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The molecular regulatory network (MRN) within a cell determines cellular states and
transitions between them. Thus, modeling of MRNs is crucial, but this usually requires
extensive analysis of time-series measurements, which is extremely difficult to obtain
from biological experiments. However, single-cell measurement data such as single-
cell RNA-sequencing databases have recently provided a new insight into resolving this
problem by ordering thousands of cells in pseudo-time according to their differential
gene expressions. Neural network modeling can be employed by using temporal data as
learning data. In contrast, Boolean network modeling of MRNs has a growing interest,
as it is a parameter-free logical modeling and thereby robust to noisy data while still
capturing essential dynamics of biological networks. In this study, we propose a Boolean
feedforward neural network (FFN) modeling by combining neural network and Boolean
network modeling approach to reconstruct a practical and useful MRN model from large
temporal data. Furthermore, analyzing the reconstructed MRN model can enable us
to identify control targets for potential cellular state conversion. Here, we show the
usefulness of Boolean FFN modeling by demonstrating its applicability through a toy
model and biological networks.

Keywords: molecular regulatory network, Boolean network modeling, feedforward neural networks, Boolean
feedforward neural network, temporal data, cellular state conversion

INTRODUCTION

Cellular behavior is governed by intracellular molecular regulatory networks (MRNs), such as
signaling and gene regulatory networks (Schmidt et al., 2005; Kim and Cho, 2006; Sreenath et al.,
2008; Kim et al., 2011). Reconstruction and mathematical modeling of such MRNs based on
biological experiments have been of great interest in the field of systems biology. Modeling MRNs
has been, however, very challenging due to the limited availability of time course measurements
from biological experiments. This can now be overcome by recent advancement of technologies
in experimental data measurements, and thus, there is a growing interest in developing a new
paradigm of modeling MRNs based on large data sets.

Single-cell technologies have emerged in the fields of genomics (Ludwig et al., 2019; Tritschler
et al., 2019; Baslan et al., 2020; Yofe et al., 2020), epigenomics (Berkel and Cacan, 2019; Chen et al.,
2019; Verma and Kumar, 2019), transcriptomics (Cui et al., 2019; He et al., 2020; Huang et al., 2020),
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proteomics (Minakshi et al., 2019; Zhu et al., 2019; Labib and
Kelley, 2020), and metabolomics (Duncan et al., 2019; Kawai
et al., 2019; Kumar et al., 2020). We can now obtain omics
information of hundreds to thousands of individual cells from
a single experiment. For instance, single-cell RNA sequencing
technologies can measure messenger RNA concentration of
hundreds to thousands of genes expressed by single cells, and
single cell proteomics by mass spectrometry can quantify over
1,000 proteins per single cell at once (Budnik et al., 2018; Lun
and Bodenmiller, 2020). Such single-cell data can be used as
pseudo-time-series measurements of distinct cellular states that
can provide a new opportunity for modeling MRNs.

There have been attempts to develop dynamic models of
MRNs based on ordinary differential equations, regression
models, and Boolean networks. Boolean models are more
appropriate to be employed for modeling MRNs from pseudo-
time-series single-cell data since high-throughput single-cell data
are more noisy than conventional bulk sequencing data, and
Boolean logical network models are relatively robust to noise.
Constructing a Boolean network model usually requires two
steps: generating pairs of Boolean input and output for each
node in the MRN from states of pseudo-time-ordered single
cells and then fitting the Boolean state update logic of each
node to the data (Hamey et al., 2017). There are, however,
a number of challenges in determining the backbone network
structure and optimizing the regulatory logic to the measured
data sets. To overcome such challenges, we propose an approach
combining Boolean network modeling and feedforward neural
network (FFN) learning algorithm, which is particularly useful
for inferring input–output relationships from large temporal
data. For this purpose, we use only temporal data of network
nodes and do not need to determine the network structure nor
to optimize the regulatory logics. Of note, in our Boolean FFN
model, each node of MRN is represented by a single output node
of an FFN with all MRN nodes as its input nodes, and then, the
state transition dynamics of MRN can be simulated by executing
the entire Boolean FFN model.

Considering a cellular state transition process, we can
partition the temporal data of such a process into three parts:
ordered pairs of initial cellular states, ordered pairs of transitional
cellular states, and ordered pairs of final cellular states. These
three ordered pairs can then be used for building initial,
transitional, and final cellular states of FFNs, which can be
referred to as iFFN, tFFN, and fFFN, respectively. Employing
the trained iFFN, tFFN, and fFFN, we can generate trajectories
starting from initial to terminal cellular states and use such state
trajectories as new training data for building a cell fate transition
FFN (cFFN) for each node.

The eventual goal of our study is to identify control targets
that can induce desired cellular state conversion, and for this
purpose, we propose to build cFFN using iFFN, tFFN, and fFFN
based on temporal data measurements of network nodes. We
demonstrate the effectiveness and possible application of the
proposed Boolean FFN modeling of MRNs by applying it to a toy
network model as well as real biological networks. In particular,
we compare identified control targets for cellular state conversion
between the Boolean FFN and its original Boolean network model

in order to show the effectiveness of the proposed Boolean FFN
modeling of MRNs.

RESULTS

Overview of Constructing cFFN
The overall procedure of constructing a cFFN is summarized in
Figure 1. We presume that the nodes playing a significant role
in the cellular state transition of interest are known, whereas
the regulatory relationships among the nodes are unknown
(Figure 1A). Here, all the nodes are assumed to have binarized
values for their expression levels as to consider MRNs represented
by Boolean network models. We also assume that marker nodes,
which define specific desired or undesired states that are known,
can be used as a primary basis for evaluation after identifying
control targets for cellular state conversion.

We consider three clusters of Boolean states over the transition
from initial to final states through transitional states, resulting in
three sets of ordered pairs of initial, transitional, and final cellular
states as shown in Figure 1B. These will also be referred to as
the first, second, and third clusters to emphasize the order of
cellular state transition. As we consider a transition process from
an initial normal state to a final abnormal state, there is a tendency
that the number of desired states decreases from the first to third
clusters while the number of undesired states increases, which
is referred to as marker tendency. In each cluster, the first state
of ordered pair is assumed to be updated to the second state,
which is represented by connecting arrows. However, there is
no connection information between two clusters, resulting in
no trajectory from initial to final states. We call these three
consecutive clusters disconnected trajectories.

To construct connected trajectories, we build three FFNs, i.e.,
iFFN, tFFN, and fFFN, for each node using the corresponding
cluster as training data (Figure 1C). The marker tendency is used
as a constraint for training each FFN.

We consider the first states in the pairs of initial cellular
states be the initial input. By applying iFFN, tFFN, and
fFFN to each corresponding initial input as iFFN(initial input)
and tFFN[iFFN(initial input)], we can construct connected
trajectories from initial input to final output states (Figure 1D).

Using the set of states on each connected trajectory as new
training data, we can construct cFFN for the node (Figure 1E).
The entire MRN is then composed of cFFNs of the nodes within
a network model, which is illustrated by a conceptual diagram in
Figure 1F.

Toy Network for Illustrating FFNs
Construction of cFFN
We demonstrate an example of building iFFN, tFFN, fFFN, and
cFFN using a toy network of six nodes with Boolean update logics
to identify control targets in Figure 2. The graph in Figure 2A
only represents collective regulatory relationships between two
nodes in the network (without considering the regulatory logics),
and node N6 is considered as a unique marker in this case, where
a state is the desired state if N6 is active (value 1) or otherwise
undesired (value 0) as shown in Figure 2A. All possible states
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FIGURE 1 | Construction of cell fate transition feedforward neural network (cFFN). (A) Nodes represent molecules of the hidden molecular regulatory network (MRN)
that can be genes, proteins, or metabolites. (B) The measured molecular data representing distinct cellular states are partitioned: ordered pairs of initial, transitional,
and final cellular states. Each circle denotes a Boolean state of k nodes for each cellular state. Each right-pointing arrow denotes the direction of updated state.
There is no such arrow between two states in different partitions, resulting in disconnected cellular state trajectories. (C) The left and right states within the initial
cellular states are referred to as initial input and target, respectively, to denote that they are used as training data for an FFN of node Nj. Here, the trained FFN is
referred to as an iFFN for the node. Similarly, the left and right states in the transitional and final cellular states are used as training data to build tFFN and fFFN,
respectively, for each node. (D) The application of iFFN, tFFN, and fFFN to the initial input, iFFN(initial input), and tFFN[iFFN (initial input)], respectively, generates
connected trajectories from the initial states. (E) States upon each connected trajectory in (D) are used as training data for a cFFN. (F) A conceptual diagram
illustrating our Boolean feedforward neural network modeling. Each circle denotes the constructed Boolean FFN for node Nj.

except one state from the toy network converge to an undesired
state, which is called an undesired attractor, and are partitioned
into seven sets: D0 denotes a singleton set of the undesired
attractor. Dj denotes those states converging to the attractor when
they are updated j (1 ≤ j ≤ 6) times.

We use Dj to generate initial, transitional, and final cellular
states as shown in Figure 2B. Fifteen states randomly chosen

from D6, D5, and D4 and their one-time updated states are
represented as the first and second states of ordered pairs of initial
states, respectively. Fifteen states randomly chosen from D3∗ and
their one-time updated states are represented as the first and
second states of ordered pairs of transitional states, respectively.
Here, D3∗ denotes the set of all states in D3 except those states
that are updated from the second initial states. Fifteen states
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FIGURE 2 | Construction of cFFN with training data generated by a toy network and its application for identifying control targets. (A) The toy network consists of
nodes Nj (1 ≤ j ≤ 6) with its Boolean update logics. Nj and Nj* denote the Boolean states of Nj at time steps t and t + 1, respectively. Symbols &, |, and ! denote
Boolean operators AND, OR, and NOT, respectively. Sharp and blunt arrows represent positive and negative effects, respectively, in the directed graph from Ni to Nj.
Node N6 is assumed to be a unique marker, and thus, states of inactive or active N6 correspond to undesired or desired states, respectively. All possible states

(Continued)
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FIGURE 2 | Continued
except one state of the network converge to an undesired state, which has all zero values and is designated as a unique undesired attractor. The 63 states are
partitioned according to the converging time steps to the undesired attractor where D0 denotes a singleton set of the attractor and Dj denotes a set of states that will
become attractors when they are updated j (1 ≤ j ≤ 6) times, referred to as converging time step j to the attractor. (B) Initial cellular states denote the states of 15
ordered pairs of which the first states are randomly chosen from D6 to D4 and their updated states become the second states. Transitional and final cellular states
are defined similarly, where D3* and D2* denote the sets of all states in D3 and D2 except those states updated from the second initial and transitional states,
respectively. Note that the updated states of initial and transitional states are not transitional and final states, respectively. (C) By employing the pattern recognition
network (PatternNet) and using the training function (train) from Matlab, FFN for each node Nj is trained. The structure of FFN consists of six input nodes, one hidden
layer of six nodes, output layer of two nodes, two ordered softmax nodes, and node Nj. Here, softmax nodes have values of the softmax function, and Nj has a value
1 if the value of the first softmax node is greater or equal to that of the second softmax node. The acronyms w and b denote weight and bias, respectively. Each of
iFFN, tFFN, and fFFN consists of such six trained FFNs. (D) iFFN, tFFN, and fFFN are consecutively applied to the initial input, iFFN(initial input), and tFFN[iFFN(initial
input)], and thereby connected cellular state trajectories are produced. (E) States upon each connected trajectory are used as training data for an FFN with the
structure in (C). The trained FFN is denoted as a cFFN. (F) Pinning the value of N4 to 1 is the only way to drive any states to desired ones. Here, N4 is the unique
single-control target of value 1. Single-control candidates denote 6 nodes of pinned value 1 in the cFFN. The left panel shows the probability of each single-control
candidate of value 1 to be a target of value 1. In this example, the value of Nj is fixed to 1 in the cFFN, and every possible state is updated accordingly. Then, the
number of states driven to desired states is counted. Nj gets score 1 if the counted number is in the list of the two highest numbers of the candidates, or 0
otherwise. As a result, repeating this scoring process for each of 1,000 cFFNs gives the probability of Nj in the left panel, where N4 has the highest probability. In the
right panel, seven ordered pairs (N1, N3), (N1, N4), (N2, N4), (N3, N4), (N3, N6), (N4, N5), and (N4, N6) of values (1, 1) are the only possible ways to drive any states
to desired ones when fixing the values of two nodes to an ordered pair (1, 1). Here, the pairs are double-control targets of values (1, 1) and 15 pairs of two nodes are
considered as double-control candidates of values (1, 1) in cFFN. This shows the probability of each double-control candidate of values (1, 1) to be a target of values
(1, 1), where the scoring process is the same as that used in identifying single-control target by replacing the two highest numbers with the eight highest numbers.

randomly chosen from D2∗ and D1 and their updated states are
represented as the first and second states of ordered pairs of final
states, respectively, where D2∗ denotes the set of all states in D2
except those states that are updated from the second transitional
states (Supplementary Data 1).

The first and second states of ordered pairs of initial,
transitional, and final states are used for training input and
target of iFFN, tFFN, and fFFN, respectively, as shown in
Figure 2C. The constraint of marker tendency is also considered
when training each FFN (see section “Materials and Methods”
for details). A sequential application of iFFN, tFFN, and fFFN
to the initial input, iFFN(initial input), and tFFN[iFFN(initial
input)], produces 15 trajectories as shown in Figure 2D. The
two consecutive states on each trajectory are used as training
input and target for a Boolean FFN, which is cFFN as shown in
Figure 2E.

Conversion of Undesired States With cFFN
We demonstrate that cFFN can be used in identifying control
targets for state conversion of undesired states to desired ones.
Pinning the values of single node or two nodes during state
update is referred to as single or double controls, respectively. To
validate whether the control candidates identified from cFFN can
drive the undesired states to desired ones, we compare the control
“candidates” to control “targets” found by extensive simulation
analysis of the original Boolean network models of MRNs.

Single-control target
To evaluate control candidates, we search for all single-control
targets by simulating the Boolean network model of this toy
network. For this particular example, when pinning the value of a
node to 0 and updating every state according to the regulatory
logics of the Boolean network model, there exists a state that
cannot be driven to a desired state. This shows that there is no
single-control target of value 0 in this case. However, there is
a unique single-control target of value 1. Pinning the value of
N4 to 1 is the only way to drive all possible states to desired

states. This shows that N4 is a unique single-control target of
value 1. To examine whether cFFN can be used to identify N4,
we consider each node Nj (1 ≤ j ≤ 6) in cFFN as a single-control
candidate of value 1.

To identify control candidates as the unique single-control
target N4 by using cFFN, we define the probability of each single-
control candidate of value 1 to be a single-control target of value
1. Here, the value of Nj is fixed to 1 in a given cFFN, and every
possible state is updated using the cFFN. Then, the number of
states driven to desired states is counted. After obtaining such
counted numbers of all single-control candidates, Nj gets a score
1 if the counted number of Nj is one of the two highest numbers
of the candidates, or 0 otherwise. Here, the number 2 is a kind
of hyperparameter. We repeat this scoring process for each of
1,000 cFFNs and divide the total score of Nj by 1,000, which is
represented as the probability of Nj shown in the left panel of
Figure 2F. As a result, the single-control target N4 has the highest
probability among all of the single-control candidates.

Double-control target
First, we performed a case study for double control by pinning
the values of two nodes to (1, 1). We find that, if one of seven
pairs, (N1, N3), (N1, N4), (N2, N4), (N3, N4), (N3, N6), (N4,
N5), and (N4, N6), has pinned values as (1, 1), any states would
eventually converge to desired states. As a result, those seven
pairs are identified as double-control targets of values (1, 1). To
examine whether cFFN can be used for identifying such double-
control targets of values (1, 1), we consider 15 pairs of two nodes
as double-control candidates of values (1, 1) and evaluate each
of them. To identify control candidates for the double-control
targets of values (1, 1) by using cFFN, the probability of each
double-control candidate of values (1, 1) to be a target of values
(1,1) is defined similarly to that used in the case of single-control
candidate. This can be done by replacing single control and the
two highest numbers with double control and the eight highest
numbers, respectively. We present the probability in the right
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panel of Figure 2F. We find that five of the seven double-control
targets of values (1,1) are in the list of five highest probabilities.

We performed the second case study for double control by
pinning the values of two nodes to values (0, 1) since there is
no double-control target of values (0, 0). If one of five ordered
pairs, (N1, N4), (N2, N4), (N3, N4), (N5, N4), and (N6, N4),
has values (0, 1), then any states would eventually converge to
the desired states. As a result, those five pairs are identified as
double-control targets of values (0, 1). To examine whether cFFN
can be used for identifying such five double-control targets of
values (0,1), we consider 30 ordered pairs of two nodes in cFFN
as double-control candidates of values (0, 1) and evaluate each of
them. The probability of each double-control candidate of values
(0, 1) to be a target of values (0, 1) is defined similarly to that
used in the case of double-control candidate of values (1, 1) by
replacing the eight highest numbers with the 10 highest numbers.
We present the probability in Supplementary Figure 1, where
all the five double-control targets of values (0, 1) have the five
highest probabilities.

Applications of FFN for Identifying
Biomolecular Control Targets
To construct cFFN of an MRN and demonstrate its applicability
for identifying control targets as in Figure 3A, we employ two
biomolecular network models. One of the network models is
composed of 21 nodes and has a large portion (81.73%) of states
converging to an undesired state. In contrast, the other network
model is composed of 33 nodes and has a unique undesired state
with a very small portion (0.02%) of states converging to an
undesired state.

Colitis-Associated Colon Cancer Network
Construction of cFFN
The biomolecular network in Figure 3B is a reduced colitis-
associated colon cancer network of 21 nodes Nj (1 ≤ j ≤ 21)
shown in Figure 4A, which is denoted by CACC21 (Lu
et al., 2015). Node ID Nj and the state update logics of
CACC21 are provided in Supplementary Data 2. Markers for
desired and undesired states are P53 and Proliferation nodes;
states with values (P53, Proliferation) = (1, 0) and (0, 1) are
considered as desired and undesired states, respectively. Here,
P53 and Proliferation are molecular marker nodes indicating
programmed cell death/arrest and uncontrolled cell growth,
respectively. In this network, 81.73% of all possible states
converge to one of two undesired attractors (Choo et al., 2019
and Supplementary Data 2). When we generate 100,000 random
states, 81,870 states converge to one of the undesired attractors at
time steps from 1 to 11, which are partitioned into 11 sets of Dj
(1 ≤ j ≤ 11). D0 denotes a set of the two undesired attractors.

Initial cellular states are 1,000 states randomly chosen from
D11 to D9 and their one-time updated states, which are referred
to as the first and second states of ordered pairs of initial states,
respectively. Here, 800 and 200 states of the first states have
values (P53, Proliferation) = (1, 0) and (0, 1), respectively, in
Figure 4B. Transitional cellular states are 1,000 states randomly
chosen from D7 to D6 and their one-time updated states, referred
to as the first and second states of ordered pairs of transitional

states, respectively. Here, 400 and 600 states of the first states have
values (P53, Proliferation) = (1, 0) and (0, 1), respectively. Final
cellular states are 1,000 states randomly chosen from D4 to D1
and their updated states, referred to as the first and second states
of ordered pairs of final states, respectively. Here, 100 and 900
states of the first states have values (P53, Proliferation) = (1, 0)
and (0, 1), respectively.

The first and second states of ordered pairs of initial,
transitional, and final states are used as training input and
target for iFFN, tFFN, and fFFN, respectively. Restrictions
of marker tendency are added for training each FFN (see
section “Materials and Methods”). The consecutive application
of iFFN, tFFN, and fFFN to the initial input, iFFN(initial
input), and tFFN[iFFN(initial input)], respectively, produces
1,000 trajectories that are then used as training data for cFFN.

Single-control target
To validate whether the control candidates identified from cFFN
can drive undesired states to desired ones, we compare the
control “candidates” to the control “targets” found by extensive
simulation analysis of CACC21. We search for all single-control
targets by simulating the Boolean network model of CACC21.

There exists no node that can be driven to a desired state
when pinning the value of the node to 0 and updating every
state according to the regulatory logics of CACC21; there is no
single-control target of value 0 in this case. However, there is a
unique single-control target of value 1. Pinning the value of N17
(PTEN) to 1 is the only unique single-control target of value 1
that can drive 100 sets of 1,000 random states to desired states. To
examine whether cFFN can be used to identify this unique target,
we consider each node Nj (1≤ j≤ 21) in cFFN as a single-control
candidate of value 1.

To identify control candidates as the unique single-control
target N17 by using cFFN, we define the probability of each
single-control candidate Nj of value 1 to be a single-control
target of value 1. Here, the value of Nj is fixed to 1 in a given
cFFN, and 1,000 states of the initial target are updated 100 times
using the cFFN. Then, the number of states in the initial target
driven to desired states is counted. After obtaining the counted
numbers of all single-control candidates of value 1, Nj gets a
score 1 if its counted number is one of the five highest numbers
of the candidates, or 0 otherwise. We repeat the scoring process
for each of 500 cFFNs and divide the total score of Nj by 500,
which gives the probability of Nj shown in the upper left panel
of Figure 4C. Moreover, the initial target used in the scoring
process is a hyperparameter. Thus, we replace it with transitional,
final, and random states and present the probability of single-
control candidates in the upper right, bottom left, and bottom
right panels of Figure 4C, respectively. As a result, the unique
single-control target N17 has also the highest probability.

Double-control target
We find 22 and 30 double-control targets of values (1, 1) and
(0, 1), respectively, from extensive simulation analysis of the
Boolean network model just as the case of single-control targets.
We find that there is a unique double-control target of values
(0, 0). Pinning the values of (N8, N13) to (0, 0) is the only way
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FIGURE 3 | Different portion of states converging to undesired attractors. (A) A total of 63 of 64 states from the toy network with six nodes in Figure 2 converges to
an undesired attractor, where the 63 states are referred to as basin states of the undesired attractor with 98.44% basin size. (B) A reduced colitis-associated colon
cancer network model with 21 nodes in Figure 4 has 81.73% basin size. (C) A mitogen-activated protein kinase network model with 33 nodes in Figure 5 has
0.02% basin size.

to drive all possible states to desired states, where N8 = IL10
and N13 = MDM2. Hence (N8, N13), is a unique double-control
target of values (0, 0). To examine whether cFFN can be used to
identify this target, we consider 210 pairs of two nodes as double-
control candidates of values (0, 0) and evaluate each of them.
To identify control candidates for the double-control targets by
using cFFN, we define the probability of each double-control
candidate (Nj, Nk) (1≤ j< k≤ 21) of values (0, 0) to be a unique
double-control target of values (0, 0). Here, the values of a double-
control candidate (Nj, Nk) are fixed to (0, 0) in a given cFFN,
and 1,000 states in the final target are updated 100 times by using
the cFFN. Then, the number of states driven to desired states is
counted. The number of states within the final target driven to
desired states is counted for each of 500 cFFNs. After obtaining
the counted numbers of all double-control candidates of values
(0, 0), (Nj, Nk) gets a score 1 if its counted number is within
the top 20% over the total of 210, or 0 otherwise. We repeat this
scoring process for each of 500 cFFNs and divide the total score
of Nj by 500, which gives the probability of (Nj, Nk) shown in
Supplementary Figure 2. It shows that the double-control target
(N8, N13) of values (0, 0) is within the top 26 out of all 210
probabilities. Moreover, we further test by changing the percentile
from top 20% with 30 and 40% and find that the double-control
target (N8, N13) of values (0, 0) is within the top 16 and 17,
respectively, as shown in Supplementary Figure 2.

Mitogen-Activated Protein Kinase Network
Construction of cFFN
The second biomolecular network in Figure 3C is a mitogen-
activated protein kinase network composed of 53 nodes as
depicted in Figure 5A with their update logics in Supplementary
Data 3 (Grieco et al., 2013). The values of epidermal growth
factor receptor (EGFR) and all the input nodes are fixed to
1 (dotted diamond in Figure 5A) and 0 (dotted rectangles
in Figure 5A), respectively. As a result, 15 nodes have fixed
values (dotted circles in Figure 5A). The remaining 33 nodes
(solid circles in Figure 5A) form a subnetwork, which is called
MAPK33. The state update logics of MAKP33 are provided in
Supplementary Data 3. Nodes of Apoptosis and Proliferation

are considered as markers for desired and undesired states; states
with (Apoptosis, Proliferation) = (1, 0) and (0, 1) are considered
as desired and undesired states, respectively. Here, Apoptosis
denotes programmed cell death. About 0.02% out of all possible
states converge to an undesired attractor in Supplementary Data
3 and 4 (Choo et al., 2019).

We generate 1,000 random initial states (first states)
converging to the undesired attractor, where 900 and 100 states
have active Apoptosis and Proliferation, respectively. The first
states are updated one time to the next by using the update
logics. Similarly, the second states are updated one time to the
third states, which are then also updated to the fourth states.
To demonstrate the general applicability of cFFN in identifying
control targets, the MAPK33 is used in different ways from the
toy network and CACC21 as follows: we introduce noise to the
second states by changing the values of six randomly chosen
nodes in each of the second states, which are referred to as noisy
second states. Similarly, noisy third and fourth states are defined.
Therefore, (1st, noisy 2nd), (2nd, noisy 3rd), and (3rd, noisy
4th) are training data for iFFN, tFFN, and fFFN, respectively,
and restrictions of marker tendency are added for training each
FFN (see section “Materials and Methods” for details). Applying
the trained iFFN, tFFN, and fFFN3 to the first states, iFFN(1st
states) and tFFN[iFFN1(1st states)], respectively, result in 1,000
connected trajectories from the first states of which are then used
to train a cFFN.

Single-control target
To evaluate the control candidates, we search for all single-
control targets by simulating the Boolean network model of
MAPK33. The first case of single control is pinning the value of
one node to 1. There exist four single-control targets of value 1.
We find that, if one of four, N12 (GADD45), N20 (MTK1), N24
(P38), and N25 (P53), has the pinned value 1, any state among
2,000 sets of 1,000 random states would eventually converge to a
desired state. Here, the states in 1,000 sets are randomly chosen
from all the states converging to the undesired attractor. Node
ID Nj is provided in Supplementary Data 3. As a result, those
four nodes are single-control targets of value 1, which are shown
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FIGURE 4 | Construction of cell fate transition feedforward neural network (cFFN) with training data generated by a biomolecular network and its application to
identifying single-control targets. (A) A reduced colitis-associated colon cancer network of 21 nodes (CACC21). Nodes P53 and Proliferation are considered as
markers for desired and undesired states, respectively. Its update logics and two undesired attractors are shown in Supplementary Data 2. We generate 100,000
random states, of which 81,872 states converge to one of the undesired attractors and are partitioned into Dj (1 ≤ j ≤ 11). Dj denotes a set of states that will transit
into one of the attractors when they are updated j times, which is referred to as converging time step j to the attractors. D0 denotes a set of the two undesired
attractors. (B) The 1,000 states in the initial cellular states denote 1,000 randomly generated states from D11, D10, and D9. Here, 800 states have (P53,
Proliferation) = (1,0) and 200 states have (P53, Proliferation) = (1,0), which are referred to as initial input for training iFFN. The states are updated one time, where the
updated states are referred to as initial target for training iFFN. The 1,000 states in the transitional cellular states denote 1,000 randomly generated states from D7
and D6. Here, 400 states have (P53, Proliferation) = (1,0) and 600 states have (P53, Proliferation) = (1,0), which are referred to as transitional input for training tFFN.
The transitional target denotes one-time updated states in the transitional input. The 1,000 states in the final cellular states denote 1,000 randomly generated states
from D4, D3, and D2. Here, 100 states have (P53, Proliferation) = (1,0) and 900 states have (P53, Proliferation) = (1,0), which are referred to as final input for training
fFFN. Similarly, final target is defined by using final input. (C) Four subplots show the probability of each single-control candidate of value 1 to be a single-control
target, where 500 cFFNs and the five highest numbers are used in the scoring process. The states in the initial, transitional, and final targets and random states are
used in the scoring process. As a result, the unique single-control target N17 of value 1 has the highest probability.

as red nodes in Figure 5A. To examine whether cFFN can be
used to identify these single-control targets of pinning value 1,
we consider each node Nj (1≤ j≤ 33) in cFFN as a single-control
candidate of value 1.

To identify control candidates as a single-control target by
using cFFN, we define the probability of single-control candidate
Nj of value 1 to be a single-control target of value 1. Here, the
value of Nj is fixed to 1 in a given cFFN, and the 1,000 noisy fourth
states are updated 100 times using the cFFN. Then, the number
of noisy fourth states driven to desired states is counted. After
obtaining such counted numbers of all single-control candidates,
Nj gets a score 1 if the counted number of Nj is 1 of the 10 highest
numbers among the candidates, or 0 otherwise. We repeat the
scoring process for each of 100 cFFNs and divide the total score

of Nj by 100, which gives the probability of Nj shown in the upper
panel of Figure 5B. As a result, the four single-control targets
of value 1 are ranked as the third, fifth, ninth, and second in
descending order of probability.

The middle panel of Figure 5B shows the probability of each
single-control candidates to be a single-control target of value
1 without introducing the restriction of marker tendency. In
addition, 1,000 states at converging time step 1 to the undesired
attractor are used instead of the noisy fourth states driven to
desired states in the upper panel of Figure 5B. As a result,
the four single-control targets are ranked as the third, third,
fifth, and second in descending order of probability. Finally, the
bottom panel in Figure 5B shows the probability of each single-
control candidates to be a single-control target of value 1. This
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FIGURE 5 | Construction of cell fate transition feedforward neural network (cFFN) with noisy training data generated by a biomolecular network of 33 nodes and
application of cFFN for identifying single-control targets of value 1. Node ID Nj (1 ≤ j ≤ 33) is provided in Supplementary Data 3. (A) A mitogen-activated protein
kinase network of 53 nodes. Its update logics are provided in Supplementary Data 3. Rectangle and diamond nodes have fixed values of 0 and 1 in the update
logics, respectively, which lead to fixed values of the dotted circles. All nodes except the nodes having fixed values are 33 nodes, which are represented by solid
circle nodes. The network of 33 nodes is called MAPK33. Update logics of these nodes are provided in Supplementary Data 3. If one of four, N12, N20, N24, and
N25, has the pinned value 1, any state within 2,000 sets of 1,000 random states would eventually converge to a desired state, where states in 1,000 sets are
randomly chosen from all the states converging to the undesired attractor. The four red nodes denote the four single-control targets of value 1. (B) In the upper
panel, the probability of single-control candidate Nj to be a single-control target of value 1 is calculated using the noisy training targets for iFFN, tFFN, and fFFN.
Here, restrictions of marker tendency and the number of noisy fourth states driven to desired states are used. The four single-control targets of value 1 are ranked as
the third, fifth, ninth, and second in descending order of probability. In the middle, the probability is calculated using the noisy training targets for iFFN, tFFN, and
fFFN. Moreover, no restrictions of marker tendency and 1,000 states at time step 1 to the undesired attractor instead of the noisy fourth states are used. As a result,
the four single-control targets are ranked as the third, third, fifth, and second in descending order of probability. In the bottom panel, the probability is calculated
using noisy training targets for iFFN, tFFN, and fFFN, and random states converging to the undesired attractor and the noisy first states instead of the first states and
the noisy fourth states, respectively. Finally, the four single-control targets are ranked as the fifth, fifth, third, and second in descending order of probability.

can be done by using 1,000 random states converging to the
undesired attractor and the noisy second states, instead of the
first states and the noisy fourth states in the upper panel of

Figure 5B, respectively. As a result, the four single-control targets
are ranked as the fifth, fifth, third, and second in descending
order of probability.
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The second case of single control is pinning the value of one
node to value 0. We find that if one of two nodes, N6 (CREB)
and N7 (DUSP1), has value 0, then any state within 100 sets of
1,000 random states converging to the unique undesired attractor
would eventually converge to desired states. Hence, the two nodes
are single-control targets of value 0. We define the probability of
single-control candidate Nj to be a single-control target of value
0 as in the upper panel of Figure 5B. As a result, the two single-
control targets of value 0 have the first two highest probabilities
as shown in Supplementary Figure 3.

DISCUSSION

Owing to the recent development of high throughput single
cell measurement technologies, various omics data are now
becoming more available that can be used for quantifying
gene or protein expressions of hundreds to thousands of cells
at a time. Those data can be ordered according to pseudo-
time axis, and then, we can use them to investigate dynamic
processes in cellular state transitions such as differentiation and
tumorigenesis. One most important application of such data
is developing a mathematical model of the MRN within a cell
since it determines cellular dynamic behaviors. Boolean network
models have been actively studied, as they are parameter-free
logical dynamic models that can still represent many essential
dynamics of MRNs and are also robust to noise contained
in the data used for logic fitting. All previous studies on
developing Boolean network models have focused on inferring
the backbone network structures and optimizing the regulatory
logical rules among the nodes of MRNs. In this study, we
proposed a totally different approach by representing each
node (i.e., molecule) of MRNs by a single output node of
an FFN and then fitted the whole MRN composed of as
many FFNs as the number of nodes to the measured pseudo-
time course data such that the resulting Boolean FFN can
reproduce all the predicted molecular expression levels of
nodes for any initial state values. In this approach, we do
not need to determine the regulatory network structure in
advance, as it is obtained as a result of learning. To use
our method, we only need to know (or determine) a priori
the nodes that constitute the regulatory network. Then, we
can apply our method based on the temporal measurement
data of the network nodes. It is also remarkable that the
proposed Boolean FFN modeling is quite robust to noise in
the training data.

To show validity and applicability of the proposed Boolean
FFN modeling, we considered three different network examples
and further applied our method to identify control targets that
can induce cellular state conversion to desired ones. We found
that our method can accurately identify all those control targets
that are revealed by extensive simulation analysis of the original
dynamic network models. For the toy example network and
CACC21 network, three clusters of states that are sequentially
ordered upon the pseudo-time course trajectory leading to
undesired attractors are generated by dividing the state transition
trajectory into initial, middle, and final clusters of states. The first

cluster is a set of states at early time steps, where ordered pairs
of the states and their updated states are used as training data
for iFFN. Similarly, the second and third clusters are defined and
used as training datasets for tFFN and fFFN, respectively. Finally,
using the first cluster and three FFNs, connected trajectories
are constructed and the states on which are used as training
data for cFFN. We used an ensemble of cFFNs to identify
control targets for cellular state conversion, which shows general
applicability of the proposed Boolean FFN modeling to biological
network control for state conversion. Identifying control targets
is important for cell fate control toward a desired cellular state.
For instance, we can consider a state conversion from a malignant
cancerous state to a benign normal state, which is called cancer
reversion (Cho et al., 2016, 2017; Choi et al., 2020; Lee et al.,
2020). We also showed that our method is robust to noisy data
through the example of MAPK33 network.

Three Boolean FFNs (iFFN, tFFN, and fFFN) are used
only to generate training data for building cFFN, but they
can also be used to identify control targets for cellular state
conversion among the initial, transitional, and final cellular
states. Nevertheless, the key aspect of our proposed framework
does not lie in the concept of iFFN, tFFN, and fFFN but
in combining neural network modeling and Boolean network
modeling approaches. In other words, we can use temporal data
as training data for directly building a Boolean FFN without
building iFFN, tFFN, and fFFN. Note that we investigated the
attractor of a Boolean network only to generate temporal data,
so our framework can be used without searching for attractors if
temporal data of a cellular state transition process are given. To
demonstrate the applicability of our framework without building
such three Boolean FFNs and searching for an attractor, we
employed the actually measured pseudo-time course single-cell
data over the progression from hematopoietic stem cells toward
lymphoid-primed multipotent progenitors (Hamey et al., 2017)
and directly built a Boolean FFN using these pseudo-time data.
From the FFN, we could identify an optimal single-control
candidate as shown in Supplementary Figure 4. It remains
as a future study for experimentally validating this result. Our
future study also includes applying the proposed framework to
identifying control candidates for cancer reversion together with
its experimental validation.

We note that the proposed method might fail to identify
optimal control targets if the training data are randomly chosen
from a set of small portion of states having a property converging
to an undesired attractor. We also note that there are many
hidden hyperparameters to be determined in our proposed
modeling framework since we employed a machine learning
algorithm, FFN. For instance, we used only one hidden layer
for the structure of FFN, and the number of hidden nodes was
simply set to the number of molecules in the MRN. Although
the structure is very simple, it worked well for the temporal
data obtained from both the toy model and biological networks.
However, different structures and hyperparameter values might
be chosen for temporal data from other biological networks.
The proposed Boolean FFN modeling framework of MRNs is
universal, and thus, it can be applied to various types of molecular
data obtained across state transitions.
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MATERIALS AND METHODS

Building Feedforward Neural Networks
With Matlab
Let us consider an MRN represented by a Boolean network
model. Here, we propose a new approach for modeling each node
xi
(
1 ≤ i ≤ k

)
of the Boolean network model using FFN. For this,

we assume that three sets of ordered pairs of initial, transitional,
and final states are measured over a dynamic process of state
transition, which are denoted by PI, PT, and PF, respectively.
These are defined as follows:

PI =
{(

sIin,n, s
I
tar,n

)∣∣ 1 ≤ n ≤ Ik,
{
sIin,n, s

I
tar,n

}
⊂ {0, 1}k

}
,

PT =
{(

sTin,n, s
T
tar,n

)∣∣ 1 ≤ n ≤ Tk,
{
sTin,n, s

T
tar,n

}
⊂ {0, 1}k

}
,

PF =
{(

sFin,n, s
F
tar,n

)∣∣ 1 ≤ n ≤ Fk,
{
sFin,n, s

F
tar,n

}
⊂ {0, 1}k

}
.

where PI has Ik ordered pairs
(
sIin,n, s

I
tar,n

)
for 1 ≤ n ≤ Ik such

that sIin,n and sItar,n are Boolean states of nodes xi
(
1 ≤ i ≤ k

)
. The

symbols n and I in
(
sIin,n, s

I
tar,n

)
denoted that

(
sIin,n, s

I
tar,n

)
is an

nth pair of PI. The symbols in and tar in
(
sIin,n, s

I
tar,n

)
denoted

that sIin,n and sItar,n are elements of input and target for training
an FFN, respectively. The symbols in defining the terms, PT and
PF, are similar to that ofPI.

Construction of an FFN With Training Data PI (iFFN)
Using the Matlab function “patternnet,” we construct the
structure of FFN for a node xi with input, one hidden layer,
one output layer of two nodes, two softmax nodes and node xi.
The value of xi is 1 if the value of the first softmax node out
of two is greater than or equal to that of the second node. The
FFN for node xi is trained with input sIin =

(
sIin,1, · · · , s

I
in,Ik

)
and target sItar,xi =

(
sItar,1,xi , · · · , s

I
tar,Ik,xi

)
by using the Matlab

function “train:”
sItar,`,xi =

(
sItar,`,xi,1, s

I
tar,`,xi,2

)
such that

sItar,`,xi,1 =

{
1 if xi has value 1 in sItar,`,
0 otherwise,

sItar,`,xi,2 = 1− sItar,`,xi,1.

The sizes of input and target are k× Ik and 2× Ik, respectively.
For training, we use the classification threshold of 0.6 and add
restrictions that the FFN can satisfy the marker tendency, which
is described in detail in section “Marker Tendency.” The trained
FFN for node xi is called “FFN1

xi .” Then, we can use a vector-
valued function notation as follows:

iFFN =
(
FFN1

x1
, · · · , FFN1

xk

)
and simply F1

= iFFN.

Then, the output of F1 can be written as follows:

F1 (sIin) = {(FFN1
x1 (s) , · · · , FFN

1
xk (s)

)∣∣∣ s ∈ sIin
}
,

where FFN1
xi (s) denotes the value of xi obtained by substituting a

state s ∈ sIin into FFNxi
1 .

Construction of an FFN With Training Data PT (tFFN)
Using the Matlab function “patternnet,” we construct the
structure of FFN for a node xi with input, one hidden layer,
one output layer of two nodes, two softmax nodes, and node xi.
The value of xi is 1 if the value of the first softmax node out
of two is greater than or equal to that of the second node. The
FFN for node xi is trained with input sTin =

(
sTin,1, · · · , s

T
in,Tk

)
and target sTtar,xi =

(
sTtar,1,xi , · · · , s

T
tar,Tk,xi

)
by using the Matlab

function “train:”
sTtar,`,xi =

(
sTtar,`,xi,1, s

T
tar,`,xi,2

)
such that

sTtar,`,xi,1 =

{
1 if xi has value 1 in sTtar,` ,
0 otherwise,

sTtar,`,xi,2 = 1− sTtar,`,xi,1.

The sizes of input and target are k× Tk and 2× Tk, respectively.
For training, we use the classification threshold of 0.6 and add
restrictions that the FFN can satisfy the marker tendency. The
trained FFN is called “FFN2

xi .” Then, we can use a vector-valued
function natation as follows:

tFFN =
(
FFN2

x1
, · · · , FFN2

xk

)
and simply F2

= tFFN.

Construction of an FFN With Training Data PF (fFFN)
Using the Matlab function “patternnet,” we construct the
structure of FFN for a node xi with input, one hidden layer,
one output layer of two nodes, two softmax nodes, and node xi.
The value of xi is 1 if the value of the first softmax node out
of two is greater than or equal to that of the second node. The
FFN for node xi is trained with input sFin =

(
sFin,1, · · · , s

F
in,Fk

)
and target sFtar,xi =

(
sFtar,1,xi , · · · , s

F
tar,Fk,xi

)
by using the Matlab

function “train:”
sFtar,`,xi =

(
sFtar,`,xi,1, s

F
tar,`,xi,2

)
such that

sFtar,`,xi,1 =

{
1 if xi has value 1 in sFtar,` ,
0 otherwise,

sFtar,`,xi,2 = 1− sFtar,`,xi,1.

The sizes of input and target are k× Fk and 2× Fk, respectively.
For training, we use the classification threshold of 0.6 and add
restrictions that the FFN can satisfy the marker tendency. The
trained FFN is called “FFN3

xi .” Then, we can use a vector-valued
function notation as follows:

fFFN =
(
FFN3

x1
, · · · , FFN3

xk

)
and simply F3

= fFFN.

Construction of a Cell Fate Transition FFN
We call the following set as “connected trajectories:”

{(s1, s2, s3, s4) | (s1, s2, s3, s4) ∈ sIin × F1 (sIin)× F2 (F1 (sIin))×
F3 (F2 (F1 (sIin))) .},

where the symbol ∈ represents that s1, s2, s3 and s4 are
one of statessIin,n, FFN

1
xi
(
sIin,n

)
, FFN2

xj
(
FFN1

xi
(
sIin,n

))
,
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and FFN3
x`

(
FFN2

xj
(
FFN1

xi
(
sIin,n

)))
for 1 ≤ n ≤ Ik and

1 ≤ xi, xj, x` ≤ k, respectively. An FFN for node xi is trained
with input scFFNin =

(
sIin, F

1 (sIin) , F2 (F1 (sIin))) and target

scFFNtar,xi =
(
F1 (sIin)xi , F2 (F1 (sIin))xi , F3 (F2 (F1 (sIin)))xi)

by using the Matlab function “train.” Here,

F1 (sIin)xi =
(
F1 (sIin,1)xi , · · · , F1

(
sIin,Ik

)
xi

)
such that

F1 (sIin,n)xi = (F1 (sIin,n)xi,1 , F1 (sIin,n)xi,2) and

F1 (sIin,n)xi,1 =
{

1 if xi has value 1 in F1 (sIin,n) ,
0 otherwise,

F1 (sIin,n)xi,2 = 1− F1 (sIin,n)xi,1 .
The remaining symbols in F2 (F1 (sIin))xi and
F3 (F2 (F1 (sIin)))xiare similarly defined as those in F1 (sIin)xi .
For training, we use the classification threshold of 0.6 and add
restrictions that the FFN satisfies the marker tendency, which
is described in section “Marker Tendency.” The trained FFN
is called “cFFNxi .” Then, we can use a vector-valued function
notation as follows:

cFFN =
(
cFFNx1

, · · · , cFFNxk

)
,

which is called a “cellular state transitional FFN (cFFN).”

Marker Tendency
We assume that there are marker nodes in the network that can
define a state as desired or undesired state. In addition, there
is a tendency that the number of desired states in training data
decreases from iFFN to tFFN and then to fFFN. However, the
number of undesired states in training data increases, which
is referred to as marker tendency. We impose restrictions on
marker tendency for training iFFN, tFFN, fFFN, and cFFN. We
use symbol #FFNξxi

(
sτin
)

to denote the number of states with active
xi in the output FFNξxi

(
sτin

)
.

Toy Network
Node x6 is a unique marker; a state with active or inactive x6 is
considered as a desired or undesired state, respectively. Let #sIin
and #sItar denote the number of desired states in sIin and sItar =(
sItar,1, · · · , s

I
tar,Ik

)
, respectively. When training FFN1

x6
, we use a

lower bound and an upper bound
lowerIx6

=
1
2 min

{
#sIin, #sItar

}
and upperIx6

= 2lowerIx6
to add the restriction of marker tendency

lowerIx6
≤ #FFN1

x6

(
sIin
)
≤ upperIx6

.

Replacing
(
#sIin, #sItar

)
with

(
#sTin, #sTtar

)
, we add the restriction of

marker tendency when training FFN2
x6

:

lowerTx6
≤ #FFN2

x6

(
sTin
)
≤ upperTx6

.

Replacing
(
#sIin, #sItar

)
with

(
#sFin, #sFtar

)
and

(
#scFFNin , #scFFNtar

)
, we

define

upperFx6
=

1
2 min

{
#sFin, #sFtar

}
and uppercFFNx6

=

1
2 min

{
#scFFNin , #scFFNtar

}
.

We add the restrictions of marker tendency when training
FFN3

x6
:

#FFN3
x6

(
sCin
)
≤ upperFx6

, #cFFNx6

(
sIin
)
≤ uppercFFNx6

.

CACC21
Nodes x16 and x21 are the markers for desired and undesired state,
respectively. The state with values (x16, x21) = (1, 0) or (0, 1) is
considered to be a desired or undesired state, respectively. Let
#sIin,x16

and #sItar,x16
denote the number of states with active x16

in sIin and sItar , respectively. When training FFN1
x16

, we use a lower
bound and an upper bound

lowerIx16
=

1
2 min

{
#sIin,x16

, #sItar,x16

}
and upperIx16

= 2lowerIx16

to add the restriction of marker tendency:

lowerIx16
≤ #FFN1

x16

(
sIin
)
≤ upperIx16

.

Similarly, we define #sIin,x21
, #sItar,x21

, lowerIx21
=

max
{

#sIin,x21
, #sItar,x21

}
, and upperIx21

=
3
2 lowerx21

I .
We add the restriction of marker tendency when training

FFN1
x21

:
lowerIx21

≤ #FFN1
x21

(
sIin
)
≤ upperIx21

.

Replacing
(

#sIin,x16
, #sItar,x16

)
and

(
#sIin,x21

, #sItar,x21

)
with(

#sTin,x16
, #sTtar,x16

)
and

(
#sTin,x21

, #sTtar,x21

)
, respectively, we add

the restrictions of marker tendency when training FFN2
x16

and
FFN2

x21
:

lowerTx16
≤ #FFN2

x16

(
sTin
)
≤ upperTx16

and lowerTx21
≤

#FFN2
x21

(
sTin
)
≤ upperTx21

.

Replacing
(

#sIin,x16
, #sItar,x16

)
with

(
#sFin,x16

, #sFtar,x16

)
and(

#scFFNin,x16
, #scFFNtar,x16

)
, we define

lowerFx16
=

1
2 min

{
#sFin,x16

, #sFtar,x16

}
, upperFx21

= max
{

#sFin,x21
, #sFtar,x21

}
,

lowercFFNx16
=

1
2 min

{
#scFFNin,x16

, #scFFNtar,x16

}
, uppercFFNx21

= max
{

#scFFNin,x21
, #scFFNtar,x21

}
and add the restrictions when training FFN3

x16
, FFN3

x21
, cFFNx16

,
and cFFNx21

:

lowerFx16
≤ #FFN3

x16

(
sCin
)
, #FFN3

x21

(
sCin
)
≤ upperFx21

,

lowercFFNx16
≤ #cFFNx16

(
sIin
)
, #cFFNx21

(
sIin
)
≤ uppercFFNx21

.

MAPK33
Nodes x3 and x28 are the markers for desired and undesired state,
respectively. The state with values (x3, x28) = (1, 0) or (0, 1)
is considered to be a desired or undesired state, respectively.
Replacing numbers (16, 21) of markers (x16, x21) for CACC21
with numbers (3, 28) of markers (x3, x28) for MAPK33 provides
similar restrictions of marker tendency when training iFFN,
tFFN, fFFN, and cFFN.
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