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Leukocyte recruitment is one of the most important cellular responses to tissue damage.
Leukocyte extravasation is exquisitely regulated by mechanisms of selective leukocyte-
endothelium recognition through adhesion proteins in the endothelial cell surface that
recognize specific integrins in the activated leukocytes. A similar mechanism is used
by tumor cells during metastasis to extravasate and form a secondary tumor. Nitric
oxide (NO) has been classically described as an anti-inflammatory molecule that inhibits
leukocyte adhesion. However, the evidence available shows also a positive role of
NO in leukocyte adhesion. These apparent discrepancies might be explained by the
different NO concentrations reached during the inflammatory response, which are highly
modulated by the expression of different nitric oxide synthases, along the inflammatory
response and by changes in their subcellular locations.
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LEUKOCYTE ADHESION AND NITRIC OXIDE (NO)

Inflammation involves the interplay of multiple biologic components, among which endothelial
cells are key players. Endothelial cells orchestrate leukocyte transmigration to injured tissues by
up-regulating adhesion proteins on their surface to bind integrins in leukocytes (Ley et al., 2007;
Fan and Ley, 2015; Kreuger and Phillipson, 2016). Initial contact and rolling steps are initiated
by endothelial cell leukocyte adhesion molecule-1 (ELAM-1, E-selectin) and P-selectin, which are
expressed in the endothelium and bind to L-selectin, PSGL-1, CD44, CD43, and ESL-1 in the
leukocyte. During the rolling phase, the interactions between leukocytes and endothelial selectins
reduce leukocyte velocity and facilitate their adhesion to endothelium. Selectin proteins have a
high degree of association/dissociation with their leukocyte ligands, which allows contact between
the endothelial cell and leukocytes and provides enough time and proximity for other adhesion
molecules to establish strong bonds between both cells (Sperandio, 2006; Garrido-Urbani et al.,
2008; Tvaroška et al., 2020). Firm leukocyte adhesion to endothelial cells is mediated by vascular
cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) that bind
to leukocytes integrin’s VLA-4, LFA-1, and Mac-1 (Greenwood et al., 2003). Once the leukocytes
are attached to the endothelium, they flatten by contacting the endothelium at varying distances,
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probably to reduce their exposure to blood flow forces and
collisions with circulating blood cells, and subsequently they
initiate their trans-endothelial migration (Ley et al., 2007;
Leick et al., 2014).

Nitric oxide (NO) is a physiological messenger that regulates
many cellular functions, such as vasodilation, angiogenesis,
vascular permeability, neurotransmission, cell migration,
immune response, cell proliferation and apoptosis (Tuteja et al.,
2004; Nagy et al., 2007; Koriyama and Furukawa, 2018; Ehrenfeld
et al., 2019; López-Sánchez et al., 2019). NO is produced in the
organism by three different nitric oxide synthases: endothelial
(eNOS, mainly expressed in endothelium), inducible (iNOS,
expressed primarily on the immune system and endothelial
cells) and neuronal (nNOS, expressed in the nervous system)
(Förstermann and Sessa, 2012). NO produced by these isoforms
activates two main signaling pathways: (1) soluble guanylate
cyclase – protein kinase G (GC1-PKG) and (2) S-nitrosylation,
which is the modification induced by NO in free-thiol cysteines
in proteins to form S-nitrosothiols. S-nitrosylation regulates
interactions between proteins, phosphorylation and intracellular
trafficking (Stamler et al., 1992; Huang et al., 2005; Marín et al.,
2012; Guequén et al., 2016).

The first studies addressing the role of NO in leukocyte
adhesion used different inhibitors of NO production like L-NG-
monomethyl arginine (L-NMMA) or N omega-Nitro-L-arginine
methyl ester (L-NAME) to observe the effect on the basal
leukocyte adhesion (in the absence of inflammatory stimulation).
These experiments showed an increased basal leukocyte adhesion
in vivo in different animal preparations and endothelial cell
cultures in vitro (Kubes et al., 1991; Arndt et al., 1993; Ma
et al., 1993; Tsao et al., 1994). The opposite approach, to elevate
the NO concentration by the use of NO donors, prevented
leukocyte adhesion and infiltration depending on NO level
(Johnson et al., 1990; Kubes et al., 1991; Kubes and Granger,
1992). Studies using intravital microscopy in knockout (KO)
animals for eNOS and nNOS corroborated these results showing
increased leukocyte adhesion relative to control animals in the
mesentery (Lefer et al., 1999). These observations and those from
other laboratories led to the well-established concept that, in
healthy endothelium, there is a physiological constitutive level
of NO produced by eNOS that confers anti-adhesive and anti-
inflammatory properties to the endothelial cell membrane and
plays a critical role in preventing leukocyte adhesion (Kubes
et al., 1991; Tsao et al., 1994). On the other hand, when the
endothelium is stimulated with pro-inflammatory agonist, the
effects of NO have not been completely consistent. There is a
vast body of evidence showing an inhibitory effect of NO on
stimulated leukocyte adhesion (De Caterina et al., 1995; Liu
et al., 1998; Baatz and Pleyer, 2001; Lelamali et al., 2001; Lo
et al., 2001; Jiang et al., 2005; Shelton et al., 2008); while other
reports demonstrate either no effect of inhibition of NO on
leukocyte adhesion (Hickey et al., 2001; Shelton et al., 2008) or
promotion – mediated by NO – of leukocyte adhesion in response
to challenge with cytokines (Bessa et al., 2002; Joussen et al.,
2002). These discrepancies may be due to several differences
in experimental approaches including timing and duration of
the application of agonist/antagonist. We review here how NO

regulates leukocyte adhesion by acting on different mechanisms
that regulate surface expression of adhesion proteins on the
endothelium such as: (a) through transcriptional regulation;
(b) through non-transcriptional regulation, including traffic of
vesicles to plasma membrane and clustering of adhesion proteins
normally expressed in the endothelium. NO can also regulates
integrin and protein expression and/or affinity on leukocytes
(Kubes et al., 1991; Banick et al., 1997; Mitchell et al., 1998; Thom
et al., 2013; Bhopale et al., 2015); however, given the enormous big
of data on the topic, this review will focus only in the NO effects
on the adhesion protein expression on the endothelium.

Transcriptional Regulation of Adhesion
Proteins and NO
The effects of NO on leukocyte adhesion are related to
transcriptional regulation of adhesion proteins expression on
the endothelium (De Caterina et al., 1995; Khan et al., 1996;
Liu et al., 1998; Lefer et al., 1999; Waldow et al., 2006;
Buckanovich et al., 2008; Carreau et al., 2011; Stojak et al.,
2018). Transcriptional regulation adhesion proteins, as well as
numerous proinflammatory genes, is under the control of NF-
κB (Springer, 1990; Collins et al., 1995; Ledebur and Parks, 1995;
Pierce et al., 1997; Qian and Fulton, 2012), a dimeric protein
formed by any of the members of the Rel family (p50, p65 or Rel-
A, p52, c-Rel, and RelB) (Thanos and Maniatis, 1995; Marshall
and Stamler, 2001). The classic form of NF-κB is the p50–p65
heterodimer that is kept inactive in the cytosol via interaction
with the inhibitory protein IKBα (Thanos and Maniatis, 1995;
Marshall and Stamler, 2001; Hayden and Ghosh, 2008; Sha and
Marshall, 2012). Activation of cytokine receptors promotes the
phosphorylation, ubiquitination, and proteasomal degradation of
IKBα mediated by the IKKβ subunit of the IKK complex, formed
by IKKα, β, and γ, which results in translocation of the p50–
p65 heterodimer to the nucleus to bind target DNA sites, and
activate gene transcription (Marshall and Stamler, 2001; Hayden
and Ghosh, 2008; Sha and Marshall, 2012; Figure 1). Activation
of the NF-κB pathway leads to de novo synthesis of high levels of
messenger RNA for E-selectin, P-selectin, ICAM-1, and VCAM-
1, which induces an increase in protein expression of these
proteins in activated endothelial cells, and enhances the adhesion
of leukocytes on the cell surface (Whelan et al., 1991; Iademarco
et al., 1992; Van De Stolpe et al., 1994; Pan and McEver, 1995; Xia
et al., 2001; Mussbacher et al., 2019).

Early investigations demonstrated that inhibition of NO
production activated NF-κB and protein adhesion expression,
whereas NO donors had the opposite effect (De Caterina et al.,
1995; Khan et al., 1995). These effects were not mediated
by the GC1-PKG pathway and appeared to depend strictly
on NO concentration, suggesting that S-nitrosylation might
be the operating mechanism (De Caterina et al., 1995; Lee
et al., 2002; Waldow et al., 2006). Later, it was demonstrated
that there is a basal S-nitrosylation of IKKβ that prevents
IKBα phosphorylation and degradation, keeping NF-κB inactive
(Figure 2A; Reynaert et al., 2004). Basal S-nitrosylation of p65
has also been reported in respiratory epithelium (A549 cells) and
lung tissue (Kelleher et al., 2007, 2011). Inhibition of NOS activity
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FIGURE 1 | Mechanism of NF-kB activation. Proinflammatory stimulation leads to the phosphorylation of IKKβ leading to phosphorylation of IKBα in NF-κB. This
phosphorylation result in the ubiquitination and degradation of IκB-α in the proteasome. At this moment, the dimer p50–p65 enters into the nucleus, binds to the
targets gene promoter (κB sites), and activates transcription.

reduced nitrosylation of IKKβ, leading to NF-κB activation in
Jurkat T cells (Reynaert et al., 2004). Even though the role of
basal S-nitrosylation has not been investigated, studies using
cytokine-stimulated cells indicate that S-nitrosylation of p65
blocks the binding of NF-κB to DNA (Kelleher et al., 2007,
2011). Therefore, it is possible that basal S-nitrosylation of p65
contributes to keeping NF-κB inactivated. We postulate that
the dynamics of S-nitrosylation cellular levels may be key to
activation/inactivation of NF-κB.

After short inflammatory stimulation (10 min–2 h) with TNF-
α or LPS, the S-nitrosylation levels of IKKβ and p65 decrease
and NF-κB is activated (Reynaert et al., 2004; Kelleher et al.,
2011, 2014; Figure 2B). At long times of exposure (6h, LPS), p65
is S-nitrosylated again with the consequent NF-κB inactivation
(Kelleher et al., 2007, 2011). Studies using iNOS KO mice revealed
that the high levels of NO-induced by this enzyme mediated this
effect since genetic deletion of iNOS in mice blocks the recovery
of S-nitrosylation of p65, and NF-κB activation is maintained
along with prolonged inflammation in a model of LPS-induced
lung inflammation (Kelleher et al., 2011). In addition, in a
colitis model in iNOS KO mice, inflammation and elevated
MPO activities persisted at 2 weeks compared to control mice,
which improved colitis and decreased MPO activity (Vallance
et al., 2004). iNOS also mediates S-nitrosylation of p50, which
contributes to inhibiting NF-κB DNA binding (Matthews et al.,
1996; DelaTorre et al., 1998; Marshall and Stamler, 2001). Even

though it has not been reported, the high levels of NO-induced
by iNOS might also re-nitrosylate IKKβ contributing to NF-κB
inactivation (Figure 2C).

Although the evidence described above strongly points to
a physiological role for iNOS in the inactivation of NF-κB,
other report demonstrated that higher concentrations of NO –
beyond those reached by iNOS expression – are required for
NF-κB inactivation by S-nitrosylation of IKKβ and p65 (Qian
and Fulton, 2012). It is important, however, to note that the
report by Qian and Fulton used endothelial cells transfected with
iNOS and not physiological iNOS induction by stimulation with
pro-inflammatory cytokines.

In strong contrast to the results described above, other
investigations demonstrated that inhibition of NO production
did not increase adhesion protein expression induced by
cytokines or leukocyte adhesion to endothelial monolayers
(De Caterina et al., 1995). Furthermore, some reports have
demonstrated that NO promotes protein adhesion expression.
In diabetic rats, a high retinal leukocyte adhesion was observed,
which correlated with a rise in NO and ICAM-1 levels.
Pharmacological inhibition of NOS with L-NAME also reduces
leukocyte adhesion (Joussen et al., 2002). In human vascular
aortic smooth muscle cells (HASMCs), LPS treatment by 24 h
increased ICAM-1 expression. Inhibition of NOS with L-NAME,
prior to LPS administration, inhibited this effect, demonstrating
that NO is required for enhancing ICAM-1 expression under
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FIGURE 2 | NF-κB is regulated by S-nitrosylation. (A) Basal conditions: basal S-nitrosylation of IKKβ and p65 blocks IKBα phosphorylation and degradation
proteasomal and the entry of the dimer p50–p65 to the nucleus, keeping NF-κB inactivated. (B) Short inflammatory stimulation: under stimulation, there is a
decrease in the S-nitrosylation levels of IKKβ and p65 favoring IKBα phosphorylation and proteasomal degradation and the consequent entry of the dimer p50–p65
to the nucleus to increase adhesion protein transcription among others. (C) Long stimulation: at long periods of exposure to proinflammatory agents, high levels of
NO-produced by iNOS induces S-nitrosylation of p65 and p50, which inhibit the binding of the dimer to the DNA. IKKβ might also be S-nitrosylated contributing to
inactivate NF-κB.

this experimental conditions (Heo et al., 2008). In addition,
the stimulation of rat microvascular endothelial cells with
VEGF, that activates eNOS, increased ICAM-1 expression in
30 min, suggesting that eNOS regulates ICAM-1 transcription
(Radisavljevic et al., 2000). The fact that eNOS is involved
suggests that low NO concentrations but higher than basal
might stimulate adhesion protein transcription. In fact, in
HUVECs cells, NO donors increased ICAM-1, VCAM-1, and
ELAM-1 expression. This effect was dependent on the NO
donor concentrations used, with low concentrations (10 and
50 µM) inducing adhesion protein expression, whereas higher
levels (250 and 500 µM) did not cause protein adhesion
expression (Sektioglu et al., 2016). Microarray analysis of
HUVEC treated with NO donors at low concentration or TNF-
α demonstrated that 473 genes were upregulated, including
VCAM-1 and E-selectin. The effect of NO donor on protein
adhesion expression was dependent on NF-κB activation, because
the effect was blocked by the NF-κB inhibitor BAY11-7082.
These results coincide with earlier studies demonstrating that
low NO concentration improved NF-κB activity induced by

TNF-α, whereas higher concentrations inhibited NF-κB activity
(Umansky et al., 1998). These low NO doses (but still higher
than basal), might be achieved by eNOS activation, as many
pro-inflammatory agents induce rapid eNOS activation (Marín
et al., 2012; Guequén et al., 2016). The precise mechanism
by which exogenous administration of low concentrations of
NO activate NF-κB dependent protein adhesion expression in
endothelial cells remains to be explored. A possible explanation
could be given by the changes in eNOS localization under
inflammatory stimulation (Figure 3). In non-stimulated cells,
basal NO production generated by eNOS (located in the
Golgi and caveolae) (Feron and Balligand, 2006; Zhang et al.,
2006) maintains an anti-adhesive phenotype through basal
S-nitrosylation of IKKβ and p65 (Matsushita et al., 2003;
Feron and Balligand, 2006; Zhang et al., 2006). Under short-
time stimulated conditions, eNOS is activated and change its
localization (Sánchez et al., 2006, 2011; Marín et al., 2012), which
might reduce S-nitrosylation of IKKβ and p65 activating NF-κB.
Additionally, eNOS-induced NO might activate protein adhesion
expression by mechanisms still unknown. At extended times of
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FIGURE 3 | Changes in eNOS localization under short inflammatory stimulation can activate NF-κB. In unstimulated cells, the basal production of NO generated by
eNOS (located at the Golgi and caveolae) provides basal S nitrosylation of IKKβ and p65 to maintain an anti-adhesive phenotype (left pannel). Under short-term
proinflammatory conditions, eNOS is activated and changes in its location might decrease NO levels around IKKβ and p65, decreasing their S-nitrosylation levels
leading to NF-κB activation (right pannel).

inflammatory stimulation, the high levels of NO induced by
iNOS activation will inhibit NF-κB by enhancing S-nitrosylation
of IKKβ, p65 and additional S-nitrosylation of p50. Thus, low
concentrations of NO achieved by eNOS activation and short
exposure times to agonists increase adhesion protein expression,
whereas higher NO concentrations achieved by iNOS stimulation
and longer times of stimulation will inhibit protein adhesion
expression (Umansky et al., 1998; Sektioglu et al., 2016).

Non-transcriptional Regulation of
Adhesion Proteins and NO
Many pro-inflammatory agents induce a fast leukocyte adhesion
observed within minutes of exposure to some pro-inflammatory
agents (Dillon et al., 1988; Sugama et al., 1992; Javaid et al.,
2003) that cannot be explained by transcriptional regulation.
This fast adhesion may be explained by mechanisms such as
vesicle traffic and clustering (Javaid et al., 2003; Ley et al., 2007;
Lowenstein, 2007; Barreiro et al., 2008; Setiadi and McEver, 2008;
Liu et al., 2011).

Vesicle Traffic
Adhesion proteins are stored in vesicles in endothelial cells that
are transported to the plasma membrane after inflammatory
stimulation. ELAM-1, for instance, is stored in intracellular
secretory granules of endothelial cells and is rapidly expressed
on the cell surface following degranulation, within minutes
of exposure to activating agents such as thrombin, histamine,
or phorbol esters (Geng et al., 1990; Larsen et al., 1992).
The same is true for P-selectin, which is usually stored in

Weibel-Palade bodies (WPB) (Weibel and Palade, 1964; Metcalf
et al., 2008). In the case of VCAM-1, evidence indicates that
after TNF-α treatment of endothelial cells, vesicular transport
from an intracellular pool to the cell surface is increased
(MacKesy and Goalstone, 2011).

Clustering
In basal conditions without inflammatory stimulation, low levels
of adhesion proteins are present in an inactive state in the
endothelial plasma membrane (Barreiro et al., 2002, 2008;
Javaid et al., 2003). The lateral association of adhesion proteins,
a process known as clustering, also regulates their adhesive
capacity (Javaid et al., 2003; Barreiro et al., 2008; Setiadi and
McEver, 2008; Liu et al., 2011). Through clustering, cell surface
expression of adhesion proteins does not change; instead, they
are regrouped and interact with cytoskeletal proteins to increase
their avidity for leukocyte integrins (Javaid et al., 2003; Liu
et al., 2011). This affinity change process occurs at short times
of stimulation (minutes) and allows a fast response under
inflammatory stimulation. In the case of ELAM-1, clustering
is promoted by association to lipid rafts and caveolae at the
plasma membrane (Tilghman and Hoover, 2002a,b; Setiadi and
McEver, 2008). P-selectin clustering is mediated by interactions
of the cytoplasmic domain of P-selectin with clathrin-coated
pits (Setiadi et al., 1998). Clustering of ICAM-1 and VCAM-1
is promoted by association with tetraspanins, which are small
transmembrane proteins able to associate laterally with different
proteins at the plasma membrane (Barreiro et al., 2008). ICAM-1
clustering is also regulated by protein kinase C zeta (PKCz), that
under stimulation with TNF-α, is activated and translocated to
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the plasma membrane to phosphorylate ICAM-1 either directly
or through Src activation (Javaid et al., 2003; Liu et al., 2011).

NO Role in Vesicle Transport and Clustering
Many reports have demonstrated a NO role in anterograde
and retrograde transport (Iwakiri et al., 2006; Lowenstein, 2007;
Lee et al., 2009; Marín et al., 2012). N-ethylmaleimide sensible
factor (NSF) is an ATPase that modulates vesicular transport
(Söllner et al., 1993; Morgan and Burgoyne, 2004) and studies
in vitro and in vivo have shown that there is a basal NSF-S-
nitrosylation mediated by eNOS that inhibits the translocation of
WPB containing P-selectin to the plasma membrane contributing
to the anti-adhesive properties of basal NO production in the
endothelium (Matsushita et al., 2003; Lowenstein, 2007). Basal
eNOS activity also contributes to the anti-adhesive properties
of the endothelium by inhibiting ICAM-1 clustering as it

has been demonstrated that eNOS inhibition led to ICAM-
1 clustering mediated by Src phosphorylation in endothelial
cells in vitro and in vivo (Xu et al., 2013; Gao et al., 2018).
These observations can account for the fast leukocyte adhesion
observed when basal NO production is inhibited in the absence
of inflammatory stimulation (Kubes et al., 1991; Ma et al., 1993;
Gao et al., 2018) but do not explain the fast leukocyte adhesion
observed under inflammatory stimulation (Dillon et al., 1988;
Sugama et al., 1992; Javaid et al., 2003). Changes in eNOS
localization might again explain this effect. In non-stimulated
cells, basal NO production generated by eNOS located to the
Golgi and caveolae (Feron and Balligand, 2006; Zhang et al.,
2006) will maintain an anti-adhesive phenotype in part by basal
S-nitrosylation of NSF and also by inhibiting ICAM-1 clustering
(Feron and Balligand, 2006; Zhang et al., 2006; Lowenstein, 2007;
Mukhopadhyay et al., 2008; Gao et al., 2018; Figure 4A). In

FIGURE 4 | Proposed mechanism of NO role in the fast leukocyte adhesion. (A) In unstimulated cells, the basal NO production generated by eNOS located to the
Golgi and caveolae maintain an anti-adhesive state in the endothelium by basal NSF-S-nitrosylation that inhibits the translocation of vesicles containing adhesion
molecules to the plasma membrane and by blocking the clustering of adhesion molecules like ICAM-1. (B) After short inflammatory stimulation, eNOS redistribution,
might put NO away from NSF, diminishing NSF-S-nitrosylation to stimulate the transport of vesicles to the plasma membrane. At the same time, the change in eNOS
localization might also lower NO levels close to ICAM-1 to promote ICAM-1 clustering. (C) At the same time, the movement of eNOS to different subcellular locations
will increase NO levels at those locations, which may active the SNAREs complexes (VAMP, SNAP25, and syntaxin) stimulating traffic of vesicles; NO can also induce
S-nitrosylation of Src and PKCz to promote ICAM-1 phosphorylation and clustering.
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fact, only wild type eNOS (located at Golgi and caveolae) induce
NSF-S-nitrosylation and inhibit vesicular transport but not
eNOS located at the nucleus (Iwakiri et al., 2006). Furthermore
the treatment of endothelial cells with monocrotaline pyrrole
(MCPT), a drug that blocks the association of NSF with eNOS at
Golgi and prevents eNOS localization in caveolae inhibits NSF-
S-nitrosylation (Mukhopadhyay et al., 2008; Lee et al., 2009).
After short inflammatory stimulation, eNOS redistribution from
caveolae and Golgi to cytosol (Sánchez et al., 2006, 2011;
Marín et al., 2012), might reduce S-nitrosylation of NSF, to
stimulate the release of WPB bodies (Figure 4B). At the same
time, the change in eNOS localization might also diminish NO
levels close to ICAM-1 in the plasma membrane to stimulate
ICAM-1 clustering. On the other hand, the movement of eNOS
to different subcellular locations will increase NO levels at
those locations, which may actively stimulate traffic of vesicles,
stimulating for instance the formation of complexes that promote
transport to the cell surface such as VAMP/SNAP-25/syntaxin-
1a and/or VAMP-3/syntaxin-2 that have been demonstrated to
be stimulated by NO and promote synaptic vesicle exocytosis
and release of secretory granules in neurons and platelets,
respectively (Meffert et al., 1996; Randriamboavonjy et al., 2004;
Figure 4C). Interestingly, NSF-S-nitrosylation has also been
reported to stimulate protein transport to the cell surface of
AMPA receptors and VSVG protein in neurons and epithelial
cells, respectively (Huang et al., 2005; Iwakiri et al., 2006) unlike
its inhibitory role in endothelial cells. Considering that NSF
has 8 cysteines that can be S-nitrosylated (Matsushita et al.,
2003), it is possible that different degrees of S-nitrosylation may
also play a role in transport to the plasma membrane. Basal
S-nitrosylation of NSF will inhibit transport, whereas decrease or
elevation in S-nitrosylation might stimulate traffic. Besides traffic,
an elevation in NO, might also stimulate ICAM-1 clustering
since Src that promote ICAM-1 phosphorylation is activated
by S-nitrosylation in another cellular context (Rahman et al.,
2010). PKCζ, that also participate in ICAM-1 clustering (Javaid
et al., 2003; Matsushita et al., 2003; Liu et al., 2011) might be
also activated by NO and S-nitrosylation since N-ethylmaleimide
that blocks the thiol groups decreases the activity of PKCζ

(Kikkawa et al., 1987) and a PKCζ synthetic peptide containing
the activation site is S-nitrosylated in vitro (Balendran et al., 2000;
Wang et al., 2008).

Thus, the combined effects of releasing the inhibition induced
by basal NO on vesicular transport and clustering, plus the
active stimulation by NO of pathways that increase vesicular
transport and clustering, will induce leukocyte adhesion at short
times of simulation.

NO AND TUMOR CELL ADHESION

There is considerable evidence demonstrating a dual role of
NO and S-nitrosylation in cancer risk and metastasis (Burke
et al., 2017; Rizza and Filomeni, 2018; Ehrenfeld et al., 2019;
Hays and Bonavida, 2019; Holotiuk et al., 2019; Somasundaram
et al., 2019). The available evidence demonstrates a positive
correlation between NO biosynthesis, tumor development and

degree of malignancy in a variety of cancers (breast, pancreatic,
liver, cervical, ovary, melanoma, nasopharyngeal, stomach, colon,
lung, oral, esophagus, glioma, and prostate cancer) (Monteiro
et al., 2015; Vanini et al., 2015; Burke et al., 2017; Thomas and
Wink, 2017; Somasundaram et al., 2019). On the other hand,
in animal studies, inhibition or genetic deletion of eNOS or
iNOS can inhibit, have no effect, or even increase primary tumor
growth and metastasis depending on the type of cancer (Wang
et al., 2001, 2003; Gratton et al., 2003; Heinecke et al., 2014;
Granados-Principal et al., 2015; McCrudden et al., 2017; Kij
et al., 2018; Romagny et al., 2018; Flaherty et al., 2019). These
discrepancies probably reflect the fact that NO effects strongly
depend on its concentration, duration of exposure, location and
activity of NOS isoforms, tumor type, its microenvironment and
sensitivity to NO (Ridnour et al., 2006; López-Sánchez et al., 2019;
Somasundaram et al., 2019). In the tumoral microenvironment,
tumor cells express iNOS, eNOS, and nNOS, depending on
tumor type and stage, endothelial cells express eNOS and
iNOS whereas tumor-associated stromal fibroblasts and immune
cells express iNOS (Fukumura et al., 2006; Monteiro et al.,
2015; López-Sánchez et al., 2019). Therefore, the results can be
conflicting depending on the experimental set-up and the cell
type being investigated.

Despite remarkable developments in cancer therapeutics,
metastasis is still closely associated with high mortality rates
in cancer patients. Metastasis occurs when tumor cells separate
from the primary tumor, enter the bloodstream (or lymph)
and travel to remote organs to form a secondary tumor. One
of the final events in metastasis is the extravasation of cancer
cells across the endothelial barrier (Talmadge, 2010; Sökeland
and Schumacher, 2019). Cytokines and other factors produced
by the primary tumor, circulating tumor cells and cells in
the metastatic microenvironment promote binding between
tumor cells and endothelial cells (Wolf et al., 2012; Reymond
et al., 2013; Strilic and Offermanns, 2017). Initial insights into
tumor cell extravasation were derived from studies of leukocyte
extravasation, resulting in the widely accepted concept that
cancer cell and leukocyte extravasation – although different –
share many similarities (Strell and Entschladen, 2008; McDowell
and Quail, 2019; Sökeland and Schumacher, 2019). Increased
cell surface expression of adhesion proteins ELAM-1, ICAM-
1, VCAM-1, and P-selectin in the endothelium mediate direct
adhesion to CD44, mucin-1 and CD24 in breast tumor cells
(Aigner et al., 1998; Rahn et al., 2005; Geng et al., 2012; Shirure
et al., 2015). Alternatively, tumor cells can bind to macrophages,
neutrophils or platelets in the circulation and these cells mediate
the adhesion of tumor cells to the endothelium acting as a
bridge among tumor and endothelial cells (Evani et al., 2013;
Reymond et al., 2013).

The evidence strongly suggests an stimulatory role of NO
in tumor cell adhesion: NOS inhibitors blocked small cell
lung carcinoma adhesion to the endothelium treated with pro-
inflammatory cytokines (Vidal et al., 1992). NO enhanced
fibrosarcoma cell adhesion and invasion through HUVEC
monolayers, increasing ICAM-1 and ELAM-1 expression (Yudoh
et al., 1997). In vivo, NO caused squamous carcinoma cell binding
to the hepatic microcirculation (Scher, 2007). Breast circulating

Frontiers in Physiology | www.frontiersin.org 7 November 2020 | Volume 11 | Article 595526

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-595526 November 9, 2020 Time: 14:49 # 8

Aguilar et al. NO and Adhesion to Endothelium

tumor cells MDA-MB-231 adhered to endothelial sites with high
NO concentration (Zhang et al., 2016). Rhus coriaria, a medicinal
plant that in part inhibits NO pathway decreases the adhesion
and transmigration of MDA-MB-231 cells to endothelial cells
activated with TNF-α (El Hasasna et al., 2016). The mechanisms
that increase tumor cell adhesion to endothelium have not been
studied in detail but are probably the same already described for
leukocyte adhesion involving NF-κB transcriptional regulation,
traffic and clustering of adhesion proteins. Additionally, another
transcription factor, HIF-1α expressed in endothelial cells, is
involved in extravasation of breast cancer cells through the
expression of L1CAM adhesion protein that binds to tumor
cells, and HIF-1α has been demonstrated to be activated by
S-nitrosylation in others cellular contexts (Li et al., 2007; Zhang
et al., 2012; Ehrenfeld et al., 2019).

As in leukocyte adhesion to endothelium, NO also shows
a negative role in tumor cell adhesion: exogenously applied
and endogenously generated NO inhibit melanoma cells
adhesion to endothelium activated with lipopolysaccharide
(Kong et al., 1996). The NO donor, CAP-NO, inhibited the

basal and cytokine-stimulated adhesion of human colorectal
cancer cells HT-29 to endothelial cells by inhibiting the
expression of adhesion proteins ELAM-1, ICAM-1, and
particularly VCAM-1 (Lu et al., 2014). NO donors inhibits
the adhesion of MDA-MB231 cells to HUVEC stimulated
by IL-1β and the transmigration of breast cancer cells across
the lung microvascular endothelium (Kang et al., 2018;
Stojak et al., 2018). This effect was mediated by a decrease
in ICAM-1 expression. Similar to leukocyte adhesion, the
differential effect of NO on tumor cell adhesion might
depend on NO concentrations with low concentrations of
NO increasing adhesion protein expression and adhesion of
tumor cells, whereas higher NO concentrations, inhibiting
protein adhesion expression and tumor cell adhesion
(Sektioglu et al., 2016).

The effects of NO on adhesion protein expression not
only affect tumor cell adhesion at the metastatic site but also
infiltration of immune cells in the primary tumor, where it
has been demonstrated that NO, produced by iNOS in M1
macrophages, mediates VCAM-1 expression in the endothelium

FIGURE 5 | Role of NO in leukocyte and tumor cell adhesion. (A) Basal NO production produced by eNOS located to the Golgi and caveolae maintaining an
anti-adhesive phenotype by inhibiting NF-κB activation, traffic of vesicles and clustering of adhesion proteins. (B) At short times of stimulation movement of eNOS
away from Golgi and caveolae release the inhibition caused by NO to stimulate NF-κB activation and transcription of adhesion proteins, traffic of vesicles that contain
adhesion proteins and clustering. At the same time, the rise in NO concentration in other subcellular locations may induce active mechanisms of adhesion such as
formation of SNAREs complexes that stimulate vesicle traffic to the plasma membrane or to stimulate S-nitrosylation of targets such as Src and PKCz that induce
clustering of adhesion proteins stimulating leukocyte and tumor cell adhesion. (C) At long times of stimulation, the high NO concentration induced by iNOS activation
induce S-nitrosylation of NF-κB and NSF inhibiting the transcription of adhesion proteins and the vesicle transport of adhesion proteins to the plasma membrane.
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leading to an improved infiltration of T-lymphocytes specific for
the tumor, contributing to decrease tumor growth in a mouse
melanoma model (Sektioglu et al., 2016).

After binding to tumor cells, adhesion proteins through
their cytosolic tails interact with cytoskeletal proteins
inducing changes in the shape of endothelial cells leading to
destabilization of the endothelial barrier that facilitates tumor
cell transmigration (Müller et al., 2001; Tichet et al., 2015).
We have demonstrated that treatment of endothelial cells with
conditioned medium from breast cancer cells and cytokines that
are elevated in breast cancer patients induces S-nitrosylation of
endothelial barrier proteins (p120, VE-cadherin and β-catenin)
promoting phosphorylation and perturbation of the interactions
among these proteins that leads to their internalization,
which destabilizes the endothelial barrier (Marín et al., 2012;
Guequén et al., 2016; Zamorano et al., 2019). Thus, better
knowledge and understanding of NO biology in cancer is of
paramount importance because it regulates not only expression
of adhesion proteins that promote metastasis, but also controls
the endothelial barrier to promote transmigration of tumor
cells and metastasis.

CONCLUSION

The role of NO in leukocyte adhesion to endothelium has
been controversial. Whether NO enhances or inhibits leukocyte
adhesion depends on local NO concentration. It is reasonable
to state that, in non-stimulated cells, NO concentration
maintains an anti-adhesive phenotype at the endothelial cell
membrane – inasmuch as inhibition of NOS causes increased
leukocyte adhesion. This NO produced by eNOS prevents
transport of vesicles to the cell surface, clustering of adhesion

proteins and transcription of adhesion proteins by keeping
NF-κB in an inactive state. However, an increase in eNOS-
derived NO concentration to levels slightly above control
is compatible with leukocyte adhesion through increasing
cell surface transport, clustering of adhesion proteins and
transcription of adhesion proteins via NF-κB activation. In
addition, high NO concentration – most likely achieved through
stimulation of iNOS – inhibits leukocyte adhesion due to
S-nitrosylation of p50 and p65 in NF-κB and presumably
IKKβ, which blocks entry of NF-κB to the nucleus leading to
inhibition of adhesion protein synthesis. Similar to leukocyte-
endothelium adhesion, NO also regulates tumor cell adhesion
to endothelium probably through the stimulation of the same
mechanisms described above as well as opening of the endothelial
barrier, all of which enhance tumor cell extravasation and
metastasis (Figure 5).
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