continuous curves were obtained from deterministic simulations. The black curve is the theoretical
expectation for independent channels.

example, macroscopic activation rate (maximal activation slope,
second column in Figure 4) was accelerated by raising the energy
of the composite CC state because it destabilized this state and
precipitated the opening of either one of the channels (transition
to CO/OC). Conversely, raising the CC-CO barrier (jointly with
the CC-OC barrier) slowed macroscopic activation because it
opposed the exit from the CC state. Regarding the latencies
of successive openings and of successive closings, Figure 4
shows that raising the energy of the composite CO/OC states

strongly decreased these latencies, consistent with the histograms
in Figure 3C and with the hypothesis that destabilizing the
CO/OC states tends to synchronize openings and closings.
These latencies were however also modulated (although, in
absolute value, to a lesser extent) by changing the energies
of the barriers. Raising the energy of the CO/OC states also
increased peak p2 while decreasing peak p1. From the five
interventions on states/barriers shown in Figure 4, raising the
CO/OC states was the most compatible with coupled gating, the
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FIGURE 4 | Sensitivity analysis for the pair of 2-state channels (C: closed↔
O: open; opening rate: 2 ms−1; closing rate: 1 ms−1). The free energy of
every composite state and barrier (labels on the left) was individually varied by
an amount going from –2 kT to +2 kT. Then, the influence of this variation was
quantified by the regression slope of the natural logarithm of observable
parameters (labels on the top) and the r2 value of this regression (scale
rectangle in the top left corner). Positive correlations are shown as green bars
above the horizontal lines. Negative correlations are shown as red bars below
the horizontal lines. Color intensity corresponds to the slope and color
saturation to r2. The observable parameters were obtained from deterministic
simulations, except the latencies, which were obtained from 1000 stochastic
simulations (sweeps). As initial condition, all the channel pairs were placed in
the CC state. For this analysis, p1 and p2 from the deterministic simulations
were used instead of f1 and f2 obtained from the n = 1000 sweeps. While this
figure summarizes the results using the regression slope and r2, explicit plots
of the natural logarithms of each marker vs. the energy change for every
compound state and barrier can be generated by the MATLAB code
deposited on Zenodo.

increase of f2 and the decrease of f1 without large macroscopic
current changes, as reported by Clatot et al. (2017) for Na+
channel dimers. However, other changes in the global energy
profile may be involved. Furthermore, the maximal current also
correlated slightly negatively with the energy of the CO/OC
states (Figure 3B).

The same analysis was conducted for a single-channel
opening rate of 2 ms−1 and closing rate of 1 ms−1

(Supplementary Figure S2). The results were essentially
similar, with the exception that the energy of CO/OC state and
maximal current were positively correlated, as also visible in
Supplementary Figure S1B.

Altogether, these results suggest that an increased free energy
of composite CO states underlies the interaction between Na+
channels, although other mechanisms may exist. However, the
2-state C-O channel model is incomplete because Na+ channels
also exhibit inactivated states. We therefore extended our study
to Markovian models incorporating inactivation.

Lessons From a Composite Pair of
3-State Markov Models
In this next step, we implemented a single-channel model with
three states: closed, open and inactivated (C, O, and I), with an

activation rate (C→O) of 4 ms−1 and an inactivation rate (O→I)
of 3 ms−1. The reverse rates were set to 10−5 times these values
and had a negligible influence on the activation/inactivation
processes. As initial condition, the channels were placed in
the C state. Compound models of two channels were then
constructed without interaction and with an interaction mediated
by a 2 kT increase of the energy of the CO/OC states.
Figure 5 shows corresponding diagrams, fractions/probabilities,
individual simulated sweeps, ensemble average currents and
further parameters in the same manner as Figure 3.

Without interaction, the model yielded a rapid activation
followed by slower inactivation, with a peak open channel
fraction (fA, fB) near ∼0.4 at time ∼0.25 (Figure 5A, top),
generating an ensemble average current (Figure 5B, top) similar
to experimental recordings of human cardiac Na+ currents at
physiological temperature (Keller et al., 2005). Corresponding
single-channel sweeps (Figure 5A) show that the openings and
closings of the two non-interacting channels were uncorrelated,
with longer periods with one channel open and shorter periods
with both channels open. With the interaction, the sweeps already
reveal that the channels tend to synchronize their openings but
not their closings. The bottom panels of Figure 5A shows that
the interaction decreased f1. The interaction also increased f2, but
only during the activation phase. Furthermore, for the interacting
channels, the interaction was again reflected by f1 < f1 and by
f2 > f2 (especially during activation and near the peak), while
for the non-interacting channels, f1 ≈ f1 and f2 ≈ f2. The top
panel of Figure 5B shows that the interaction slightly decreased
peak average current and the time of peak, without major changes
in activation and inactivation kinetics. The entropy difference
reached a minimum near ∼-0.16 early during activation but
returned to 0 during the inactivation phase. Moreover, the
p-value of Fisher’s exact test, was close to 0 only during activation
and near the peak of the current. Without interaction, the
entropy difference remained 0 and Fisher’s test showed no
significant interdependence, as expected. These observations
indicate that the interaction essentially affected activation rather
than inactivation. The histograms in Figure 5C show that the
latency between successive openings was decreased by more than
5-fold by raising the energy of the composite CO states by 2 kT;
however, this interaction slightly prolonged the latency between
successive closings, which contrasts with experimental reports
(Clatot et al., 2017) and with the 2-state model (Figure 3C). This
suggests that other types of interaction between Na+ channels
must be involved. Nevertheless, in the f2 vs. f1 plot (Figure 5D),
raising the energy of the composite CO states replicated the
clockwise loop with a decaying late part along the theoretical
expectation curve (see Figure 2), while, without interaction, the
trajectory collapsed on the theoretical expectation.

Na+ channels can undergo closed-state inactivation and
closed-state recovery from inactivation (Nakajima et al., 2019).
Therefore, we repeated these simulations and analyses for a
“triangular” rather than “linear” 3-state COI model with an
activation rate (C→O) of 3 ms−1, an open-state inactivation
rate (O→I) of 3 ms−1 and a closed-state inactivation rate
(C→I) of 3 ms−1. The respective reverse rates were set to
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FIGURE 5 | Simulated gating behavior of a pair of 3-state channels (C: closed↔ O: open↔ I: inactivated) in the absence of interaction and upon raising the energy
of the composite CO and OC states by 2 kT. Same protocol, analysis and panel layout as in Figure 3.

comparatively very small values of 3·10−5 ms−1, 3·10−5 ms−1

and 3·10−10 ms−1 (satisfying microscopic reversibility).
The compound model, with vs. without an increase by 2
kT of the composite CO/OC states, yielded similar results
(Supplementary Figure S3) as the “linear” 3-state COI model.

For the linear COI model, we proceeded with a sensitivity
analysis similar to that in Figure 4. This analysis, shown in
Figure 6, involved varying the energy of six composite states
and six barriers between composite states. Additionally, the
sensitivity was ascertained for the time of peak current, the
maximal slope of macroscopic inactivation, the time constant
of macroscopic inactivation, and the timing of peak p2. Raising
the energy of the composite CO states led to a decrease of
peak p1 and an increase of peak p2, and to a prominent
decrease of the latency of successive openings. It also delayed
the time to peak p1 and shortened the time to peak p2. This
intervention did not affect the latency of successive closings,
while it accelerated inactivation without major change of other

observable parameters. Regarding the effects on p1 and p2,
the composite states and barriers for which energy shifts led
to opposite changes in peak p1 and p2, were, next to CO,
the composite state OO and the barriers CO-OO and OO-OI.
Changing the energy of the OO state and the OO-OI barrier
had however no influence on the latencies. Nevertheless, lowering
the energy barrier CO-OO induced effects on p1, p2, and on the
latency of successive openings that were similar to raising the
energy of the state CO, suggesting that changes in this barrier are
also a plausible interaction mechanism. Regarding the latency of
successive closings, this parameter was only shortened by raising
the energy of the state OI and by lowering the barrier OI-II,
which precipitates inactivation of one channel if the other is
already inactivated.

In summary, these observations indicate that changes to more
than one composite state or barrier are necessary to account for
the synchronization of both openings and closings. Our analysis
identifies the energies of the composite states involving O (CO,
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FIGURE 6 | Sensitivity analysis for the pair of 2-state channels used in Figure 5 (linear COI model, C: closed↔ O: open↔ I: inactivated). Same protocol, analysis
and layout as in Figure 4. The rate constants for the non-interacting single channels are shown in Figure 5A. Additional observable parameters (labels on top) are:
peak current, maximal inactivation slope, time constant of inactivation, and time of peak p2 (from deterministic simulations).

OO, and OI) to account for coupled gating. It also pinpoints the
energy barriers between OO and other composite states (CO-
OO and OO-OI), as well as the barrier OI-II, as possible coupled
gating mechanisms.

In Supplementary Figure S4, we conducted the
sensitivity analysis for the triangular COI model of
Supplementary Figure S3. The results were essentially similar
to those for the linear COI model. The analysis involved three
additional barriers, CC-CI, CO-IO, and CI-II, of which none
produced opposed effects on p1 and p2.

Sensitivity Analysis for a Full Cardiac
Sodium Channel Model
During activation, Na+ channels undergo several conformational
changes before finally arriving to the open conducting state
(Hille, 2001). Na+ channels also exhibit different time courses
of inactivation and recovery from inactivation, which can be
explained by different inactivated states at different inactivation
depths (Clancy and Rudy, 1999; Bondarenko et al., 2004). The
3-state model studied above is thus incomplete and must be
complemented with additional closed and inactivated states.

One previously published human cardiac wild-type Na+ channel
model considering these features is the model of Clancy and Rudy
(1999). This 6-state model (Figure 1A) incorporates three closed
states (C3, C2, and C1), one open state (O), and two inactivated
states (IF: fast inactivated and IS: slow or deep inactivated). The
model also accounts for closed-state inactivation (C1 to IF).

In Figure 7, we conducted a sensitivity analysis for a pair
of Clancy-Rudy model channels subjected to an activating
voltage step to -20 mV. The complete analysis included 21
possible composite states and 36 possible energy barriers. In
Figure 7 only the states and barriers related with at least one
change with a regression slope > 0.1 (in absolute value) are
shown. Changing the energies of other composite states and
barriers (most involving the IS state) affected the investigated
parameters only minimally.

Regarding the composite states, raising the energies of
C3O, C2O, and C1O increased peak p2, decreased peak
p1, and shortened the latencies between successive openings,
without affecting the latencies between successive closings.
This is consistent with the results obtained with the 3-
state model (Figures 5, 6). These effects were largest for
C1O and smaller for C2O and C3O. Lowering the energy
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FIGURE 7 | Sensitivity analysis for a pair of 6-state Clancy–Rudy model channels (Clancy and Rudy, 1999) for a voltage step to -20 mV. Same analysis and layout as
in Figure 6. As initial condition, all channels were placed in the C3 state. For the simulations, the rate constants at -20 mV were used. Simulations were run for 5 ms
for this analysis.

of OO strongly increased peak p2 because it rendered this
composite state more stable; however, this intervention did
not affect the latencies. Raising OIF was the only composite
state energy modulation that strongly shortened the latency
between successive closings, but it also strongly accelerated
macroscopic inactivation.

Regarding the barriers between composite states, lowering
C1O-OO tended to synchronize openings, increased peak p2

and decreased peak p1. This is again consistent with the
3-state model. Lowering C2O-C1O and C3O-C2O had the
same effects, although smaller. Synchronization of openings
was also strongly potentiated by lowering C1O-C1IF, although
this intervention decreased p2. Raising the OO-OIF barrier
increased p2, as it slowed down the exit from the OO state.
Finally, among all barriers, only lowering OIF-IFIF exerted a
substantial synchronization of closings. This goes along with the
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notion that a channel in the IF state precipitates the inactivation
of the other channel if it is in the open state, leading to
coupled closing.

This analysis thus identifies the composite states C3O, C2O,
C1O, OO, and OIF as well as the barriers C3O-C2O, C2O-C1O,
C1O-OO, OO-OIF, OIF-IFIF, and C1O-C1IF as the most likely
candidates for which the channel-channel interaction modulates
their free energy.

Systematic Exploration of Interaction
Profiles
Since none of the individual energy changes of composite states
or barriers replicated both the synchronization of openings and
closings together with an increase in p2 and a decrease in p1, we
applied several changes in combination. We also accounted the
observation of Clatot et al. (2017) that disrupting cardiac Na+
channel interaction and coupled gating with difopein did not
change the ensemble average current.

Firstly, we varied the energies of the following composite states
and barriers as follows: (i) the energies of the C3O, C2O, and C1O
states were raised jointly by 0, 1, or 2 kT and (ii) the energies of
the C3O-C2O, C2O-C1O, and C1O-OO barriers were lowered
jointly by 0, 1, or 2 kT. The combination that induced the largest
increase of peak p2 and the least changes to the average current in
terms of peak, time to peak and time constant of inactivation was
a raise of C3O, C2O, and C1O by 2 kT and a lowering of C3O-
C2O, C2O-C1O, and C1O-OO by 2 kT. Hereafter, we refer to this
interaction profile, illustrated in Figure 8, as Interaction I.

Figure 8A shows that Interaction I clearly increased f2 and
decreased f1, with f2 > f2 and f1 < f1, without manifest change in
the peaks of fA and fB. The individual sweeps show that channels
exhibit coupled openings and closings, while the channels
open and close essentially separately without interaction. The
interaction was also reflected by the negative entropy difference,
by the p-value close to 0 during and shortly after the peak
(Figure 8B), and by the large clockwise loop in the f1-f2
diagram (Figure 8D). Moreover, interaction I drastically reduced
the latency between successive openings, but only modestly
decreased the latency between successive closings (Figure 8C).
The histogram for the successive closings exhibited a long
tail; nevertheless, a substantial fraction of the latencies was
apparent below 0.15 ms (yellow part of the histogram). We
thus considered Interaction I as an interaction compatible with
experimental observations.

However, as visible in Figure 8B, Interaction I slightly
increased peak current, accelerated activation, shortened time to
peak and accelerated inactivation. These changes ranged up to
∼20% and thus possibly escape detection in experiments due to
measurement error and biological variability. These changes in
macroscopic current properties were nevertheless large enough
to motivate us to search further for possible interaction profiles.

Secondly, based on the identification of most likely candidates
in the previous section, the energies of the following composite
states and barriers (or sets of composite states and barriers)
were systematically varied as follows. (i) C3O, C2O, and C1O

were varied jointly by 0, +1, or +2 kT; (ii) OIF was varied by
−1, 0, or +1 kT; (iii) OO was varied by −1, 0, or +1 kT; (iv)
C1O-OO was varied by −2, −1, or 0 kT; (v) C3O-C2 and C2O-
C1O were varied jointly by −2, −1, or 0 kT; (vi) OIF-IFIF was
varied by −1, 0, or +1 kT; (vii) OO-OIF was varied by 0, +1
or +2 kT; and (viii) C1O-C1IF was varied by −1, 0, or +1 kT.
This resulted in 38 = 6561 possible combinations, which were
all simulated. From these combinations, we disregarded those
for which the peak current, the time of peak current, or the
time constant of inactivation differed by more than 5% from
the control simulation of two non-interacting channels. In the
remaining subset, we retained combinations that led to a > 90%
decrease of the median latency between successive openings and
successive closings, a > 2-fold increase of peak p2, a > 30%
decrease of peak p1, and a large clockwise loop trajectory in
the p2 vs. p1 plot initially above and then along the curve
expected for non-interacting channels. The combination meeting
these criteria was obtained by raising C3O, C2O, and C1O by
2 kT, lowering the C1O-OO barrier by 2 kT, and lowering the
barrier C1O-C1IF by 1 kT (Figure 9). Hereafter, we refer to this
interaction profile as Interaction II.

Figure 9 shows the effects of Interaction II in the same manner
as Figure 8. With Interaction II, fA and fB almost followed the
same time course as without interaction (Figure 9A) and the
ensemble average current was almost the same (Figure 9B).
At the single-channel level, the interacting channels exhibited
coupled openings and closings (Figure 9A), documented by the
histograms of the latencies (Figure 9C). In the histogram of the
latency between successive closings, Interaction II now clearly
decreased the median by more than 10-fold, while it decreased
the mean by only ∼30%, because the histograms exhibited
long tails. The behavior of f1, f2, f1 and f2 (Figure 9A), the
entropy difference, the p-value (Figure 9B), and the clockwise
f2 vs. f1 loop (Figure 9D) were otherwise similar to those
with Interaction I.

To validate our computational approach, we compare in
Supplementary Figures S5, S6 the L0, L1 and L2 counts and
corresponding deterministic model expectations simulated
using the matrix exponential algorithm and Gillespie’s
algorithm for the pair of wild type Clancy-Rudy models
with Interaction II. Both algorithms produced similar results.
In Supplementary Figure S7, we show histograms for 5
realizations of the simulation with the wild-type Clancy-
Rudy model pair without interaction and with Interaction II.
Although not exactly identical due the stochastic nature of
the simulations, the histograms all have a similar aspect. In
Supplementary Figure S8, we repeated the same simulation but
with a 10 times shorter time step and narrower bins; this Figure
shows that the histograms do not exhibit peaks or modes but are
monotonically decreasing.

In the Clancy-Rudy model, all rate constants are functions
of membrane potential V. Therefore, we conducted simulations
of voltage clamp activation protocols by stepping V at time 0
to values ranging from -70 mV to +60 mV in steps of 5 mV.
Figure 10 shows the resulting peak ensemble average current
(I–V curves), the normalized conductance, the time to peak, and
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FIGURE 8 | Simulated gating behavior of a pair of 6-state Clancy–Rudy model channels (Clancy and Rudy, 1999) in the absence of interaction and upon raising the
energies of the composite C3O, C2O and C1O states by 2 kT, and lowering the energies of the C3O-C2O, C2O-C1O, and C1O-OO barriers by 2 kT (Interaction I;
color-coded diagram). Same analysis and panel layout as in Figure 5. As initial condition, all channels were placed in the C3 state. For the simulations, the rate
constants at -20 mV were used.

the inactivation time constant plotted against V with Interaction
I (Figure 10A) and Interaction II (Figure 10B) vs. without
interaction. The normalized conductance curves were fitted with
the function gnorm = 1/(1 + exp((V1/2−V)/k)), with V1/2 being
the half activation potential and k the slope factor.

Both interactions changed the overall shape of the I-V curve,
making it steeper with a higher overall peak. Since the interaction
models were adjusted to produce a similar peak at −20 mV,
the curves crossed over near −20 mV. In terms of normalized
conductance, Interaction I slightly shifted V1/2 from −32.7 to
−28.5 mV and slightly decreased k (from 6.6 to 5.7 mV), whereas
Interaction II shifted V1/2 from −32.7 to −23.2 mV without
changing k (6.6 mV). Interaction I slightly shortened time to peak
for V between−5 and 40 mV, while Interaction II slightly delayed
it for V above −5 mV; finally, the inactivation time constant was
slightly shortened by Interaction I and lengthened by Interaction
II between−10 and 40 mV.

In brief, the changes in macroscopic current parameters
with Interaction I were moderate and still within the range

of biological variability observed in experiments. However,
the changes with Interaction II were more pronounced. This
highlights the difficulty of obtaining an energy interaction
profile that would lead to coupled openings and closings
without affecting macroscopic current parameters at all
possible potentials.

Interactions Can Contribute to the
Negative Dominance of Cardiac Na+

Channel Variants
Variants of the gene SCN5A encoding the α-subunit of
the cardiac sodium channel Nav1.5 can cause cardiac
arrhythmias such as Brugada syndrome or long-QT syndrome
type 3 (Lieve and Wilde, 2015; Veerman et al., 2015).
To explore how channel-channel interactions influences
gating and macroscopic Na+ currents in the presence of a
channel variant, we used our coupled channel model with
Interactions I and II.
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FIGURE 9 | Simulated gating behavior of a pair of 6-state Clancy–Rudy model channels (Clancy and Rudy, 1999) in the absence of interaction and upon raising the
energies of the composite C3O, C2O and C1O states by 2 kT, lowering the energy of the C1O-OO barrier by 2 kT, and lowering the energy of the C1O-C1IF barrier
by 1 kT (Interaction II; color-coded diagram). Same protocol, analysis and panel layout as in Figure 8.

We considered the variant p.L325R, which was first described
in a patient presenting with Brugada syndrome during episodes
of fever (Keller et al., 2005). As hallmark of negative dominance,
when HEK cells are transfected with equal amounts of DNA
coding for WT and variant p.L325R channels, the resulting
macroscopic current is less than half (about 25%) of the current
generated by cells transfected with the corresponding amount
of WT DNA. Both WT and variant channels are trafficked
to the membrane, suggesting that the mechanism of negative
dominance involves phenomena occurring at the cell membrane
and presumably direct channel interactions (Keller et al., 2005;
Clatot et al., 2012, 2017, 2018).

We started by formulating a single-channel model of the
p.L325R variant by modifying the rate constants of the Clancy-
Rudy model, as illustrated in Figure 11A. In patch clamp
experiments, the most salient biophysical properties of the
macroscopic p.L325R current are a severalfold decrease in

peak current, a shift of the activation curve by ∼10 mV to
more positive potentials, a slight increase of the time to peak
and a doubling of the inactivation time constant at −20 mV
(Keller et al., 2005). To simulate these features, we shifted the
opening rates by +7 mV and slowed them by 50%, doubled the
deactivation rates, and shifted the rate of fast inactivation by
−5 mV while scaling it by a factor 10 (Figure 11A; the rate IF→O
was adjusted in agreement with microscopic reversibility). In line
with experiments, this resulted (see Figure 11B) in a > 10-fold
reduction in peak Na+ current, an increase of time to peak by
∼30%, a shift of the V1/2 of activation by 10.6 mV (from −32.7
to−22.1 mV; k was only minimally affected: 6.3 mV vs. 6.6 mV),
and a 2–3-fold increase of the inactivation time constant.

Next, we incorporated the variant p.L325R Na+ channel
model into our channel pair framework and simulated the
behavior of a heterodimer consisting of one WT and one p.L325R
variant channel, first without any interaction (Figure 12A)
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FIGURE 10 | Reconstructed peak ensemble average current vs. voltage relationships (I-V curves, top row), normalized conductance (second row), time to peak
(third row), and inactivation time constant (bottom row). (A) In the presence of Interaction I (orange) vs. no interaction (green). (B) In the presence of Interaction II
(orange) vs. no interaction (green). The data were obtained using deterministic simulations.

and then with Interaction I (Figure 12B) and Interaction II
(Figure 12C), for a voltage step to−20 mV. At this potential, the
interactions only slightly change the average current for a dimer
of WT channels (Figures 8, 9).

Without interaction (Figure 12A), the WT channel gated
normally, whereas the variant channel activated slowly and
inactivated quickly, exhibiting only scarce and short-lived
openings. Accordingly, the open fraction for the WT channel
(fWT) exhibited a normal time course, while the open fraction
for the variant channel (fVariant) remained near 0. The WT
channel therefore essentially determined the ensemble average
current (assuming that both channels produce the same unitary
current of −1 pA). Furthermore, f2 remained near 0, while f1
was essentially determined by the WT channel openings. With
Interaction I (Figure 12B), fWT was clearly reduced by the
interaction with the variant and the WT channel openings were
on average shorter. The variant channel still opened scarcely and
during short times, with fVariant remaining near 0. The interaction

therefore reduced the ensemble average current (peak reduced
by ∼50%). Although the interaction slightly increased f2, this
increase was not sufficient to compensate for the decrease of fWT
and f1. With Interaction II (Figure 12C), these effects were even
more prominent, with a ∼70% decrease of peak average current
compared to the model without interactions.

Thus, in our model, the interactions between Na+ channels
lead to coupled gating and an increase in f2 for a normal
WT channel pair, but result in a strongly negative impact
of the variant on the WT channel for a heterologous WT-
variant pair. The analyses involving the calculation of f1 and
f2, the entropy difference, the histograms of latencies, the use
of Fisher’s or χ2 tests as well as the representation of f2 vs.
f1 do not apply in this case, because the channels are not
identical. However, in conventional single-channel recordings,
the channels would be indistinguishable (if the unitary currents
are the same), and only f1 and f2 (but not fWT and fVariant) could
be obtained experimentally.
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FIGURE 11 | Model of the variant p.L325R channel. (A) Diagram showing the modifications of the rate constants of the Clancy–Rudy model (color legend). (B) Peak
ensemble average current (I–V curve), time to peak, normalized conductance (activation curve), and inactivation time constant vs. potential for the p.L325R channel
(red) vs. the WT channel (blue).

Finally, in Figure 13, we examined how the interactions
between WT and p.L325R variant channels affect sets of currents,
current-voltage relationships, and activation curves that would
typically be obtained using whole-cell patch clamp experiments
by an activation protocol. Without interaction (Figure 13A), the
current generated by heterodimers (WT/Var) was about half of
the current generated by the WT/WT homodimers, while the
current produced by the variant homodimers was very small.
The activation curve for the heterodimer situation (WT/Var)
overlapped with that of the WT/WT because the variant channel
hardly produced any current. With Interaction I (Figure 13B),
the current generated by heterodimers was clearly less than half
of that generated by WT/WT dimers, and the activation curve
of the WT/Var was between those of the homodimers. With
Interaction II (Figure 13C), the WT/Var current was reduced
even further to ∼20% of the WT/WT current. These results
indicate that interactions between channels can contribute to the
negative dominance of certain Nav1.5 variants.

DISCUSSION

We developed a framework combining two Markovian ion
channel models into a compound model to examine the
consequences of interactions between channels on their
microscopic and macroscopic kinetics. In such a compound
model, every state of the first channel can be associated
with any state of the second. The model then implements
interactions as free energy changes of composite states and
barriers between composite states. We proceeded with an

incremental approach with channel models of increasing
complexity. In the compound of two 2-state closed-open models,
raising the free energy of composite CO states resulted in a
synchronization of individual channel openings and closings
(coupled gating), suggesting that heterogeneous composite CO
states are indeed less stable. In the compound of two 3-state
closed-open-inactivated models, the same intervention led to
coupled openings, but, based on our sensitivity analysis, other
changes in the energy profile of the compound model must be
introduced to obtain coupled closings. Using the Clancy-Rudy
Na+ channel model, we evaluated a large set of energy profile
variations to identify interactions that reproduced experimental
observations (Clatot et al., 2017): coupled openings, coupled
closings, increased sweep counts with two channels open
simultaneously at a given time during activation, decreased
sweep counts with only one channel open, and a clockwise loop
in the f1-f2 diagram.

Next, taking the p.L325R DN variant of Nav1.5 as an
example, we investigated whether channel-channel interactions
can directly contribute to the negative dominance of the variant
over the wild type. For this, we first formulated a single-channel
model of the p.L325R variant by modifying the rate constants
such that the model matches experimental data (Keller et al.,
2005). Then, we investigated the interactions between a WT
and a variant Na+ channel. Our working model describing how
such interactions decrease the Na+ current and contribute to the
negative dominance of the variant is summarized schematically
in Figure 14. Upon depolarization, the WT channel activates
normally and rapidly from the C3 state through the C2, C1,
and O state (yellow background arrow in Figure 14). Because
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FIGURE 12 | Simulated gating behavior of a channel pair consisting of a WT Na+ channel (nominal Clancy–Rudy model) and a p.L325R variant Na+ channel without
interaction (A) and in the presence of Interaction I (B) and Interaction II (C). Stochastic simulations (n = 1000 sweeps) were conducted for a voltage step to -20 mV.
As initial condition, all channels were placed in the C3 state. First row: Fractions fWT and fVariant of the individual channels being open in the n sweeps. Second row:
Simulated sweeps. The simulated current is represented in black; the intervals during which the channels were open are marked by colored overbars. Third row:
Ensemble average current (the same single-channel conductance was assumed for both channels). Fourth row: Fractions of sweeps f1 and f2 with one channel
(irrespective of which one) or two channels open. Smooth curves were obtained from deterministic simulations.

the variant channel activates slowly, it proceeds to a much
lesser extent toward its C2 and C1 states. The trajectory of
the channel pair (yellow) in the two-dimensional graph of
Figure 14 thus lies below the diagonal. The channel pair then
arrives in a composite state with the WT channel open and
the variant channel still in a C state. Because the activation
of the variant is slow (purple background arrow), and now
also because the interaction increases the free energy of the
composite CO states, these states are less stable and thus decay
rapidly into states in which the WT is inactivated while the
variant is still closed (orange background arrow). Thus, the
OO state is essentially bypassed. At this stage, the variant
channel still slowly activates (blue background arrows), and
the composite states consisting of the inactivated WT channel
and the open variant channel are eventually reached. However,
because inactivation of the variant is accelerated, these states

are short-lived and decay quickly into the inactivated/inactivated
states (amber arrows). As a net result, with interactions, the
WT channel contributes less to the Na+ current than without
interactions, while the contribution of the variant channel
remains minimal.

The question remains open how other variants interacting
with WT channels affect the Na+ current. Theoretically, the
opposite phenomenon may occur, whereby a variant channel
potentiates the current generated by the WT, leading to a
gain of function. Conversely, certain Na+ channel variants that
would, on their own, result in altered function, may be rescued
by their interaction with the WT, as proposed recently for
Nav1.7 (Rühlmann et al., 2020). Heterozygous carriers would
then not necessarily manifest symptoms unless, for instance, the
interaction is altered by a drug. Our modeling framework opens
the door to investigate such possibilities.
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FIGURE 13 | Simulated sets of Na+ currents, current-voltage relationships and activation curves that would be obtained by an activation protocol for a WT/WT
homodimer (blue), a WT/p.L325R variant heterodimer (magenta) and a p.L325R/p.L325R homodimer (red). (A) Without interaction. (B) With Interaction I. (C) With
Interaction II. Deterministic simulations were conducted for voltage steps to values from −70 mV to 50 mV in 5 mV increments. As initial condition, all channels were
placed in the C3 state. Top: Current traces. Middle: Peak current-voltage relationships. Bottom: Activation curves.

FIGURE 14 | Working model to explain how interactions between a wild-type
(blue state labels) and a variant p.L325R Na+ channel (red state labels)
decrease the Na+ current and contribute to the negative dominance of the
variant. See text for description.

Our approach may also be used to investigate the recently
demonstrated interactions between Cav1.2 calcium channels
(Dixon et al., 2015; Ito et al., 2019). We underline that our
approach can easily be generalized to combine two completely
different types of channels, such as Na+ and K+ channels. In
this setting, if recordings at the single-channel level become

available in the future, our approach is useful to model and
investigate gating interactions between for instance Nav1.5
and Kir2.1 channels, which are known to colocalize on the
cardiac cell membrane and to form macromolecular complexes
(Milstein et al., 2012; Perez-Hernandez et al., 2018). Similarly,
our approach may be used to investigate interactions between
Nav1.5 and Kv11.1 (hERG) channels, which were shown to
interact during transcription and as nascent proteins, resulting
in correlated intensities of corresponding membrane currents
(Eichel et al., 2019).

It would be insightful to investigate what happens if the rate
coefficients of the starting Markov models are slightly different,
e.g., due to differences that may arise between cellular expression
systems and real myocytes, or due to differences in applied
voltage. Such a study would then need to be very extensive: for
the Clancy-Rudy model, 11 independent rates would have to be
systematically varied, which, in combination with 15 independent
energies of states and >30 possible barriers, would lead to a very
large parameter space. Such a study goes beyond the scope of
the present work.

How to Quantify the Interactions
Between Channels?
To analyze both experimental and simulation data, appropriate
approaches are essential to ascertain whether channels interact.
The statistical properties of recordings from two or several
independent channels have been extensively investigated in
the past (Yeo et al., 1989; Colquhoun and Hawkes, 1990;
Fredkin and Rice, 1991). In subsequent work by Clatot et al.

Frontiers in Physiology | www.frontiersin.org 22 November 2020 | Volume 11 | Article 589386

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-589386 October 30, 2020 Time: 15:44 # 23

Hichri et al. Modeling Interactions Between Sodium Channels

(2018), the interaction between Na+ channels was quantified
using a procedure proposed by Chung and Kennedy (1996).
However, all these methods presuppose that the behavior of the
investigated channels is stationary (i.e., that a steady-state is
present), which is obviously not the case for Na+ channels upon
an activating voltage step. Chung and Kennedy’s analysis (Chung
and Kennedy, 1996) furthermore presupposes that deviation
from microscopic reversibility is possible, which contradicts the
principle of conservation of energy.

Thus, methods taking into account the transient behavior of
Na+ channels (or any time-dependent voltage-gated channels)
should be applied. Our development of such methods was further
motivated by the fact that the influence of one Na+ channel
on another likely exhibits time-dependence; thus, quantitative
measures should be functions of time rather than single scalars.

Conventional χ2 and Fisher’s tests typically used to test
interdependence can readily be used to document the existence
of an interaction. Applying these tests at individual time points
permits to identify the phases during which the interaction
is significant. Measures derived from information theory, such
as Shannon’s entropy, can be useful in tracking the level of
interaction with time. Finally, a graphical representation of f2
versus f1 is very helpful to visualize the interaction for identical
channels. When we applied these approaches on Clatot’s data
(2017), we found that the interaction between wild-type Nav1.5
channels is highly significant during activation and around
the peak of macroscopic Na+ current, but this significance
vanishes during inactivation as the entropy difference returns to
0. Interestingly, with difopein, the interaction remained, albeit to
a lesser extent. Possibly, difopein disrupted only the interactions
mediated by 14-3-3 but not those resulting from direct contacts
between the α-subunits of the Na+ channels. Alternatively,
due to the binding and unbinding kinetics of difopein to 14-
3-3, some sweeps may be recorded with interacting channels
and some without.

Can There Be Interactions Without
Macroscopic Current Changes?
Our sensitivity analysis showed that changing the energy of
a composite state or a composite barrier influences most
macroscopic parameters (e.g., peak, time to peak, inactivation
time constant) besides microscopic parameters (e.g., latency
between successive openings, peak f2). While some energetic
changes can be compensated by others to a certain extent,
the existence of an interaction profile that would not change
macroscopic parameters appears extremely unexpected and
fortuitous in our framework. Thus, it appears difficult to design
a model of interactions that would lead to coupled openings and
closings without affecting macroscopic current parameters at all
potentials. This finding is at odds with the report of Clatot et al.
(2017) that ensemble average currents from homomeric Na+
channel pairs were not affected by difopein (at steps to -20 and
-40 mV). If Na+ channel interactions mediated by 14-3-3 truly
do not modify macroscopic current parameters, one possibility
to account for this would be to make the interaction energies
voltage-dependent in the model. However, without sufficient

experimental data to validate such simulations, we did not
explore this possibility in the present work. Nevertheless, in our
reconstruction of the ensemble average current from the single-
channel data of Clatot et al. (2017) (Figure 2A) peak current
as well as activation and inactivation kinetics appear somewhat
differently in the absence vs. presence of difopein. While this
may be related to biological variability or technical aspects of the
experiments, this observation may also suggest that Na+ channel
interactions modify the macroscopic current.

Distinguishable vs. Indistinguishable
Channels
When recording from two identical channels simultaneously
using the patch clamp technique, it is inherently impossible to
distinguish the contribution of each individual channel. This
poses a great challenge in the analysis and interpretation of such
recordings. Possibly, the patch clamp technique could be refined,
for instance by combining it with voltage clamp fluorometry
(Cowgill and Chanda, 2019) or by genetic engineering of
the pore of one channel to alter its conductance to make
it distinguishable. Any modification to channel structure may
however affect channel function. These considerations do not
pertain to two different types of channels, which can in principle
be distinguished if their unitary current is different.

Ephaptic Coupling Between Channels?
Alternatively, channel-channel interactions may be ephaptic
rather than allosteric. Ephaptic coupling between cardiac cells
represents a mechanism modulating and possibly supporting
cardiac conduction across intercalated disks (Sperelakis and
Mann, 1977; Kucera et al., 2002; Veeraraghavan et al., 2014).
During ephaptic coupling, activated Na+ channels on one side
of the disk generate a substantial current that flows radially
through the narrow extracellular space within the intercalated
disk. This large current, flowing through a confined space with
high resistance, produces a substantial negative extracellular
potential. This translates as membrane depolarization on the
other side of the cleft, where it contributes to Na+ channel
activation. Recently, we showed in computer simulations that
clusters of Na+ channels in intercalated disks potentiate ephaptic
coupling (Hichri et al., 2018). The question arises whether the
current through a single open channel produces a sufficient
electric potential or field to influence another channel in its
immediate vicinity. For a single-channel current of -1 pA (Hille,
2001) and an intracellular/extracellular resistivity of 200 �·cm,
the potential and the field can be estimated by assuming a
point source/sink in an unbounded intracellular/extracellular
half-space (Plonsey and Barr, 1988). At 12 nm from the channel
mouth, the corresponding estimates are 27 µV and 22 V/cm,
respectively. While this potential is too small to affect channel
function, the corresponding field may suffice. Of note, at the level
of the neighboring channel, this field would be tangential to the
membrane, and how tangential fields affect ion channel function
remains largely unknown.

If the interaction between channels was ephaptic rather
than allosteric, another modeling approach would be required
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in which, for example, the transition between C2O and C1O
(Figure 1A) is accelerated toward C1O and slowed toward C2O,
while the other rates in the loop C2O-C1O-C1C1-C2C1 remain
unchanged. This would violate microscopic reversibility (the
loop would preferentially run clockwise). However, this is not
at odds with the energy conservation principle, as the Na+
current would dissipate the chemical potential energy of the Na+
gradient and part of this energy would be consumed by the
channel pair.

To test whether the interaction between Na+ channels
is mediated by the electric field, one could design patch
clamp experiments similar to those of Clatot et al. (2017)
in which the direction of the Na+ current is changed
from inward to outward by a suitable choice of Na+
concentration in the bath and pipette solutions. Then, the
opposite effects should be observed, for instance, preferential
openings of only one channel at a time and rarer occurrences of
joint openings.

Further Perspectives: From Molecular
Structure to Function
Further mechanisms may be hypothesized to explain the
differences between coupled openings of interacting dimerized
channels and normal openings of single channels. For example,
some conformational changes could only be possible for a dimer,
and in this case, the Markov state diagram of each channel
would be different when the channels are interacting. Since
Nav1.5 α-subunits are large proteins with numerous degrees of
freedom in their conformation, a representation using a Markov
model with only a small number of stable states represents a
reduction of the true system. Therefore, it is not impossible that
the dimerization of Na+ channels attenuates certain states to such
an extent that omitting them from the Markov model does not
alter its general behavior.

Therefore, a comprehensive understanding of ion channel
interaction will require using molecular structures to derive
intra- and intermolecular interactions and exploring them in
molecular dynamics simulations (Cournia et al., 2015; Delemotte
et al., 2015). Silva et al. (2009), for instance, have derived a
Markovian model of the KCNQ1 channel (underlying the cardiac
slow delayed rectifier K+ current IKs) from energy landscapes
related to the movement of the voltage sensor, and used their
model to evaluate the consequences of channel mutations on
the action potential. More recently, Ramasubramanian and Rudy
(2018) used molecular dynamics simulations to compute the
energies of about 3 million possible IKs channel conformational
states, building up an enormous multidimensional energy
landscape. Channel gating was then simulated as a random
walk through this landscape. Recently, the integration of
atomistic molecular dynamics into electrophysiological modeling
was used to predict the effects of drug toxicity on Kv11.1
(hERG) channels (Yang et al., 2020). In such frameworks,
interactions between channels can be explored by adding a
Hamiltonian term to the energy profile, as commonly done
in physics for multi-body dynamic problems. As the structure
of the Nav1.5 channel is presently established (Li et al., 2019;

Jiang et al., 2020), such approaches can in the future also
be applied to this channel. Furthermore, molecular studies
of channel dimerization and its allosteric interactions with
other channels and proteins could be conducted, as done
for instance for the epidermal factor growth receptor (Tsai
and Nussinov, 2019). However, such studies require large
computational resources. Hence, our simpler approach based on
the composition of Markov models may provide initial insights
to orient further research.

Our analysis of homodimer behavior is based on the
assumption that both channels in the dimer are identical, such
that pA,open;B,shut = pA,shut;B,open. The question then arises
whether this is also true in the presence of β subunits, which may
not necessary be the same for each channel. These β subunits may
also break the symmetry illustrated in Figure 1B. Concerning
Nav1.5, we note that according to Jiang et al. (2020), β subunits
increase the expression of α subunits at the membrane but they
do not stably associate with Nav1.5 and they do not change the
biophysical properties of whole cell Na+ currents (Makita et al.,
1994; Qu et al., 1995). This suggests that β subunits do not
influence the function of Nav1.5 channels. However, whether β

subunits affect microscopic single Nav1.5 channel behavior is not
yet fully elucidated.

Limitations
Even though we can mimic experimental results with our
proposed model to a certain extent, our model can still be
refined. Because only little experimental data are available,
our study is essentially exploratory rather than predictive.
We did not investigate in detail the repercussion of channel-
channel interactions on other processes such as deactivation
and recovery from inactivation. However, to our knowledge,
there are, to date, no corresponding data available at the single-
channel level, and such data would be essential to develop and
corroborate our modeling.

In our work, we used the Clancy and Rudy model (Clancy
and Rudy, 1999), although many other Markovian Na+
channel models have since been developed (Irvine et al., 1999;
Bondarenko et al., 2004; Moreno et al., 2011; Balbi et al., 2017;
Asfaw and Bondarenko, 2019). It was not our goal to test or to
compare all these models, but rather to demonstrate how one
can combine Markovian models and make them interact to gain
insight into channel function.

It must also be underlined that our coupled channel models
are characterized by a large number of possibilities to integrate a
change of free energy. For a single-channel model with N states,
this number scales roughly proportionally to N2. For a large N,
this would probably preclude an accurate identification of all
possible parameters (a task that is already difficult for a single-
channel model, Fink and Noble, 2009). Moreover, parameter
sets that match experimental observations may not be unique,
and different energy profile modifications may lead to the same
microscopic and macroscopic behaviors. A further limitation
is that our sensitivity analyses are linear, and thus represent
a linear approximation. It is therefore possible that changing
energies by larger amounts would lead to different states/barriers
becoming dominant.
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Finally, while our approach could in principle be extended to
large clusters of Na+ channels, it may lead to very large matrices
that computationally may become less tractable. For this purpose,
phenomenological approaches to model channel cooperativity
may be an advantage (Naundorf et al., 2006; Pfeiffer et al., 2020).

In any case, more electrophysiological recordings at the
single-channel level over a broad range of voltages will be
needed to ascertain in more detail how Na+ channel interactions
depend on voltage and to fully evaluate the importance and the
consequences of Na+ channel interactions in health and disease.

CONCLUSION

Taken together, our results enrich the notion that Na+ channels
dimerize and interact, and provide new insights into modeling
Na+ channel behavior. The study of interactions between ion
channels is an emerging field, and understanding the underlying
mechanisms in association with future experimental studies
will permit to develop better approaches to treat patients with
congenital arrhythmia syndromes.
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