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The roles that eicosanoids play during pregnancy and parturition are crucial to a
successful outcome. A better understanding of the regulation of eicosanoid production
and the roles played by the various end products during pregnancy and parturition
has led to our view that accurate measurements of a panel of those end products
has exciting potential as diagnostics and prognostics of preterm labor and delivery.
Exosomes and their contents represent an exciting new area for research of movement
of key biological factors circulating between tissues and organs akin to a parallel
endocrine system but involving key intracellular mediators. Eicosanoids and enzymes
regulating their biosynthesis and metabolism as well as regulatory microRNAs have
been identified within exosomes. In this review, the regulation of eicosanoid production,
abundance and actions during pregnancy will be explored. Additionally, the functional
significance of placental exosomes will be discussed.
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INTRODUCTION

The fetal membranes perform unique functions to support fetal development and respond to signals
for parturition. The correct timing for triggering this process is critical for the successful outcome
of the pregnancy. The parturition process is mediated by a combination of signals from the fetus,
placenta and mother. There are mainly two signallers of parturition that are interdependent and
well reported, namely fetal endocrine signals and fetal growth-related signals (Challis et al., 2005;
Menon, 2016; Mesiano, 2019). Both pathways directly and indirectly induce higher production
of eicosanoids (particularly prostaglandins) which are important signaling molecules that affect
the contractile activity of the myometrium leading to parturition (Challis et al., 2005; Reinl and
England, 2015). Hence, administration of specific prostaglandins (E2 or F2α) is proven to effectively
induce labor and cervical ripening (E2) in women. Additionally, a better understanding of the

Abbreviations: 5-LOX, 5-lipoxygenase; BLT1-2, Leukotriene B4 receptor 1-2; cAMP, Cyclic AMP; COX, Cyclooxygenase;
CRH, Corticotrophin-releasing hormone; CysLT1-2, Cysteinyl leukotriene receptor 1-2; DP1-2, Prostaglandin D2 receptor
1-2; EETs, Epoxy-eicosatrienoic acids; EP1-4, Prostaglandin E2 receptor 1-4; ESCRT, Endosomal Sorting Complexes
for Transport; EVs, Extracellular vesicles; FLAP, Five-lipoxygenase activating protein; FP, Prostaglandin F2α receptor;
GROα, Growth-related oncogene-α; HETEs, Hydroxy-eicosatetraenoic acids; HPETE, Hydroperoxyl eicosatetraenoic acid;
IL, Interleukin; ILVs, Intraluminal vesicles; IP, Prostaglandin I2 receptor; LTA4, Leukotriene A4; LTB4, Leukotriene B4;
LTC4, Leukotriene C4; LTD4, Leukotriene D4; LTs, Leukotrienes; MRPs, Multidrug-resistance proteins; MTOC, Microtubule
organization center; MVB, Multivesicular Bodies; PG, Prostaglandin; PGD2, Prostaglandin D2; PGDH, prostaglandin
dehydrogenase; PGE2, Prostaglandin E2; PGF2α, Prostaglandin F2α; PGH2, Prostaglandin H2; PGHS = PTGS-2, prostaglandin
endoperoxide synthase-2; PGI2, Prostaglandin I2; TNFα, Tumor necrosis factor-α; TP, Thromboxane receptor; TXA2,
Thromboxane A2.
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regulation of eicosanoid production and the roles played by the
various end products during pregnancy and parturition has led
to our view that accurate measurements of a panel of those end
products has exciting potential as diagnostics and prognostics of
preterm labor and delivery (Mitchell et al., 2015).

In this review, we explore the roles and distribution of
eicosanoids in the human uterus and fetal membrane during
parturition. We also describe exosome abundance during
pregnancy and parturition. Finally, we discuss the potentially
pivotal role of exosomes in distributing eicosanoids and the
related diagnostic and therapeutic potential that this brings.

EICOSANOIDS

The term “eicosanoid” has evolved overtime as a definitive
term for products of a family of polyunsaturated (C20) fatty
acids; including, but not limited to, lipoxins, leukotrienes,
thromboxanes and prostaglandins. The biosynthesis of
eicosanoids and their structural properties are well characterized
in mammals (Smith, 1989). Eicosanoids are not stored, and their
biosynthesis occurs in all mammalian tissues as a response to
hormonal stimulation or mechanical trauma, acting as paracrine
or autocrine modulators (Esser-von Bieren, 2017; Strauss and
FitzGerald, 2019). Their actions are mediated by the activation of
membrane receptors (Kim and Luster, 2007).

Eicosanoid Biosynthesis
A first essential and usually rate limiting step in eicosanoid
biosynthesis is release of polyunsaturated (C20) fatty acids
from membrane phospholipid stores (Fitzpatrick and Soberman,
2001). Arachidonic acid is the major common precursor of
eicosanoids and its release is precisely regulated by several types
of phospholipase A2 (Burke and Dennis, 2009) or phospholipase
C and subsequent mono- and diacylglycerol lipases (Kano et al.,
2009; Hanna and Hafez, 2018). Once released arachidonic acid
is converted enzymatically to various eicosanoids via three main
pathways (Figure 1): namely, the cyclooxygenase pathway, the
lipoxygenase pathway, and the cytochrome P-450 epoxygenase
pathway (Strauss and FitzGerald, 2019).

The major products of the cyclooxygenase (COX) pathway
are prostanoids such as prostaglandins, thromboxanes and
prostacyclin. There are two major COX enzymes that initiate
the synthesis of prostaglandins, COX-1 is mainly expressed
constitutively, and COX-2 is often induced via cytokines, growth
factors and hormones (Herschman, 1996; Smith et al., 1996).
Prostaglandin H2 (PGH2), a direct product of arachidonic
acid release and reaction to COX enzymes, is converted to
individual prostanoids that are tissue specific by the action of
corresponding isomerases and synthases (Smith et al., 2000).
For instance, thromboxane A2 (TXA2) synthase is expressed in
platelets and macrophages; prostaglandin I2 (PGI2), also known
as prostacyclin, synthase is expressed in endothelial cells and
prostaglandin F2α (PGF2α) synthase is abundant in the uterus (Ni
et al., 2003; Ueno et al., 2005).

The lipoxygenase pathway produces leukotrienes (LTs).
Products of this pathway in leukocytes are part of the LT

family of lipid mediators, whose synthesis is mainly initiated by
inflammatory cells. Formation of LTs is initiated via hydroperoxyl
eicosatetraenoic acid (HPETE) formation from arachidonic
acid by 5-lipoxygenase (5-LOX). 5-LOX in turn requires the
cooperation of an accessory protein known as five-lipoxygenase
activating protein (FLAP). Most HPETE molecules are converted
to leukotriene A4 (LTA4). LTA4 can serve in vitro as a precursor
for the transcellular biosynthesis of lipoxins and can undergo
multiple routes of transformation (Bäck et al., 2011).

The cytochrome P450 epoxygenase pathway produces
mainly epoxy-eicosatrienoic acids (EETs) via the catalysis of
monooxygenation of arachidonic acid (Smith, 1989; Strauss and
FitzGerald, 2019). However, hydroxygenases can also convert
arachidonic acid to hydroxy-eicosatetraenoic acids (HETEs)
(Strauss and FitzGerald, 2019).

Transport and Function
Despite the lipid nature of eicosanoids, they do not penetrate
the cell membrane freely. Efflux transporters, such as multidrug-
resistance proteins (MRPs), are necessary to transport newly
synthesized eicosanoids outside the manufacturing cells.
Additionally, the cellular uptake of eicosanoids is regulated by
organic anion transporter proteins (Funk, 2001). The abundance
of eicosanoid receptors and transporters is a limiting factor
for their action. Therefore, they are believed to act as local or
paracrine effectors initiating specific biochemical reactions in
certain tissues.

Due to the different mechanisms that eicosanoids can
induce on the cellular level, there are discrete receptor
for each compound that mediate its action within the cell
(Olson and Ammann, 2007). Thus far, there are 13 distinct
cloned and characterized receptors for eicosanoids, including
nine for cyclooxygenase-derived prostanoids and four for
lipoxygenase-derived leukotrienes (Funk, 2001; Narumiya and
Furuyashiki, 2011; Woodward et al., 2011). The nine prostanoid
receptors mediate eicosanoid actions via cyclic AMP (cAMP),
phosphatidylinositol turnover and Ca2+ shifts (Table 1).

Despite the short lifespan of eicosanoids, their biological
effects are robust. Their biological properties have been studied
in many contexts such as the cardiovascular system, immune
system, nervous system and gastrointestinal tract as well as
in inflammatory settings (Strauss and FitzGerald, 2019). The
roles of eicosanoids in reproductive physiology are extensively
studied in seminal fluid (Samuelsson, 1963; Alexandre et al., 2007;
Remes Lenicov et al., 2012; Szczykutowicz et al., 2019), luteolytic
actions (Vijayakumar and Walters, 1983; Bennegård et al., 1991;
Miceli et al., 2001) and uterine physiology in pregnancy (Peiris
et al., 2017); however, the roles of specific eicosanoids are still
being elucidated. In the following sections, we will focus on
the role of eicosanoids in uterine physiology during pregnancy
and parturition.

Eicosanoids in Pregnancy and
Parturition
The strong relationship between eicosanoids and pregnancy has
been recognized for many years. Eicosanoids have various roles
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FIGURE 1 | Eicosanoid biosynthesis. The main three pathways involved in eicosanoids biosynthesis from the main precursor, arachidonic acid, are lipoxygenase,
cyclooxygenase and cytochrome P450 pathways. The cytochrome P450 pathway produces epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids
(HETEs) from which some products can be further metabolized by cyclooxygenase. Cyclooxygenases (COX1 and 2) can act directly on arachidonic acid to produce
the unstable intermediate prostaglandin (PG) H2 (PGH2) which then can produce various prostanoids such as PGE2, PGI2, PGD2, and PGF2α and thromboxane A2

(TXA2). Lipoxygenase pathway yields leukotrienes (LTs), such as LTA4 and LTB4. Multidrug resistant proteins (MRPs) facilitate the transfer of eicosanoids through the
cell membrane. Multiple cellular membrane receptors mediate the action of eicosanoids, such as EP1-4 for PGE2 and BLT1-2 for LTB4. [After (Funk, 2001; Strauss
and FitzGerald, 2019)].

TABLE 1 | Eicosanoid receptors and their functional properties.

Eicosanoid category Ligand Receptor Functional properties

Cyclooxygenase pathway (prostanoids) TXA2 TP Increase intracellular calcium, Contractile

PGI2 IP Increase intracellular cAMP, Relaxing

PGFzoc FP Increase intracellular calcium, Contractile

PGD2 DPI Increase intracellular cAMP, Relaxing

DP2 Induce intracellular calcium mobilization and chemoattractant

PGE2 EP1 Increase intracellular calcium, Contractile

EP3 Inhibit cAMP production, Inhibitory

Increase intracellular cAMP, Relaxing

Lipoxygenase pathway (leukotrienes) LTB4 BLT1 BLT2 Induce intracellular calcium mobilization and inhibit cAMP production

LTD4 CysLTl Increase intracellular calcium

LTC4, LTD4 CysLT2 Increase intracellular calcium

BLT1 -2: Leukotriene B4 receptor 1-2; cAMP: Cyclic AMP; CysLT1-2: Cysteinyl leukotriene receptor 1-2; DP1-2: Prostaglandin D2 receptor 1-2; EP1-4: Prostaglandin E2
receptor 1-4; FP: Prostaglandin F2α receptor; IP: Prostaglandin I2 receptor; LTB4: Leukotriene B4; LTC4: Leukotriene C4; LTD4: Leukotriene D4; PGD2: Prostaglandin D2;
PGE2: Prostaglandin E2; PGF2α : Prostaglandin F2α; PGI2: Prostaglandin I2; TP: Thromboxane receptor; TXA2: Thromboxane A2.
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in the reproduction process, including ovulation, corpus luteum
function, luteolysis, fertilization and decidualisation as well as
parturition as previously reviewed (Strauss and FitzGerald, 2019).
COX-2-derived PGE2 was found to play an important role
in oocyte maturation and fertilization by affecting the activity
of the cumulus cells surrounding the oocyte (McAdam et al.,
1999). Defective embryo implantation and decidualisation were
also observed in COX-2-deficient mice uteri, indicating the
fundamental role of PGs in normal uterus physiology (Lim et al.,
1999; McAdam et al., 1999).

The importance of eicosanoids in parturition has been
subjected to detailed investigations using knockdown animal
models. For example, parturition defects were observed in
rodents deficient of COX enzymes and PGF2α receptor. Mice
with targeted disruption of COX-1 gene had delayed parturition,
resulting in neonatal death (Gross et al., 1998; Yu et al., 2005).
PGF2α receptor-deficient mice, generated by gene knockdown,
did not show the normal decline of serum levels of progesterone
associated with parturition and consequentially were unable
to deliver normal fetuses at term (Sugimoto et al., 1997).
Additionally, many clinical observations have accumulated
evidences that demonstrate the likely regulatory function of
PGs on myometrial contractility and cervical softening. For
instance, administration of PGs biosynthesis inhibitors such
as aspirin or specific COX-2 (also known as prostaglandin
endoperoxide synthase-2; PGHS or PTGS-2) inhibitors extend
gestational length, however, does not prevent parturition (Lewis
and Schulman, 1973; Collins and Turner, 1975; Khanprakob
et al., 2012; Illanes et al., 2014; Triggs et al., 2020). Likewise,
administration of PGE2 and PGF2α at any stage of gestation leads
to increasing uterine contractile activity and cervical ripening
(Embrey, 1971). Consequently, PGs are used clinically as a
treatment to induce labor (Thomas et al., 2014). Furthermore,
production of PGE2 and PGF2α increases during late stages of
gestation and were found to be associated with the onset of
parturition (Romero et al., 1994a, 1996; Slater et al., 1999). This
confirms the notion that increased intrauterine PG biosynthesis
is a cause rather than a result of the parturition process.

Term Labor and Intrauterine Prostaglandin
Concentrations
During pregnancy, there are two main groups of regulatory
factors that control the contractile activity of the uterus,
uterotropins and uterotonins. Uterotropins and relaxatory
uterotonins, such as progesterone and PGI, respectively, enhance
myometrial relaxation and modulate uterine function and growth
(Ilicic et al., 2020). Contrarily, stimulatory uterotonins, such
as PGs, can induce contractions of the uteri. Before the
parturition process starts, a relaxation state of the myometrium
with minimum sensitivity to stimulatory uterotonins, such as
PGs, is controlled by progesterone (Mesiano, 2004; Ilicic et al.,
2020). Progesterone is a key player in the establishment and
maintenance of pregnancy and its role and regulation have
been extensively studied in human and experimental models
(Arck et al., 2007; Forde et al., 2009; Solano and Arck, 2020).
Progesterone withdrawal usually indicates the initiation of the
parturition process with changes in the contractile activity of

the myometrium. Human parturition is also associated with
progesterone receptor subtypes changes (Merlino et al., 2007;
Patel et al., 2015).

Although the required enzymes and receptors necessary
for the synthesis and action of PGs are present in human
myometrial tissue (Astle et al., 2007; Arulkumaran et al., 2012),
their concentrations in the uterus may vary during various
stages of gestation. During pregnancy, both maternal and fetal
tissues produce PGE2 and PGF2α. The increased intrauterine
prostaglandin concentrations are key players in initiating and
progressing labor and this occurs before the onset of labor
(Romero et al., 1994a, 1996).

During the initial stage of the parturition process, myometrial
cellular expression of PG-related genes is significantly increased:
these genes include PG biosynthetic enzymes and PG receptors
(Challis et al., 2002). The changed expression of these genes
in turn increases the uterine tissue sensitivity to the elevated
production of PGE2 and PGF2α . This leads to greater contractile
activity that leads to expulsion of the fetus and sequentially
expulsion of the placenta (Challis, 2013).

The balance between PG biosynthesis and metabolizing
activities in the fetal membranes plays an important role in
the parturition process. Intrauterine PG biosynthesis via PGHS
occurs in the amnion and to a lesser extent in the chorion, decidua
and myometrium. Conversely, prostaglandin dehydrogenase
(PGDH) enzyme, which controls the conversion of PGE2 and
PGF2α to their inactive forms, is predominantly expressed in the
chorion before the onset of labor. This leads to the prevention of
active amnion-derived PGs reaching the myometrium due to the
abundant presence of PGDH in the chorion which lies between
the amnion and maternal tissues (Mesiano, 2019).

During parturition, expression of PGHS increases in the
chorion, decidua and myometrium. In the meantime, expression
of PGDH decreases in the chorion. This leads to greater
abundance of active PGs in the chorion and permitting more
PGE2 and PGF2α to reach and induce their contractile action on
the myometrium leading to progression of labor.

Of note, progesterone stimulates PGDH and has been reported
to inhibit PTGS2 in the relaxed state of the myometrium
before the onset of the parturition process (Pomini et al.,
2000; Patel et al., 2003). Conversely, placental cortisol and
corticotrophin-releasing hormone (CRH) can stimulate PTGS2
and inhibit PGDH, causing increased access of active PGs to the
myometrium (Olson and Ammann, 2007).

PG receptors also play a crucial role in regulating PG
action during human parturition. Receptors for PGI2, PGE2,
PGF2α and thromboxane are expressed in the myometrium
during pregnancy (Grigsby et al., 2006). PGF2α receptor
(FP) and thromboxane receptor (TP) enhance contractions by
increasing the intracellular calcium (Ricciotti and FitzGerald,
2011). Both PGI2 and PGE2 have contrary contractile actions
on the myometrium. PGI2 receptor (IP) mediates elevated
levels of cAMP which in turn leads to relaxation. However,
PGI2 has been found to play a role in increasing expression
of contraction-associated proteins, such as PTGS2 and PG
receptors. Interestingly, PGE2 has four different receptors
(EP1–4) with different physiologic actions. While contractile
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activity increases when PGE2 interacts with EP1 and EP3,
relaxation of the tissue can be mediated by PGE2 interaction
with EP2 and EP4 (Kotani et al., 1995). Therefore, PGE2 can
cause myometrial contraction or relaxation dependent upon
the expression of receptor in different stages of pregnancy and
during parturition.

A large literature illustrates the involvement of PGs in the
five physiological events of human parturition: fetal membrane
rupture via stimulating matrix mettaloproteinase activity and
cell apoptosis (McLaren et al., 2000; Keelan et al., 2001),
cervical ripening and dilation (Fletcher et al., 1993; Keirse, 1993;
Steetskamp et al., 2020), myometrial contractility (Olson and
Ammann, 2007), placental separation and uterine involution
(Leung et al., 1987). This indicates the importance of further
understanding the role of eicosanoids play in prognosis of
pregnancy outcomes and their potential role as a diagnostic
biomarker for fetus abnormalities and pregnancy complications,
such as preeclampsia, gestational diabetes and preterm labor
(Dalle Vedove et al., 2016; Hong et al., 2016; Aung et al., 2019;
Welch et al., 2020).

Preterm Labor and Inflammatory Mechanisms
Labor that occurs before 37 completed weeks of gestation is
considered as preterm, and preterm birth is the leading cause
of perinatal mortality and morbidity (Goldenberg et al., 2008).
The reasons behind the early onset of labor are not clearly
identified (Green et al., 2005). Maternal infection is strongly
correlated with preterm labor, such as intrauterine infection
(Doi, 2020; Romero et al., 1994b). However, preterm delivery
is associated with many other risk factors such as multifetal
pregnancy, maternal obesity, maternal age, maternal nutrition
and socioeconomic status (Johansson et al., 2014; Joseph et al.,
2014; Koullali et al., 2016).

Inflammatory mechanisms are significantly involved in term
and preterm labor (Christiaens et al., 2008; Peiris et al., 2019,
2020). Many studies focused on identifying labor-associated
inflammatory genes profile, such as genes regulating cytokines,
chemokines and related factors [reviewed in (Keelan et al.,
2003)] which found to be upregulated in term deliveries and
more apparently in preterm deliveries (Marvin et al., 2002;
Mitchell, 2016). In term labor, infiltration of inflammatory
cells increases in the cervix, myometrium, chorioamniotic
membranes, and amniotic cavity. This is also found to be
associated with increased expression and production of pro-
inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and
tumor necrosis factor-α (TNFα), and chemokines, such as
IL-8 and growth-related oncogene-α (GROα) (Keelan et al.,
2003; Romero et al., 2006). Cytokine regulation of intrauterine
prostaglandin production was found to be at the biosynthesis
level and the catabolic inactivation level. For instance, IL-1β

and TNF-α enhance upregulated expression of PGHS leading to
increased biosynthesis of prostaglandins by gestational tissues
(Hansen et al., 1999; Rauk and Chiao, 2000). Similarly, pro-
inflammatory cytokines, IL-1β and TNFα may inhibit PGDH
leading to decreased degradation of prostaglandins (Brown
et al., 1998; Mitchell et al., 2000). The role of pro-inflammatory
cytokines in regulating prostaglandin production is further

evidence of the importance of inflammatory mechanisms in
mediating parturition (Gross et al., 2000; Peiris et al., 2019, 2020).

Similarly, infection and non-infection-induced inflammation
have been found to be associated with preterm labor (Yoon et al.,
2001; Romero et al., 2014, 2015). There are many experimental
and clinical evidences in support of the involvement of
inflammation in preterm labor. For example, pregnant animal
models with intrauterine infection or with exposure to microbial
products can lead to preterm delivery [reviewed in (Elovitz
and Mrinalini, 2004)]. Extrauterine and sub-clinical intrauterine
maternal infections have been associated with premature
parturition (Gomez et al., 1995; Romero et al., 2006). The
production of pro-inflammatory cytokines such as IL-1β, IL-
8, and IL-6 are usually increased in the amnion, decidua
and myometrium in pregnancies with infection (Goldenberg
et al., 2000). This confirms the notion that parturition is a
consequence of failure of the maternal immune system to regulate
inflammatory mechanisms (Romero et al., 2006).

Eicosanoid Distribution and Measurement
Due to the importance of eicosanoids in pregnancy and
parturition, the accurate and specific measurement of eicosanoids
is critical to our ability to enhance diagnostic and therapeutic
strategies for preterm labor. However, the misidentification of
PGs has been problematic with traditional methodologies such
as immunoassays (Glass et al., 2005). Previously we reviewed
the molecular resemblance between eicosanoids and associated
compounds that may interfere and affect the specificity of
immunoassays (Glass et al., 2005; Peiris et al., 2017). Thus, the
gold standard of mass spectrometry that allows full identification
of PGs is vital to any meaningful approach to this problem
(Peiris et al., 2020).

Prostaglandins are produced by all tissues in the body.
Hence measurements of circulating concentrations reflect overall
changes in production and cannot be directly linked to a specific
tissue or organ source. Moreover, due to rapid clearance of
circulating eicosanoids by lungs and kidneys (Golub et al.,
1975; Dunn and Hood, 1977; Peiris et al., 2017), we can only
assess circulating metabolites of eicosanoids not the original
compounds. Therefore, there is a strong argument for evaluating
the utility of exosomes (which have a content that reflects the
tissue/cellular source) as a stable biomarker for measuring and
identifying eicosanoids from specific organs such as the uterus.

EXOSOMES

Exosome Morphology
Exosomes are a subtype of membrane bound extracellular vesicles
(EVs); they are 30–120 nm in diameter and have a cup-shaped
structure and a lipid bilayer which is similar in orientation
of transmembrane constituents to that of the parental cells
membrane (Record, 2014; Barile and Vassalli, 2017; Shao et al.,
2018). Exosomes contain a diverse array of biologically active
molecules such as proteins, lipids, RNA (mRNA, microRNA
and noncoding RNA), DNA, protein mediators and eicosanoids
(Pillay et al., 2017; Saez et al., 2018). Exosomal contents comprise
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specific proteins, lipids or genetic materials reflecting the source
cell’s physiological state, and can therefore serve as representative
biomarkers (Menon et al., 2017).

Exosome Biogenesis
The biogenesis of exosomes involves the inward budding of the
peripheral membrane and invagination of the late endosomes
also known as Multivesicular Bodies (MVB) (Record, 2014);
followed by the formation of intraluminal vesicles (ILVs) inside
of the MVB’s (Zhang et al., 2019). During the invagination
process, proteins are incorporated into the membrane, leaving
the cytosolic components to be engulfed into the ILVs (Zhang
et al., 2019). MVBs are then fused with the plasma membrane
of the cell releasing ILVs out into the extracellular space; once
released ILVs are then referred to as exosomes (Kowal et al., 2014;
Zhang et al., 2019; Figure 2). Exosomes biogenesis also requires;
Endosomal Sorting Complexes for Transport (ESCRT) 0–III.
This complex contains families of vacuolar sorting proteins,
other associated proteins (e.g., Alix and tetraspanin) and lipids
which also participate in protein sorting and ILV formation
during biogenesis (Kowal et al., 2014). The selective packaging
of molecules into exosomes occurs within the originating cell
(Pillay et al., 2017); constituents within exosomes come from
an array of cellular components such as the Golgi apparatus,
endoplasmic reticulum, plasma membrane, nucleus and cytosol
(Record, 2014), meaning that exosomes can represent many
different parts of the cell. The few known selective mechanisms
that regulate cargo sorting into exosomes have recently reviewed
(Anand et al., 2019).

Exosome Secretion and Function
The exocytosis of exosomes is an active secretory process
(Record, 2014). MVBs move along microtubules toward the cell’s
periphery fusing with the plasma membrane and causing the
release of exosomes into the extracellular space (Zhang et al.,
2019). Connection of the MVB and the microtubule organization
center (MTOC) allows the sectorisation of exosome release,
restricting the release of exosomes to non-random areas of the
cell membrane (Record, 2014). Exosome release is also dependent
on the cells and conditions of their surrounding environment
(Kowal et al., 2014; Barile and Vassalli, 2017).

Once exosomes are released, they become involved in
communication between cells through cargo delivery to the
recipient cells. There are three main types signaling modes;
autocrine affects the releasing cell, paracrine affects adjacent cells
and endocrine is delivered to distal target cells via the circulation.

Exosomes are a device for both transportation and signaling;
through their load of bioactive molecules, they have the innate
ability to signal from inside a target cell; both from the periphery
and intracellular compartments (Record, 2014).

The function of exosomes is to exchange information
through the delivery of cargo to distal and adjacent target
cells. In doing so, the interaction of target cells with exosomes
results in reprogramming of their phenotype and regulation
of their function; functions such as migration, proliferation,
angiogenesis, translational activity, metabolism, and apoptosis
(Ehrlich et al., 2016; Saez et al., 2018). This reprogramming

and regulation consequently alters cellular physiology, and
in some cases contributing to different pathological states
(Pillay et al., 2017).

Exosomes in Pregnancy
Synthesis and Interactions With Surrounding
Environment
Exosomes have been identified in the maternal circulation as early
as 6 weeks into gestation (Salomon et al., 2014). As gestational age
increases, there is an increase in circulating maternal exosome
concentration (Pillay et al., 2017); with the increased exosome
burden likely related to placental mass and derived primarily
from placental mesenchymal stem cells.

First-trimester trophoblast cells act as environmental sensors,
and these cells can respond to the changing environment via
the synthesis and release of exosomes (Mitchell et al., 2015). For
example, an increase of exosome numbers is observed when the
in vitro environment has a low oxygen tension and is high in D-
glucose concentration; these two factors synergistically interact to
regulate the bioactivity and release of exosomes originating from
first-trimester trophoblast cells.

The effect of environmental factors on the release of
exosomes into the maternal circulation via endocrinal
communication is dependent on the integrity and stability
of exosomes (Ehrlich et al., 2016). For example, increased
release of exosomes from trophoblastic cells is seen as a
response to challenging environmental conditions (e.g.,
elevated glucose concentrations and low oxygen tension)
which might disrupt the balance of cytokines (Truong
et al., 2017). Cytokines being a necessity for healthy
implantation, placentation and successful pregnancy outcome
(Mitchell et al., 2015).

Exchange, Mediatory Roles, and Other Functions
A function of placenta-derived exosomes is to be a mediator in
the progression of pregnancy and cell fate. Exosomes are used
in cell-to-cell communication between the placenta and maternal
organs. This communication has many functions, one of which
is the preparatory function of remote tissues for metabolic and
placental changes during gestation (Greening et al., 2016; Jin and
Menon, 2018).

Basic functions of exosomes in normal uncomplicated
pregnancies are promotion of implantation and communication
between endometrium and embryo (Jin and Menon, 2018).
In vitro studies have also revealed the role of exosomes
in differential endothelial cell migration and vascular
tube formation. Additionally, exosomes have a pivotal
immunoregulatory role via the initiation of activated maternal
lymphocytes’ local deletion and induction of maternal t-cell
apoptosis, which prevents the degradation of invading
trophoblastic cells (Greening et al., 2016; Pillay et al., 2017).
Placenta-derived exosomes are also found to play a role in viral
infection during pregnancy, where trophoblast cells can transfer
the necessary capacity of resistance against viral infection to
other nonplacental cells via exosomes (Mouillet et al., 2014).

Exosomes regulate all these functions through the transference
of their content into target cells. This regulation of activity
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FIGURE 2 | Exosome biogenesis and secretion. The biogenesis of exosomes is initiated with the inward budding of the peripheral membrane into early endosomes
(a). Selective exosome packaging with molecules such as protein, RNA and DNA and lipids occurs within the originating cell and cellular compartments such as the
Golgi apparatus, endoplasmic reticulum, plasma membrane, nucleus and cytosol. Invagination of the early endosomes into late endosomes (b) allows these diverse
molecules to be taken up and individually packaged inside intraluminal vesicles (ILVs), turning the endosomes into multivesicular bodies (MVBs) (c). During the
invagination process, proteins are incorporated into the membrane, leaving the cytosolic components to be engulfed into the ILVs. Finally, MVBs either release ILVs
intracellularly to be absorbed by lysosomes/autophagosomes (d.1) for degradation or fuse with the plasma membrane to secrete ILVs out into the extracellular
space as exosomes (d.2). [After (Kowal et al., 2014)].

can occur with either proximal or distal target cells via
different interactions; this includes the modification of the
extracellular milieu of the target cell, activation of cell
membrane receptors, endocytosis by target cells in which the
cell contents are released intracellularly and translational activity
(e.g., angiogenesis, proliferation, metabolism and apoptosis).
Exosomes can then modify the phenotype of these cells through
maternal circulation.

The internalization of exosomes is also found to induce the
release of pro-inflammatory cytokines (Greening et al., 2016).
Exosomes released due to abnormal environmental factors lead
to dysfunction of feto-placental endothelium and other various
types of endothelial exosomes (Saez et al., 2018).

The involvement of exosomes in the transcellular
metabolism of eicosanoids (and enzymes involved in substrate
release for eicosanoids) has been described specifically
and in terms of lipid mediators in a series of studies.
In these studies exosomes from cells contained the full

range of phospholipases and many free fatty acids (Subra
et al., 2010; Record et al., 2014). The internalization of
exosomes was described and the subsequent utilization
of exosome cargo in cell metabolism (Subra et al., 2010)
as well as involvement of this intercellular trafficking
in pathophysiologies (Record et al., 2014). We have
recently reviewed this in detail in an invited publication
(Peiris et al., 2017).

Various studies have demonstrated the pivotal role of
exosomes during human pregnancy and parturition (Sarker et al.,
2014; Mitchell et al., 2015; Menon et al., 2017; Jin and Menon,
2018; Sheller-Miller and Menon, 2020). More interestingly,
the potential role of exosomes in diagnosis/prognosis of
pregnancy complications has gained a lot of attention in the
scientific field in the last two decades. For example, preterm
labor was one of the main topic that is under investigation
(Cantonwine et al., 2016; Menon and Richardson, 2017; von
Linsingen et al., 2017). Likewise, studies on gestational diabetes
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(Powe, 2017; Liu et al., 2018; Saez et al., 2018) and preeclampsia
(Pillay et al., 2016; Nielsen et al., 2017; Navajas et al., 2019)
showed differential exosomal contents compared to that in
uncomplicated pregnancies.

FINAL REMARKS

The intercellular communication mediated by exosomes has
opened new era of research to study biological processes in
healthy and pathophysiological conditions. From a clinical
perspective, exosomes are mainly used in two applications: as
biomarker detection and biologically active carriers. Exosomes
are potential candidates as biomarkers detection tool circulating
in blood. Enrichment of specific markers can be improved by
exosome isolation and cargo identification (Record et al., 2018).
Exosomes may transport proteins, lipids and nucleic acids that
can be used as diagnostic or prognostic markers for specific
clinical conditions. In this respect, several studies identified
potential exosomal markers for early detection, diagnosis, and
monitoring of cancer patients (Melo et al., 2015; Jalalian et al.,
2019; Makler and Asghar, 2020). Similarly, exosomal contents
are now gaining much attention in the field of pregnancy
complications and fetal abnormalities (Yang et al., 2020). On the
other hand, exosomes are now identified as potential platform
for enhanced delivery of specific cargo in vivo, which can be
biological compounds or therapeutic agents. The methods of
loading exosomes with specific cargos of interest have been
recently reviewed (Li et al., 2018; Donoso-Quezada et al., 2020;
Mitchell et al., 2020). Exosomes have also inspired researchers
to use cell-membrane-cloaked nanoparticles, also called synthetic
exosome-mimics, as drug delivery platforms (Hu et al., 2011,
2015; Cao et al., 2016). These different applications of exosomes
can provide hope to many patients including women with
complicated pregnancies.

The relationship and importance of eicosanoids in pregnancy,
labor and parturition are well established and have been an
area of research for many decades. However, the limitations
of immunoassays in the accurate measurement of specific
eicosanoids have hampered research. The development of
sensitive and specific mass spectrometry-based method to

measure individual eicosanoids (e.g., prostaglandins and
prostamides) via the monitoring of characteristic mass fragment
pairs for each molecule at their distinct retention times has
overcome these technical limitations and for the first time allowed
accurate measurement of specific eicosanoids (Mitchell et al.,
2016). A small but growing number of clinical studies have
adopted mass spectrometric evaluations of these compounds,
which has led to important new findings in the areas of labor and
uterine infection (Maddipati et al., 2014, 2016; Peiris et al., 2020).
The identification of the building blocks and enzymes needed for
the synthesis of eicosanoids within exosomes is doubly exciting
(Subra et al., 2010; Record et al., 2014). Firstly, the evaluation
and quantitation of the cargo may provide a real-time snapshot
of the cells’ state. Secondly, exploration of the exosomes’ abilities
as vesicles of intercellular communication (i.e., to transport and
deliver messages between cells) may further our understanding of
the parturition process and provide opportunities to reconsider
the mechanisms of pregnancy and parturition.

We postulate that together, understanding and quantitating
eicosanoid biosynthesis, metabolism and actions in combination
with exosome biology will enable the discovery of diagnostic
and prognostic biomarkers for many pregnancy complications
including preterm labor.
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