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In ventricular tachyarrhythmia, electrical instability features including action potential 
duration, dominant frequency, phase singularity, and filaments are associated with 
mechanical contractility. However, there are insufficient studies on estimated mechanical 
contractility based on electrical features during ventricular tachyarrhythmia using a 
stochastic model. In this study, we predicted cardiac mechanical performance from 
features of electrical instability during ventricular tachyarrhythmia simulation using machine 
learning algorithms, including support vector regression (SVR) and artificial neural network 
(ANN) models. We performed an electromechanical tachyarrhythmia simulation and 
extracted 12 electrical instability features and two mechanical properties, including stroke 
volume and the amplitude of myocardial tension (ampTens). We compared predictive 
performance according to kernel types of the SVR model and the number of hidden layers 
of the ANN model. In the SVR model, the prediction accuracies of stroke volume and 
ampTens were the highest when using the polynomial kernel and linear kernel, respectively. 
The predictive performance of the ANN model was better than that of the SVR model. 
The prediction accuracies were the highest when the ANN model consisted of three 
hidden layers. Accordingly, we propose the ANN model with three hidden layers as an 
optimal model for predicting cardiac mechanical contractility in ventricular tachyarrhythmia. 
The results of this study are expected to be used to indirectly estimate the hemodynamic 
response from the electrical cardiac map measured by the optical mapping system during 
cardiac surgery, as well as cardiac contractility under normal sinus rhythm conditions.

Keywords: ventricular tachyarrhythmia, computational study, mechanical performance, electrical instability, 
support vector regression, artificial neural network

INTRODUCTION

Recent studies on tachyarrhythmia have focused on identifying mechanisms for the development 
and maintenance of tachyarrhythmia by analyzing the action potential duration (APD; Lopez-
Perez et  al., 2019), the dominant frequency of electrical excitability (Ng et  al., 2006; 
Hwang et  al., 2016), phase singularity of reentrant waves (Mark-Anthony et  al., 2001; 
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Rantner et  al., 2007; Umapathy et  al., 2010; Hwang et  al., 
2016), and filaments of phase singularity (Clayton and Holden, 
2002; Pathmanathan and Gray, 2015; Christoph et  al., 2018). 
APD reflects the abnormalities at the tissue level as well as 
the cellular level. Especially, the dispersion of APD observed 
during the ventricular tachyarrhythmia conditions is changeable 
according to the pacing cycle length, pacing sites, and pacing 
history (Gizzi et  al., 2013). The dominant frequency is the 
frequency band where cardiomyocytes generate the membrane 
potential signal with the highest power energy and can predict 
the degree of asynchronous excitation of the heart and 
repetition of the resting period (Stewart et  al., 1992; Hwang 
et  al., 2016). Phase singularity refers to topological defects 
in the center of reentrant waves during tachyarrhythmia (Iyer 
and Gray, 2001), and filaments of phase singularity represent 
the line of wave break inside the heart tissue where the 
rotating excitation waves collapse (Mironov et  al., 1996; 
Clayton et  al., 2006).

This electrical information, reflecting the degree of electrical 
instability due to reentrant waves, can affect asynchronous 
contraction during tachyarrhythmia. Among the electrical features 
used in the arrhythmia research, APD is used to determine 
the likelihood of arrhythmia through APD dispersion or APD 
restitution, which is a correlation with the previous diastolic 
interval (Gizzi et  al., 2013; Sato and Clancy, 2013). Cherry 
and Fenton (2011) observed that tissue boundaries and geometry 
can cause APD dispersions in cardiac tissues with the potential 
of conduction block and arrhythmia development. Christoph 
et  al. (2018) succeeded in deriving electrical and mechanical 
phase singularities during ventricular fibrillation through the 
electro-anatomical mapping system combined with high-
resolution four-dimensional ultrasound. They found that electrical 
and mechanical phase singularities have similar properties, 
including topological charge, structure, dynamics, and lifespan, 
and suggested that the spatial-temporal electrical and mechanical 
systems have an inseparable relationship.

Cardiac contraction occurs asynchronously with electrical 
excitability due to reentry in the myocardial tissue of 
tachyarrhythmia (Kuklik et al., 2017). Asynchronous contraction 
of the ventricles by reentrant waves results in the ventricles 
consuming about 80% more oxygen than that consumed 
during normal heart contractions. However, myocardial 
contractile activity in tachyarrhythmia is unable to supply 
blood flow to meet these metabolic demands, resulting in a 
decrease in the volume of the ventricles to the point of 
end-systolic volume. Therefore, during tachyarrhythmia, blood 
flow through the ventricles decreases (Pansegrau and Abboud, 
1970; Buckberg and Hottenrott, 1975). It is difficult to 
quantitatively confirm these mechanical behaviors due to 
mechanical irregularity caused by electrical instability. To date, 
no studies have sought to estimate mechanical contractility 
resulting from electrical instability during ventricular  
tachyarrhythmia.

There are many cardiac models to elucidate the mechanism 
of the development and maintenance of tachyarrhythmia and the 
resulting hemodynamic response (Ten Tusscher et  al., 2009;  
Panfilov et  al., 2010). In previous studies, we  succeeded in 

predicting cardiac mechanical responses to various hereditary 
tachyarrhythmias using the electromechanical-hemodynamic 
coupling model developed by our research team (Lim et  al., 
2012, 2015; Choi et  al., 2013; Heikhmakhtiar et  al., 2018; 
Jeong and Lim, 2018; Yuniarti et  al., 2018). In this study, 
we  extracted electrical instability features from ventricular 
tachyarrhythmia simulation. Then, we predicted the contractile 
performance of the heart from the extracted electrical 
instability features under the assumption that there would 
be  a correlation between the complex electrical pattern due 
to tachyarrhythmias and cardiac contraction. We  predicted 
the cardiac contractile performance using support vector 
regression (SVR), which is commonly used for deduction 
of linear regression, and the artificial neural network (ANN) 
regression model.

MATERIALS AND METHODS

Ventricular Tachyarrhythmia Simulation 
Using Cardiac Excitation-Contraction 
Coupling Model
Electromechanical simulations with cardiac excitation-contraction 
coupling characteristics were performed to implement  
various electrical patterns due to tachyarrhythmias and the  
resulting mechanical contractions. We  simulated ventricular 
tachyarrhythmia using a three-dimensional human ventricular 
model, an ion channel model suggested by Ten Tusscher (2004), 
and an electroconductive characteristic equation of myocardial 
cells, as shown on the left side of Figure  1. The mechanism 
of exchange of ions through the cell membrane was implemented 
using the lumped-parameter electrical circuit structure shown 
in Figure  1. In the lumped-parameter electrical circuit, “I” 
and “R” represent the ion channel current and the ion channel 
resistance, respectively. “C” represents the membrane capacitance 
(Ten Tusscher, 2004).

To simulate cardiac mechanical behavior and the 
hemodynamic response of ventricles in tachyarrhythmia, 
excitation-contraction coupling simulation was performed using 
calcium information extracted from the electrophysiological 
ventricular tachyarrhythmia simulation results. The transient 
calcium information was extracted using the calcium dynamic 
equation suggested by Ten Tusscher and Panfilov (2006), which 
was implemented to express the calcium cycling mechanism 
(calcium-induced calcium-released, CICR). Then, we  used the 
extracted calcium as the input for the ventricular mechanical 
contraction simulation. The calcium information of the high-
resolution electrophysiological model is transmitted to the 
low-resolution mechanical model as depicted in Figure  1. 
Here, the node information of the mechanical model is 
transmitted by integrating the calcium information from the 
adjacent nodes of the electrical model. The transmitted calcium 
was used to build the Troponin-C for the cross-bridge 
formation. For mechanical contraction simulation, the three-
dimensional Hermite ventricular model, the cross-bridge 
equations of the myocardium suggested by Rice et al. (2008), 
and the circulation dynamics model were used to simulate 
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ventricular tissue contraction and calculate the mechanical 
response in the ventricular tachyarrhythmia (refer to 
Supplementary Material for detail; Kerckhoffs et  al., 2007; 
Rice et al., 2008; Gurev et al., 2011). In the lumped-parameter 
circulation circuit, C and R denote the compliance and the 
resistance. “P” and “V” refer to the pressure and volume, 
respectively; PA, the pulmonary artery; PV, the pulmonary 
vein; LA, the left atrium; LV, the left ventricle; MI, the 
mitral valve; AO, the aortic valve; RA, the right atrium; SA, 
the systemic artery; SV, the systemic vein; TR, the tricuspid 
valve; PU, the pulmonary valve.

To implement ventricular tachyarrhythmia with various 
electrical patterns, we  used three methods in combination. 
First, we  sequentially increased the electrical conductance 
of potassium channels (gKs and gKr) in the ventricular tissue 
cells model 2-, 4-, 6-, 8-, 10-, 20-, 30-, 40-, 60-, 80-, and 
100-fold from the normal range. Second, in the S1–S2 
protocol, which is a method for generating reentry in 
tachyarrhythmia simulation, we  applied the S2 stimulus 
position to four positions; the whole left ventricle, the lower 
part of the left ventricle, the whole right ventricle, and the 
lower part of the right ventricle. From the combination of 
first and second methods, we performed 96 cases of ventricular 
tachyarrhythmia simulations. Lastly, we  implemented 
ventricular tachyarrhythmia induced by the following five 
genetic mutations KCNQ1 S140G (Kharche et  al., 2012; 
Jeong and Lim, 2018), KCNQ1 V241F (Ki et  al., 2014; 
Heikhmakhtiar et  al., 2018), KCNQ1 G229D (Hasegawa 
et  al., 2014; Yuniarti et  al., 2018), hERG L532P, and hERG 
N588K (Loewe et  al., 2014). Thereby, we  simulated 20 cases 
of ventricular tachyarrhythmia according to the types of 

mutations. All of the simulations are conducted during 10  s 
after re-entry was generated.

Extraction of Electrical and Mechanical 
Features From Ventricular 
Tachyarrhythmia Simulation
To make the machine learning model for predicting the 
mechanical contractions during ventricular fibrillation, 
we obtained the electrical indices on the tetrahedral elements 
and the mechanical indices on the cubic Hermite elements 
of the three-dimensional ventricular models mentioned in 
Section Ventricular Tachyarrhythmia Simulation Using Cardiac 
Excitation-Contraction Coupling Model. Then, we  averaged 
the electrical and mechanical indices in each node of the 
mesh and used these as the representative indices for training 
and testing the models. The electrical features were extracted 
by quantifying the electrical instability caused by reentrant 
waves in tachyarrhythmia. The extracted electrical instability 
features are the APD, dominant frequency of the excitation 
waves, phase singularity of reentry, and filaments of the phase 
singularities (refer to Supplementary Material for more 
detail). Finally, we  extracted 12 electrophysiological features 
from the electrical instability in ventricular tachyarrhythmia 
(Table  1).

Mechanical contractility during ventricular tachyarrhythmia 
was quantified by stroke volume and ampTens. Through 
tachyarrhythmia simulation, we defined the meaningful ejection 
period during which blood flowed in and out of the left 
ventricle by changing the volume of the left ventricle during 
tachyarrhythmia (Jeong and Lim, 2018). We  then obtained 

FIGURE 1 | Schematic of the electromechanical model with implementation of one-way coupling in the cardiac excitation-contraction mechanism. The left side of the 
circuit diagram depicts a human electrophysiological ventricular model, which consists of 619,360 nodes and 3,439,590 tetrahedron elements. The electrical components 
of the schematic represent the current, pump, and ion exchanger from Ten Tusscher et al. (2009), which emulate the cell membrane for ion transport and the 
sarcoplasmic reticulum within cardiac cells. “I” is the ion currents, and “E” is the equilibrium potential of each ion; the right side depicts a human mechanical ventricular 
model, which is consists of 14,720 nodes and 6,210 hexahedron elements. The mechanical components represent excitation-contraction mechanism through  
cross-bridge of myofilaments from Rice et al. (2008) Conformations of a regulatory protein represent as non-permissive (Nxb) and permissive (Pxb), and the state of the 
myosin is denoted as XBPreR of the pro-rotated state and XBPostR of post-rotated state. gxbT, hfT, and hbT are the rate of the ATP-consuming detachment transition, the 
forward transition and, the backward transition, respectively. faapT refers to the cross-bridge attachment rate of the changeover to the first strongly bound state, and gaapT 
refers to its reverse rate. Knp and Kpn denote transition rates; Knp(TCaTot)7.5 and Kpn(TCaTot)−7.5 are the transition rates of the nonpermissive to permissive (forward) and the 
permissive to non-permissive (backward), respectively. The mechanical model is combined with the circulatory model using the coupling method suggested by  
Gurev et al. (2011) “R” and “C” are the resistance and compliance of the cardiac circulatory system, respectively (For more details, see the text).
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stroke volume by averaging the difference between the 
end-diastolic and the end-systolic volume in the meaningful 
ejection period during ventricular tachyarrhythmia. We measured 
the end-diastolic volume, which is the volume right before 
ventricular volume maximally increases and then decreases, 
and the end-systolic volume, which is the volume right before 
ventricular volume minimally decreases and then increases.

Myocardial tension developed in the ventricular tissue cells 
was calculated using the extracted calcium information from 
the ventricular tachyarrhythmia simulation and the cross-bridge 
dynamic model of myocardial tissue as suggested by Rice et al. 
(2008). To quantify tension reflecting the mechanical irregularity 
of ventricular tissue, we  averaged the standard deviations of 
myocardial tensions during tachyarrhythmias in all myocardial 
cells and used it as a feature of myocardial tension (refer to 
the Supplementary Material).

Construction of the Regression Model
A conventional SVR model and the ANN regression model 
were used to predict ventricular mechanical contractility using 
extracted electrical features from ventricular tachyarrhythmia 
simulation. MinMaxScaler was used to prevent overfitting and 
underfitting due to the unit difference between each electrical 
feature before applying them to the regression model. The SVR 
model uses a linear kernel that can reflect the linear relationship 
between electrical and mechanical features, and a polynomial 
and radial basis function (RBF) kernel that can reflect nonlinear 
relationships. The regularization parameter of the three kernels 
was set to 100. In the RBF kernel, the kernel coefficient gamma 
was used as the inverse of the number of electrical features.

We compared the predictive performance of cardiac mechanical 
contractility in the ANN regression model according to the 
number of hidden layers. Each hidden layer consisted of six 
neurons, and the weights were initialized using the “uniform” 
method. The activation functions used were the “ReLU” function 
for the hidden layer and the “linear” function for the output 
layer to implement the regression model. To train the regression 
model, we  monitored the mean squared error (MSE) and used 
the “Adam” as the optimization algorithm of error.

Of the total data, 70% was used to train the regression 
model and 30% was used to test the regression model created. 
The train set and the test set were evenly distributed after 
randomly splitting. The final regression model was selected 
using 10-fold cross-validation to avoid overfitting or underfitting 
of the regression model due to the small number of data. The 
predictive performances of the SVR model and the ANN 
regression model were evaluated using the determination 
coefficient (R2) and the MSE, respectively.

RESULTS

Ventricular Tachyarrhythmia Simulation 
Results
Cardiac mechanical contractility in the development of 
ventricular tachyarrhythmia, which was implemented through 
electromechanical simulation, was quantified in terms of 
stroke volume and the amplitude of myocardial tension 
(ampTens). To predict contractility from the electrical 
properties observed during ventricular tachyarrhythmia, 
we extracted 12 electrophysiological features including APD, 
the electrical wavelength in the myocardial tissue, the rotational 
rate of the reentrant wave, the dominant frequency band 
of electrical excitation, the power spectrum density at  
that dominant frequency, the phase singularity, and the 
filament of phase singularities during tachyarrhythmia 
(Supplementary Figures S1–S5). The statistics of ventricular 
electrical and mechanical responses quantified from 116 
tachyarrhythmia simulations are shown in Table  1.

Prediction of Cardiac Mechanical 
Performance Using Support Vector 
Regression
Figures  2, 3 show the results of estimating stroke volume 
and ampTens using a commonly used SVR model. We compared 
the prediction performance of ventricular contractility according 
to the kernel type [linear kernel, RBF kernel (known also 

TABLE 1 | Extracted features and outputs.

Features Definitions Average SD Max Median Min

APD Action potential duration (ms) 121.5 43.4 237 111 69
Wavelength Length of propagating wave (cm) 8.4 3.0 16.2 7.6 4.8
Rotation_rate Rotational speed of reentrant wave (cm/s) 5.7 1.1 7.3 5.6 3.4
DF_mean Mean dominant frequency on the ventricular mesh (Hz) 5.7 1.0 7.1 5.8 3.5
DF_std Standard deviation of dominant frequency on the ventricular mesh (Hz) 0.1 4.6E-2 0.3 9.7E-02 1.1E-03
DF_peakP_mean Mean of power spectral density at dominant frequency 0.1E-03 4.6E-05 0.2E-04 1.1E-04 4.5E-07
DF_peakP_std Standard deviation of power spectral density at dominant frequency 2.1E-05 2.5E-05 2.7E-04 1.7E-05 3.4E-08
PS Average number of phase singularities 48 28 119 48 5
PS_std Standard deviation of number of phase singularities 8.0 6.1 47.3 7.2 1.0
Filament Average number of filaments 13,782 19,321 138,142 9,648 413
Filament_std Standard deviation of number of filaments 4,339.4 5,590.4 38,546.6 2,563 276.8

Filament/PS
Ratio of the average number of phase singularities to the average number of 
filaments (Length of filament)

252.5 232 1,428 192 85

Outputs Definitions Average SD Max Median Min
SV (mL) Average stroke volume during meaningful periods 0.3 0.5 2.7 0.2 0
Tension-SD (kPa) Average of amplitude of myocardial tension during the ventricular tachyarrhythmia 0.4 0.3 1.6 0.3 4.1E-02
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as the Gaussian kernel), or polynomial kernel]. The MSE of 
the testing stroke volume dataset was the lowest, and the 
prediction accuracy of the testing stroke volume dataset was 
the highest in the SVR model using the polynomial kernel 
(Figure  2A). In the SVR model with the polynomial kernel, 
the determination coefficients (R2) of stroke volume were 
0.8189 for the training dataset and 0.7719 for the testing 
dataset (Figure  3B). The MSE of the predicted stroke volume 
was 0.0057 and 0.0085  in the training and testing dataset, 
respectively, which tended to overfit. The prediction accuracy 
of stroke volume was the lowest when using the SVR model 
with a linear kernel. The R2 of the predicted stroke volume 
through the SVR model using a linear kernel was 0.6920 for 
the training dataset and 0.6766 for the testing dataset 
(Figure  3A). The MSEs between the predicted stroke volume 
from the SVR model with a linear kernel and calculated 
stroke volume through the ventricular tachyarrhythmia 
simulation were 0.0097 and 0.0121  in the training and testing 
dataset, respectively, in which overfitting was reduced compared 
to that in the SVR model with the polynomial kernel. The 
tendency to overfit the training dataset was greatest in the 
SVR model using RBF kernel. The MSEs and R2 of predicted 
stroke volume through the SVR model with an RBF kernel 
were 0.0061 and 0.8041  in the training set, and 0.0096 and 
0.7431  in the testing set, respectively (Figure  3C).

The predictive performance of ampTens predicted using 
SVR models was better when using the kernel considering 
the linear relationship (linear kernel) than the kernel 
considering the nonlinear relationship (RBF kernel and 
polynomial kernel) between the electrical and mechanical 
properties (Figure 2B). The predictive accuracy of the training 
dataset for ampTens was the highest in the SVR model 
with a polynomial kernel (MSE  =  0.0093 for the training 
set, and 0.0235 for the testing set) as well as the stroke 
volume, but the predictive accuracy of the testing dataset 
for ampTens was the highest in the SVR model with a 
linear kernel (MSE  =  0.0124 for the training set, and 0.0192 
for the testing set). As with the prediction of stroke volume, 
the predictive performance of SVR models with three kernels 
tended to overfit the training dataset of ampTens. The 
tendency of overfitting was the highest in the SVR model 

using a polynomial kernel and the lowest in the SVR model 
using a linear kernel.

The R2 of predicted ampTens of the SVR model with a 
linear kernel was 0.8196  in the training set and 0.7854  in the 
testing set (Figure 3D). The prediction accuracy of the ampTens 
for the training set was the highest with an R2 of 0.8638, but 
for the testing set, the accuracy was the lowest with an R2 of 
0.7373, which means that the tendency of overfitting was the 
highest (Figure  3E). The R2 of predicted ampTens through 
the SVR model using an RBF kernel was 0.8592 for the training 
set and 0.7424 for the testing set, which was almost similar 
to the prediction results of the SVR model with a polynomial 
kernel; no significant differences were found between them 
(Figure  3F).

Prediction of Cardiac Mechanical 
Performance Using Artificial Neural 
Network Regression
We predicted the stroke volume and ampTens using the ANN 
regression model and compared its predictive performance with 
that of the commonly used SVR models (Figures  2, 4). 
Furthermore, the predictive performance of the ANN regression 
model was compared according to the number of hidden layers 
(1, 2, or 3 hidden layers). The prediction accuracy of stroke 
volume using the ANN regression model was higher than that 
of the SVR model, regardless of the number of hidden layers. 
The predictive performance of stroke volume was best in the 
ANN regression model with three hidden layers, and the 
prediction accuracy decreased as the number of hidden layers 
decreased. As with the SVR models, there were tendencies to 
overfit the training set in the ANN regression models. Overfitting 
was greatest in the ANN regression model with three hidden 
layers, which also had the best predictive performance for 
stroke volume (MSE  =  0.0016 for training data and 0.0030 
for testing data), and lowest in the ANN regression model 
with two hidden layers (MSE  =  0.0042 for training data and 
0.0048 for testing data). Using the ANN regression models 
with two and three hidden layers, R2 of stroke volume for 
training data and testing data was 0.8720 and 0.9206, respectively 
(Figures  4B,C). The MSE of stroke volume predicted by the 
ANN model with one hidden layer was 0.0074 (R2  =  0.7628) 

A B

FIGURE 2 | Mean squared error of the regression models. (A) The prediction performances of stroke volume and (B) myocardial tension using support vector 
regression (SVR) models and artificial neural network (ANN) models; SVR models have a linear kernel, polynomial kernel, and RBF kernel; the number of hidden 
layers (HL) in the ANN model increases from 1 to 3.
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for the training set and 0.0084 (R2  =  0.7749) for the testing 
set (Figure  4A).

As with stroke volume, the accuracy of predicted ampTens 
through the ANN regression model increased as the number 
of hidden layers increased. In all three ANN regression models, 
the prediction results of ampTens were overfitted to the 
training set. The degree of overfitting was the lowest in the 
ANN regression model with three hidden layers, which also 
had the best predictive performance (MSE  =  0.0113 for the 
training set and 0.0187 for the testing set). The R2 of predicted 
ampTens from the ANN regression model consisting of three 
hidden layers was 0.8351 for the training set and 0.7907 for 
the testing set (Figure  4F). In the ANN regression model 
with one hidden layer, the R2 of predicted ampTens was 
0.8163 (MSE  =  0.0126) for training data and 0.7378 
(MSE = 0.0234) for testing data, which were markedly overfitted 
(Figure  4D). The prediction accuracy for ampTens training 
data of the ANN regression model consisting of two hidden 
layers was similar to that of the ANN regression model with 
three hidden layers (R2  =  0.8351 and MSE  =  0.0113), but 
the predictive performance for ampTens testing data was lower 
(R2  =  0.7873 and MSE  =  0.0187, Figure  4E).

DISCUSSION

We predicted ventricular mechanical performance during 
ventricular tachyarrhythmia using the conventional SVR models 
and ANN regression models. The ventricular mechanical 
performance was predicted by the 12 electrical instability features 
extracted from 116 ventricular tachyarrhythmia cases 
implemented through excitation-contraction coupling 
simulations. The main findings of the study were:

 1. In the SVR models, the predictive accuracy of stroke volume 
was the highest when using the polynomial kernel 
(R2 = 0.7719, and MSE = 0.0085), and the predictive accuracy 
of ampTens was the highest when using the linear kernel 
(R2  =  0.7854 and MSE  =  0.0192).

 2. In predicting the cardiac mechanical contractility (both 
stroke volume and ampTens), the prediction performance 
of ANN regression models was better than that of SVR models.

 3. In the ANN model, the prediction accuracy of mechanical 
contractility during ventricular tachyarrhythmia increases as 
the depth of the hidden layer increases; thus, the best 
performance was found in the model with three hidden layers.

A D

B E

C F

FIGURE 3 | Accuracies of SVR models. Accuracies of stroke volume (SV) prediction using SVR with linear (A), polynomial (B), and RBF kernels (C). Accuracies of 
myocardial tension (ampTens) prediction using SVR with linear (D), polynomial (E), and RBF kernels (F), respectively.
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The K+ current increases and decreases with changes in the 
electrical conductance of K+ channels, which consists of a 
transient outward K+ channel, a slow-delayed rectifier K+ channel, 
and a rapid-delayed rectifier K+ channel. Changes in the electrical 
conductance of K+ channels induce changes in K+ current and 
produce various electrical patterns in ventricular tachyarrhythmia. 
An increased K+ current decreases the APD of cardiomyocytes, 
thereby facilitating the reentry of the electrical excitation wave 
and easily causing tachyarrhythmia (Ravens and Cerbai, 2008). 
In this study, the electrophysiology model we  used was based 
on Ten Tusscher’s (2004) human ventricular model. In this 
model, they considered the heterogeneity of ventricular tissue 
and suggested the different values for potassium channel 
conductances such as gKs, gkr, and gto. The transient outward 
K+ currents strongly affect phase 1 (rapid repolarization) during 
action potential generation (Shih, 1994) but have less impact 
on the APD. Thereby, we  changed the electrical conductances 
(gKs and gKr) of the slow-delayed rectifier K+ channel and the 
rapid-delayed rectifier K+ channel to implement ventricular 
tachyarrhythmia conditions with various electrical patterns.

However, many researchers suggested that, in the initiation 
of ventricular tachyarrhythmia and the development of 

arrhythmias, action potential amplitude is more important than 
the APD and presented the need to see not only the APD 
but also action potential amplitude in the study of 
tachyarrhythmia. Some of the fibrillation is occurred by the 
action potential amplitude alternans, not APD alternans, thereby, 
APD does not reflect the action potential amplitude alternans 
(Gizzi et al., 2013; Chen et al., 2017). In this study, we obtained 
the dominant frequency by Fourier transforming the change 
in action potential overtime when tachyarrhythmia occurs, and 
it is the maximum power on the spectral density and contains 
the information of action potential amplitude. The stroke volume 
during ventricular tachyarrhythmia was obtained by measuring 
the changes of the left ventricular volume according to the 
in and out of the blood movement. However, the myocardial 
tension was obtained by calculating the standard deviation  
of the myocardial tension from the whole nodes of the  
human ventricular models according to the Rice model 
(Supplementary Figures S4, S5). That is, while the stroke 
volume is a global metric, the ampTens comes from the 
mathematic model. However, stroke volume is affected by the 
ampTens, and they have a proportional correlation as follows: 
(Myocardial tension/afterload) ∝ stroke volume. This can also 

A D

B E

C F

FIGURE 4 | Accuracies of ANN regression models. Accuracies of stroke volume (SV) prediction using ANN models with one (A), two (B), and three (C) hidden 
layers. Accuracies of myocardial tension (ampTens) prediction using ANN with one (D), two (E), and three (F) hidden layers.
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be  confirmed by the Pearson correlation coefficient in 
Supplementary Figure S6.

We simulated the 116 episodes of ventricular tachyarrhythmias 
and calculated 12 electrical features from the electrophysiological 
simulations. While APD was 236  ms in the control condition 
without any changes of conductance, APD decreased to 69  ms 
in 100-fold gKs and 2-fold gKr condition, which was the state 
that ventricular fibrillation is the most severe. Clinically, it 
was reported that the APDs of patients with the V241F mutation 
or the KCNJ2 E299V mutation were about 72–76  ms, which 
is similar to APD in 100-fold gKs condition (Deo et  al., 2013; 
Heikhmakhtiar et  al., 2018). This result is corresponding to 
Kappadan et  al. (2020) findings that the shorter APD is, the 
faster and more complex ventricular fibrillation became.

The various tachyarrhythmia conditions we  implemented 
are including both tachycardia and fibrillation conditions. 
Dominant frequency was obtained by performing frequency 
analysis using the FFT during whole ventricular tachyarrhythmia 
conditions and determining the frequency band at the highest 
power spectral density. The point of dominant frequency is 
at the rotor of reentry. Therefore, if reentrant break-up occurs, 
the number of reentrant rotors increases and dominant frequency 
appears heterogeneous Supplementary Figure S2a However, 
if reentry breakup does not occur and is stably sustained, the 
dominant frequency in the heart tissue may have homogenous 
patterns as shown in Supplementary Figure S2b.

It is possible to mathematically express and simulate 
physiological changes that occur as a result of drugs, genetic 
mutations, and various heart diseases through the 
electromechanical finite element model, which can mimic the 
functional characteristics of ion channels, buffers, and transporters 
(Chang and Trayanova, 2016; Niederer et  al., 2019). In the 
last few decades, the electromechanical finite element model 
has evolved rapidly with regards to the modeling of heart 
shapes as well as in the accuracy and precision of results to 
successfully predict cardiac dynamics (Trayanova, 2011; Pierre 
et  al., 2012). Deo et  al. (2013) simulated electrophysiological 
changes when KCNJ2 E229V genetic mutations were expressed 
using a rabbit three-dimensional ventricular model, based on 
Ohara Rudy’s ventricular cell model, and verified the results 
using experimental data (Deo et  al., 2013). Pathmanathan and 
Gray (2015) simulated ventricular fibrillation using a high-
resolution rabbit ventricle model and observed movement of 
the filaments in reentrant waves. Ten Tusshcer and Nash 
implemented ventricular fibrillation through clinical trials and 
human heart modeling and observed changes in APD, phase 
singularities, and filaments during ventricular fibrillation (Ten 
Tusscher et  al., 2009). Furthermore, we  have successfully 
estimated mechanical and hemodynamic responses under 
tachyarrhythmias caused by hereditary mutations (Heikhmakhtiar 
et  al., 2018; Jeong and Lim, 2018; Yuniarti et  al., 2018), as 
well as under conditions resulting from heart auxiliary devices 
such as the ventricular assist device, and cardiac resynchronization 
therapy (Lim et  al., 2012; Choi et  al., 2013; Heikhmakhtiar 
and Lim, 2018; Park et al., 2018). The electrical and mechanical 
features were generated by the excitation-contraction coupling 
simulation validated by renowned research groups and journals.

In the real world, it is hard to measure cardiac contractility 
during ventricular tachyarrhythmias. Furthermore, in a cardiac 
arrhythmia surgery such as ablation, the electrical state of the 
heart is checked mainly through the electro-anatomical mapping 
system, but, the hemodynamic response cannot be  seen. In this 
paper, we  simulated the ventricular tachyarrhythmia situations 
using the deterministic models and then, predicted the hemodynamic 
response as the mechanical performance under the various 
pathologic status and mutation conditions from the electrical 
features using the stochastic models, which is the machine learning 
model. Therefore, we  expect that the results of this study can 
be  used to indirectly estimate the hemodynamic response from 
the electrical heart map measured by the electro-anatomical 
mapping system during cardiac surgery, not only the heart 
contractility under the normal sinus rhythm condition. Therefore, 
we  expect that the results of this study can be  used to indirectly 
estimate the hemodynamic response from the electrical heart map 
measured by the optical mapping system during cardiac surgery.

Advanced studies have focused on the electrophysiological effects 
of myocardial tissue contraction caused by reentrant waves using 
a mechanoelectrical model (Hu et  al., 2013). Nash and Panfilov 
(2004) and Hu et  al. (2013) showed that deformed shrinkage 
patterns can increase the duration of reentrant waves and cause 
the collapse of reentrant waves due to activation of K+ conductive 
stretch-active cells and reduction of the APD (Van Wagoner, 1993). 
They were able to show this through a two-dimensional 
electromechanical coupling model, which combines mechanical 
and electrical properties of cardiac tissue (Nash and Panfilov, 2004; 
Hu et al., 2013). Panfilov et al. (2010) found during the ventricular 
tachyarrhythmia that the stationary reentrant wave can break up 
into several smaller waves through the mechanoelectrical feedback 
of stretch-activated channels. In this study, however, we  aimed to 
predict the mechanical response from electrical patterns generated 
during ventricular tachyarrhythmia. Therefore, we  did not take 
into account the occurrence of reentrant waves due to tissue 
contraction and the resulting electrophysiological changes in 
consideration of the purpose of the study and the efficiency of 
computing resources. Furthermore, mechanical contractility and 
mechanical instability were decreased in proportion to the electrical 
instability (Supplementary Figures S1–S6). Hence, even if 
mechanoelectrical feedback is considered, the electrical instability 
is expected to become more unstable in proportion to the mechanical 
discoordination, which is not expected to affect the overall conclusion 
of this study. In future work, we  are planning to predict the 
cardiac contractility considering the mechanoelectrical feedback. 
Besides, the electromechanical model used in this study was 
implemented without taking into account other factors such as 
anatomy, hypertrophy, expansion, or electromechanical delay. Under 
the ventricular tachyarrhythmia conditions, these factors can play 
an important role but, our simulation data does not reflect these 
factors. To get the robustness, our ANN model needs to be validated 
using the electrical activity features that affect hemodynamics.

The SVR calculates the distance of the samples used in the 
prediction of the regression model using the vector dot product 
to estimate the optimal model. If the samples are linearly 
distributed, good prediction performance can be  achieved even 
with a linear kernel. However, in most cases where samples 
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are nonlinearly distributed, using a linear kernel can reduce 
performance by increasing prediction error. Therefore, the kernel 
should be  selected properly according to the distribution of 
the samples. To determine the relationship between these 
samples, we  performed Pearson’s correlation analysis and 
confirmed the relationship between the 12 electrical instability 
features and mechanical properties extracted from the ventricular 
tachyarrhythmia simulation (Supplementary Figure S6). Some 
of the 12 extracted electrical features had strong positive or 
negative linear relationships with mechanical contractility, while 
others had a weak linear relationship with mechanical contractility. 
The electrical features linearly related to mechanical characteristics, 
APD, conduction wavelength, the rotational rate of the reentrant 
wave, and dominant frequency of electrical excitation (Pearson 
correlation coefficient >0.7) were directly related to the electrical 
activity of the cardiomyocytes. However, the electrical features 
related to electrical instability of myocardial tissue caused by 
reentrant waves, such as the phase singularity, filament of phase 
singularities, and the spatial distribution of the dominant frequency 
had no linear relationship with mechanical contractility.

Accordingly, we  filtered the electrical features that had a 
linear relationship with mechanical contractility, i.e., those 
with a Pearson correlation coefficient of >0.5. The filtered 
electrical features were APD, conduction wavelength, the 
rotational rate of the electrical excitation, mean of dominant 
frequency, mean of the power spectral densities in the dominant 
frequency band, the variance of the number of phase 
singularities, and variance of the number of filaments.  
When using these seven electrical features, the predictive 
performance of the SVR model with a linear kernel was 
improved for the prediction of both stroke volume and ampTens 
(Supplementary Figure S7). The prediction accuracy of the 
SVR model with the linear kernel was 0.7708 (MSE = 0.0085) 
for the stroke volume and 0.8009 (MSE  =  0.0178) for the 
ampTens, but it was still lower than the prediction performance 
using the ANN regression model. Therefore, we  thought that 
the ANN regression model will be possible to predict mechanical 
performance by considering the nonlinear and complex 
relationship between electrical and mechanical features. However, 
the trained parameters from the ANN model may not have 
physiological meanings.

The number of hidden layers in the ANN regression model 
is an important factor in multilayer perceptron learning and is 
introduced to address problems that are difficult to solve linearly 
(Adrian, 1997). In a multilayer perceptron, hidden layers filter 
or refine the raw data and send it to the next layer to determine 
the decision boundary of each layer. If the number of hidden 
layers is too small, the learning does not work well; however, 
if the number of hidden layers is too high, it not only takes 
a long time to train the model but also may result in overfitting 
of the training data. Therefore, it is necessary to select the 
number of hidden layers according to each data set (Adrian, 
1997). In this study, we compared the performance by increasing 
the number of hidden layers to find the optimal ANN regression 
model for predicting the mechanical contractility from electrical 
instability features extracted from ventricular tachyarrhythmia 
simulation. Therefore, the ANN regression model with three 

hidden layers showed the best performance in the prediction 
of both stroke volume and ampTens. We compared the predictive 
performance between the ANN model consisting of four hidden 
layers and the ANN model consisting of three hidden layers, 
but the performance was not enhanced and we found an increased 
tendency for overfitting (Supplementary Figure S8). Therefore, 
we propose the ANN regression model with three hidden layers 
as an optimal model for predicting cardiac mechanical contractility 
in ventricular tachyarrhythmia.

CONCLUSION

In this study, we compared the performance of SVR and ANN 
regression models to predict the mechanical contractility from 
12 electrical instability features in ventricular tachyarrhythmia. 
Even though every model was overfitted to the training dataset 
a bit, the proposed ANN model with three hidden layers was 
able to predict the mechanical performance with high accuracy. 
Every data we  used in this study were obtained from the 
electromechanical simulation. Therefore, our proposed ANN 
model requires further validation using some clinical data to 
confirm the robustness of the model.
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