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The emerging novel coronavirus disease (COVID-19), which is caused by the SARS-
CoV-2 presents with high infectivity, morbidity and mortality. It presenting a need for
immediate understanding of its pathogenicity. Inflammation and coagulation systems are
over-activated in COVID-19. SARS-CoV-2 damages endothelial cell and pneumocyte,
resulting in hemostatic disorder and ARDS. An influential biomarkers of poor outcome
in COVID-19 are high circulating cytokines and D-dimer level. This latter is due to hyper-
fibrinolysis and hyper-coagulation. Plasmin is a key player in fibrinolysis and is involved
in the cleavage of many viruses envelop proteins, including SARS-CoV. This function is
similar to that of TMPRSS2, which underpins the entry of viruses into the host cell. In
addition, plasmin is involved in the pathophysiology of ARDS in SARS and promotes
secretion of cytokine, such as IL-6 and TNF, from activated macrophages. Here, we
suggest an out-of-the-box treatment for alleviating fibrinolysis and the ARDS of COVID-
19 patients. This proposed treatment is concomitant administration of an anti-fibrinolytic
drug and the anticoagulant.
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INTRODUCTION

The emerging novel coronavirus disease (COVID-19), which is caused by the SARS-CoV-2,
presents with high infectivity, morbidity, and mortality. The pressing need for understanding the
virus’ pathogenicity and its interaction with the body’s biologic defense systems are required (Li
et al., 2020). The inflammatory response and the coagulation system frequently join forces to build
an effective defense against an assaulting pathogen (Arneth, 2019). Interactions between these two
systems offer potential opportunities for novel therapeutic modalities. Unusually high circulating
D-dimer (DDI) levels are a main predictor of poor outcome, and indicate that the coagulation
and fibrinolytic systems are overactive in COVID-19 (Tang et al., 2020b; Zhou et al., 2020). This
review highlights the relationship between virus infectivity and the fibrinolytic system, and suggests
a potential new therapeutic modality to mitigate the virus’ infectivity in COVID-19.

Etiologic-Pathogenicity of COVID-19
SARS-CoV-2 is a RNA beta-coronavirus of zoonotic origin, and is closely related to the SARS-CoV
and MERS-CoV, according to whole genome sequencing (Shirato et al., 2020; Zhou et al., 2020).
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The virus is highly infective and respiratory droplets are the main
route of its transmission between humans (Ong et al., 2020).

The basic pathogenesis of COVID-19 shares common
characteristics with that of SARS and MERS. From a clinical
perspective, the airways and lungs are the most affected organs
(Pan et al., 2020). Autopsies of COVID-19 patients reveal that
the vascular bed is also severely affected (Fox et al., 2020). This
specific tropism of SARS-CoV-2 for epithelial cells of the lungs
and vascular systems could explain its infectivity.

The spike protein on the surface of the glycoprotein
envelope of SARS-CoV-2 comprises two domains: a receptor-
binding domain (S1), which binds with high affinity to the
angiotensin-converting enzyme 2 (ACE2) receptor on the
membranes of human pneumocytes and vascular endothelial
cells, (Hamming et al., 2004; Whittaker and Millet, 2020; Zhang
et al., 2020) and an S2 domain for anchoring the virus on
target host cell membrane (Coutard et al., 2020). Based on
homology to SARS-CoV, it has been reported that SARS-CoV-
2 requires a host cell protease to achieve infectivity and spread
(Hoffmann et al., 2020). After binding to the ACE2 receptor,
the S2 protein is proteolytically activated by transmembrane
serine protease 2 (TMPRSS2) in order to enter the host cell
(Matsuyama et al., 2020).

COVID-19 presents with a wide spectrum of clinical severity,
which ranges from a mild pneumonia to a severe disease that
could result in acute respiratory distress syndrome disease-
like (ARDS) (Guan et al., 2020; Wu and McGoogan, 2020).
The ARDS-like feature in COVID-19 is notably different
from that seen in septic patients (Yang et al., 2020). The
main clinical laboratory findings associated with a poor
outcome are lymphopenia, abnormal liver function test, raised
serum levels of ferritin and C-reactive protein, and DDI
(Shi et al., 2020; Wu et al., 2020; Zhou et al., 2020).
High plasma DDI level is consistently advocated as a major
predictor of mortality, which suggests that abnormal coagulation
plays a key role the pathogenesis of COVID-19 (Chen
et al., 2020; Grasselli et al., 2020; Tang et al., 2020a,b;
Wang D. et al., 2020).

COAGULATION AND FIBRINOLYSIS:
(SEE FIGURE 1)

The extrinsic pathway is triggered by tissue injury, which
increases endothelial expression of activated tissue factor (aTF),
which in turn activates FVII and the subsequent activation
of FX, and formation of the aTF-FVIIa-FXa complex. This
complex and the generated thrombin possess the ability to induce
intracellular pro-inflammatory signaling via protease-activated
receptor 1 and 2 (PAR 1 and 2) (Montagnana et al., 2017).
On the other hand, the protein C complex, which comprises
thrombin-thrombomodulin and activated protein C, deactivates
FVIIIa and FVa (acceleration factors), and results in deceleration
of the coagulation process (Vatsyayan et al., 2014; Yau et al.,
2015). This anti-coagulation pathway (protein C complex)
requires an intact vascular endothelium, which expresses the
endothelial cell protein C receptor (EPCR) (Palta et al., 2014;

Swieringa et al., 2018). A damaged endothelium frees EPCR
(soluble EPCR), which avidly binds to the free activated protein
C complex and loss of its anticoagulant moiety, promotes
hypercoagulability (Ducros et al., 2012). In addition, the EPCR-
Protein C complex exerts a cytoprotective effect under normal
conditions (Zelaya et al., 2018). This complex activates PAR1
signaling to generate anti-inflammatory and anti-apoptotic
effects (Mosnier et al., 2007; Mohan Rao et al., 2014).

The activated fibrinolytic system on endothelial cells is
crucial for dissolving the fibrin clot and facilitating tissue
repair. Plasmin, a serine protease, is the key-player in this
system and is responsible for degrading fibrin (Olson, 2015;
Iba and Levy, 2018).

COVID-19 AND
COAGULATION–FIBRINOLYSIS
DYSFUNCTION

Reports on patients with COVID-19 emphasize the presence of
increased thrombosis and fibrinolysis and less bleeding diathesis
(Huang et al., 2020; Tang et al., 2020b). An atypical disseminated
intravascular coagulation (DIC) is also seen in COVID-19 (Klok
et al., 2020) as thrombocytopenia, hypofibrinogemia, hemolytic
anemia, and bleeding are under-represented (Fox et al., 2020;
Han et al., 2020; Tang et al., 2020b). Of all the features, the most
prominent prognostic factor in patients with COVID-19 is the
high plasma DDI levels (Iba et al., 2017; Tang et al., 2020b; Zhou
et al., 2020).

Recent clinical observations provide evidence that COVID-19
patients are at high VTE and mortality risks, and anticoagulant
therapy might improve their prognosis (Paranjpe et al., 2020;
Song et al., 2020; Tang et al., 2020a; Wu et al., 2020;
Yin et al., 2020). General agreement exists on the need for
thromboprophylaxis in majority of COVID-19 patients, and
some suggest that this treatment should be continued after
hospital discharge (Kollias et al., 2020).

Coagulation abnormalities include a prolonged prothrombin
time, low antithrombin activity, and increased fibrinogen and
DDI levels. However, the mechanisms of abnormal coagulation
and fibrinolysis in COVID-19 patients are unknown (Han et al.,
2020; Tang et al., 2020b).

The finding of a very high plasma DDI level is a hallmark for
hyper-fibrinolysis in COVID-19. The strong association between
high plasma DDI levels and the poor outcome raises several
thoughts. Anticoagulation therapy barely reduces mortality,
except in a small subgroup of patients, whose plasma DDI
levels were six times greater than normal levels (Tang et al.,
2020b). Alteplase is a fibrinolytic agent and when administered
to patients with COVID-19-related ARDS, all died despite
improvements in their oxygenation indices (Wang J. et al.,
2020). This treatment was based on the results of animal
studies which found that fibrinolytic drugs might improve lung
function and alleviate inflammation in ARDS-like animal models
(Hardaway et al., 1990; Liu et al., 2018). The present evidence
does not support the use of fibrinolytic drugs in COVID-19
patients with ARDS. We can deduce that hyper-fibrinolysis
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FIGURE 1 | The figure displays the coagulation and fibrinolysis processes. Traditionally, the extrinsic pathway of the main coagulation cascade depends on the
release of tissue factor (TF). Injured endothelial cells (EC) by any cause results in increased expression of TF in the cell membrane. This increased expression
activates FVII, which then results in TF-FVIIa binding and activating FX. FX is also activated via the intrinsic pathway (collagen path). TF-FVII-FXa is the coagulation
initiation complex which binds to EC and stimulates the generation of thrombin from prothrombin. Thrombin triggers many processes, which include fibrin
generation, FXIII activation, and activation of protein C. FXIIIa polymerizes fibrin to form the final stable clot. Thrombin binds to the endothelial Protein C receptor
(EPCR) and combines with thrombomodulin to activate protein C (aPC) and generate the EPCR-aPC complex. This complex has anti-coagulation activity by
blocking the procoagulant factors, FVa and FVIIIa (accelerator factors) and a cytoprotective effect via the protease-activated receptor 1 (PAR1). Fibrinolysis (clot
solubilization) is triggered in the presence of fibrin. The conversion of circulating zymogen plasminogen to plasmin is done by endothelial enzymes and the tissue and
urokinase plasminogen activators (tPA and uPA, respectively). Plasmin, a key player in fibrinolysis, is a serine protease which cleaves fibrin to generate fibrin
degradation products (FDP). Plasminogen activator-inhibitor (PAI) blocks both tPA and uPA. The main plasmin inhibitor is α2-antiplasmin, which is a potent free
plasmin (not bounded to fibrin) scavenger. In addition, TAFI (thrombin-activatable fibrinolysis inhibitor) attenuates plasmin generation.

plays a key role in the high pathogenicity and infectivity
of SARS-CoV-2.

COMPREHENSIVE ROLE OF
FIBRINOLYSIS IN COVID-19
PATHOGENICITY: (FIGURE 2)

SARS-CoV-2 binds with high avidity to the ACE2 receptor.
This enzyme exerts a protective function on endothelial cells
and pneumocytes, (Tikellis and Thomas, 2012) by virtue of
its anti-inflammatory, anti-thrombin and anti-oxidant activity
(Pai et al., 2017; Bavishi et al., 2020). A reduction in the
protective effects of ACE2, as in aging, diabetes mellitus, and

cardiovascular diseases, results in cellular damage and harmful
consequences, with increasing oxidative stress and thrombosis
(Tikellis and Thomas, 2012). Of note, administering recombinant
ACE2 to ACE-deficient mice with induced lung injury protects
them from developing an ARDS-like syndrome (Imai et al.,
2005). The high mortality in old COVID-19 patients with
comorbidities associated with endothelial dysfunction, indicates
that this protective effect of ACE2 may be essential for survival
(Patel and Verma, 2020; Sunden-Cullberg, 2020). Accordingly,
it has been suggested that COVID-19 patients could be treated
with human recombinant soluble ACE2 (Batlle et al., 2020;
Kruse, 2020). Despite evidence for increased expression of ACE2
in patients with cardiovascular disease who are treated with
ACE inhibitors (ACE-I) and angiotensin receptor blockers, the
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FIGURE 2 | This figure displays a suggested relationship between coagulation and inflammation in patients with a SARS-CoV-2-infection. Spike proteins in the
coronavirus’ envelope first bind to angiotensin-converting enzyme 2 (ACE2) receptors on the surface of epithelial cells (e.g., EC, endothelial cell). Type II
transmembrane serine protease (TMPRSS2) then cleaves the spike protein in order to facilitate viral entry. The SARS-CoV-2 virus damages EC and promotes
activation of the coagulation cascade (see Figure 1) via the TF-FVIIa (tissue factor pathway) and boosts fibrin generation (hyper-coagulation state). This
hyper-activation of the fibrinolytic system results in increased plasmin production. Plasmin binds to the EC-plasmin receptor and degrades fibrin that leads to high
plasma DDI levels. Membranous plasmin, which is a potent serine protease, could cleave the virus’ protein S hereby aiding its entry into host cells. This shared viral
cleavage function with TMPRSS2 contributes to the increased infectivity of the virus and facilitates its spread (this function has been established in many viral
infections, see text). In addition, over-production of plasmin (increased plasmin-receptor occupancy) activates the protease-activated receptor 1 and 2 (PAR 1, 2)
signaling pathways which are involved in inflammation and immune responses. The EPCR-protein C complex is probably overwhelmed by hypercoagulability, thereby
losing its cytoprotective activity. This virus-related pro-coagulation-inflammatory state also involves macrophages. This pathophysiologic paradigm explains the
increased infectivity (and replication?) of the virus and the association between high D-dimer production and the cytokine storm (mainly IL-6, IL-10, and TNF) in
COVID-19.

actual impact of these drugs on COVID-19 was reported to be
controversial (Danser et al., 2020; Mancia et al., 2020). Of note,
ACE-Is have an anti-fibrinolytic effect in humans, (Tiryaki et al.,
2010) and recent guidance recommends continuing these drugs
in patients with cardiovascular diseases.

Transmembrane serine protease 2 has pivotal role in the
infectivity of SARS-CoV-2. The cleavage of the coronavirus’ S
protein by TMPRSS2 is not exclusive for SARS-CoV-1 and 2
(Hoffmann et al., 2020; Matsuyama et al., 2020). Other viruses
enter host cells by utilizing this pathway, such as the influenza

H1N1 and herpes viruses (Hamming et al., 2004; Matsuyama
et al., 2020). Results from in vitro studies showed that TMPRSS2
inhibition does not completely block virus entry into host cells
(Tang et al., 2020c; Zhang et al., 2020). Camostat mesylate,
a potent serine protease inhibitor which efficiently inhibits
TMPRSS2, is currently under clinical investigation for reducing
the virus infectivity in COVID-19 patients (Kawase et al., 2012;
Hoffmann et al., 2020).

Although TMPRSS2 is the major enzyme which facilitates the
entry of SARS-CoV-2 into the host cell, other serine proteases
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possess this activity (Hoffmann et al., 2020; Walls et al., 2020).
The serine proteases, trypsin, elastase and furin, can cleave S
protein in the viral envelope of SARS-CoV and MERS-CoV (Ji
et al., 2020; Rabi et al., 2020; Tang et al., 2020c). Furin is a part of
the trans-Golgi network and is highly expressed on endothelial
and pneumocyte cells, and it has been recently reported that
it also cleaves SARS-CoV-2 (Braun and Sauter, 2019; Lukassen
et al., 2020; Walls et al., 2020). Furin can also cleave the S
protein of non-coronaviruses, such as the West Nile, Zika, and
respiratory syncytial (RS) viruses (Millet and Whittaker, 2015;
Coutard et al., 2020; Lukassen et al., 2020).

Plasmin, which is bound to plasmin-Receptor located on
cell membranes (Figure 2), possesses furin-like cleavage activity
(Miles et al., 1986; Kam et al., 2009; Zhao et al., 2020). Plasmin’s
cleavage activity was first described for the influenza H1N1 virus
(Goto et al., 2001; Murakami et al., 2001). However, plasmin’s
cleavage activity (furin-like) on SARS-CoV-2 requires elucidation
(Millet and Whittaker, 2015).

Therefore, cell entry of the virus depends on the specific
binding to ACE2 and cleavage by TMPRSS2, but this latter
step can be replaced by other serine proteases, such as plasmin
(Kawase et al., 2012; Hoffmann et al., 2020; Zhang et al., 2020).

Findings from autopsies of severely affected COVID-19
patients include the presence of abundance of fibrin deposition,
(Fox et al., 2020) which requires increased plasmin activity. In
addition to its cleavage activity on viruses, plasmin can activate
human macrophages promoting production of pro-inflammatory
cytokines, such as IL-6, IL-8, IL-10, and TNF (Li et al., 2007).
An increased plasma IL-6 level is a marker of the “cytokine
release syndrome” in COVID-19 and is associated with poor
outcome (Henry et al., 2020). To summarize thus far, high
plasmin activity could participate in the perpetuity of virus
infectivity and contribute to the excessive inflammatory and
immune responses in COVID-19.

Acute respiratory distress syndrome is the most challenging
clinical finding and the leading cause of death in patients
with COVID-19-associated pneumonia (Wu et al., 2020). The
pneumocytes and endothelial cells in the pulmonary alveoli share
similar protective biologic mechanisms (Tikellis and Thomas,
2012; Nova et al., 2019). Some patients with COVID-19 present
in a procoagulant state with a catastrophic microvascular injury
in their lungs (Fox et al., 2020; Magro et al., 2020). The
coronaviruses, MERS-CoV, SARS-CoV, and SARS-CoV-2, target
cells with high expression of ACE2 and TMPRSS2, such as
endothelial cells and pneumocytes (Glowacka et al., 2011). ACE2
has an important protective function in these cells. The lung
injury in SARS is reported to be dependent on the balance
between coagulation activity and the extent of fibrinolytic process
(Gralinski et al., 2013). It is also known that plasminogen-
plasmin activity is increased in ARDS (Spadaro et al., 2019).
The levels of procoagulant components, in the bronchoalveolar
lavage of patients with ARDS, such as plasmin and fibrinolytic
degradation products, are markedly higher than in those without
ARDS (Fuchs-Buder et al., 1996). A suggestion for the role of
the fibrinolytic system in the genesis of ARDS in COVID-19
patients, (Idell, 2003; Spadaro et al., 2019) is supported by a the
results of an investigation in plasminogen activator inhibitor-1

(PAI-1) deficient mice. The results indicate that the tPA and uPA
contribute to the development the lung injury in coronaviruses
infection, and PAI has a protective function in this condition
(Gralinski et al., 2013). This suggest that “partial” inhibition of
the hyper-fibrinolytic process in COVID-19 might mitigate the
development of ARDS. An activated coagulation-plasmin-fibrin
pathway in ARDS triggers a various protease secretion, such as
elastase, and strong cytokine response, which is manifested by
activated leukocytes and macrophages (Gralinski et al., 2013;
Spadaro et al., 2019). The cytokine release syndrome has not yet
been fully characterized in patients with COVID-19 (Pedersen
and Ho, 2020). However, there is evidence that the high viral load
in the lungs of COVID-19 patients is associated with an acute
inflammatory response comprising epithelial cells and activated
macrophages, which are largely responsible for the secretion
of the cytokines, such as TNF, IL-6, IL-8, IL-1β, and CXCL10
(Freeman and Swartz, 2020).

Virus-Related Coagulation-Inflammation
Interaction
Viruses affect the hemostatic system via activation/deactivation
of platelet aggregation, coagulation, and fibrinolysis (Goeijenbier
et al., 2012; Koupenova et al., 2018). There is an increasing
body of evidence which shows that a viral infection orchestrates
a collaborative process which connects coagulation with the
inflammatory response (Goeijenbier et al., 2012). Viral infection
elicits an inflammatory reaction, which in turn activates
the coagulation system (Opal, 2003). Frequently, viral-related
hemostasis elicits a procoagulant-thrombotic effect, such as that
seen in cytomegalovirus, hepatitis C and HIV infections (van
Dam-Mieras et al., 1992; Chiappetta et al., 2016). In contrast,
ebola, dengue, and other hemorrhagic viruses, which can also
cause endothelial damage, are associated with increased anti-
coagulant effects and fatal hemorrhage (Schnittler et al., 1993;
Mahanty and Bray, 2004). Viruses which damage endothelial cells
can promote the generation of the TF-VIIa-Xa-EPCR complex
(procoagulant path, Figures 1, 2), which is able to activate PAR2
and trigger an innate immune response (Zelaya et al., 2018).
During viral infection, PAR2 activation provokes the toll-like
receptor 4 (TLR 4) to modulate the inflammatory response
(Antoniak and Mackman, 2014). On the other hand, some viral
infections can increase thrombin production and activate the
EPCR-aPC complex, which in turn stimulates PAR1 signaling to
exert a cytoprotective effect (Mosnier et al., 2007; Antoniak and
Mackman, 2014).

In summary, the resultant coagulation abnormalities in viral
infections depends on the effect of the virus on the balance
between the pro- and anti-coagulant pathways. A virus which
mainly activates the procoagulant and fibrinolytic systems could
induce in a severe inflammatory response. A virus which
activate the anti-coagulant pathway i.e., could induce a mild
inflammatory response (Mosnier et al., 2007; Antoniak and
Mackman, 2014; Nieman, 2016).

For example, patients with dengue hemorrhagic fever
produce antibodies against the virus, which can activate
plasminogen and fibrinolysis and contributes to bleeding
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diathesis (Chuang et al., 2016). In contrast, SARS-CoV-2 causes
hyper-fibrinolysis without any significant bleeding (Chen et al.,
2020; Han et al., 2020).

Overview of COVID-19 Treatment
Although several therapeutic agents have been evaluated for
the treatment of COVID-19, none have yet been shown to be
efficacious (Sanders et al., 2020). The similarity in clinical features
of coronaviruses infections offers therapeutic modalities based
on SARS and MERS epidemics to clinicians. However, results
on the efficacy of reported treatments in SARS and MERS are
controversial (Stockman et al., 2006; Morra et al., 2018).

Lopinavir-ritonavir, an aspartate protease inhibitor combined
with a CYP450 inhibitor for increasing its half-life, is reported
as having no beneficial effects in COVID-19 patients (Cao et al.,
2020). Ribavirin, a nucleotide analog, which blocks the viral
RNA-dependent RNA polymerase, is also reported as having
no beneficial effect (Morra et al., 2018). Remdisivir, a potent
RNA polymerase inhibitor and whose use was compassionate,
is reported to be effective in shortening the time to recovery in
COVID-19 patients (Gordon et al., 2020; Grein et al., 2020).

The antimalarial drugs, chloroquine and hydroxychloroquine,
which inhibit lysosomal activity and autophagy, have beneficial
immunomodulatory effects (Schrezenmeier and Dorner, 2020).
Hydroxychloroquine blocks the endosomal entry of SARS-CoV-
2 into host cells and reduces cytokine production in vitro
(Sinha and Balayla, 2020). Moreover, it has been reported
that hydroxychloroquine (a) is not effective in preventing
the development of COVID-19 after a moderate to high-risk
exposure in out-patients and (b) does not affect the course of the
disease in hospitalized patients (Boulware et al., 2020; Cavalcanti
et al., 2020; Gautret et al., 2020; Geleris et al., 2020; Vanden Eynde,
2020).

The presence of high plasma IL-6 levels in COVID-19 patients
may justify the use of tocilizumab, a monoclonal IL-6 receptor
antibody, and offer a protective effect against the cytokine storm.
However, its effect on virus replication and infectivity is doubtful
(Biran et al., 2020; Buonaguro et al., 2020; Price et al., 2020).
More recently, Japanese authors suggested treating COVID-
19 patients with heparin and nafamostat mesylate, a synthetic
serine protease inhibitor, which possesses anti-trypsin and anti-
fibrinolytic effects (Asakura and Ogawa, 2020). Nafamostat is also
being investigated because of ability to block MERS-CoV entry
into host cells (Yamamoto et al., 2016).

Mechanism-Based Proposed Treatment:
(see Figure 2)
In light of the present need, it enables the use of an
unconventional treatment for COVID-19 patients. Since a
procoagulant state and hyper-fibrinolysis co-exist in COVID-19
(Tang et al., 2020b), we assume that the increased fibrinolysis
boosts the infectivity of SARS-CoV-2 via the plasmin-mediated
pathway. In addition, plasmin elicits a pro-inflammatory
response by activating macrophages (releasing IL-6, and TNF)
and increases PAR2-TLR4 signaling (Li et al., 2007; Antoniak
and Mackman, 2014). Moreover, the increased mortality in
COVID-19 is associated with conditions, which are associated

with endothelial dysfunction, low ACE2 expression, and high
circulating plasminogen levels (Tikellis and Thomas, 2012;
Derhaschnig et al., 2013).

We suggest that pharmacologic interventions whose aim is to
reduce plasmin production may decrease virus infectivity and
attenuate the associated inflammatory condition in COVID-
19 patients.

Tranexamic acid (TA) competitively inhibits the activation
of plasminogen (via binding to the kringle domain), thereby
reducing the conversion of plasminogen to plasmin, which in
turn results in lowering circulating DDI levels. TA is used to
treat individuals with bleeding diathesis and can be administered,
intravenously, orally, or locally. It can also be administered by
inhalation to control pulmonary hemorrhage. TA’s half-life is ∼2-
3 h, and is mainly eliminated in urine (McCormack, 2012). The
efficacy of the inhaled route of administration has been tested in
patients with hemoptysis. The investigators reported that inhaled
TA was effective and safe for hemoptysis resolution (Wand et al.,
2018). Similar results were obtained in patients with hemoptysis
who were treated with oral or intravenous TA (Solomonov et al.,
2009; Prutsky et al., 2016).

Tranexamic acid is well tolerated and the occurrence of
adverse effects, such as mild to moderate headache, muscle cramp
and arthralgia, nausea, and diarrhea, are uncommon (Freeman
et al., 2011). While inhibition of fibrinolysis could increase
thrombotic risk, there is no reported evidence for thrombo-
embolism with the use of TA.

For the past two decades, TA has been used in combination
with prophylactic anticoagulation (low dose warfarin, LMWH,
and DOACs) in elderly patients undergoing major orthopedic
surgery with high risk for thrombosis and hemorrhage (Wang
et al., 2018; Tang et al., 2019). This combined therapeutic
modality offers anticoagulant, anti-fibrinolytic and anti-
inflammatory effects, thereby reducing thrombosis, bleeding
and indices of inflammation (Gillette et al., 2013; Karampinas
et al., 2019). Hence, our suggestion is to use TA to treat patients
with moderate to severe COVID-19-associated pneumonia. TA
could be administered through a systemic route or by using a
closed-nebulizer (Wand et al., 2018). All COVID-19 patients
should receive intensification of anticoagulant dosing (Barnes
et al., 2020; Thachil et al., 2020; Zhai et al., 2020).

The thrombotic burden in COVID-19 patients increases with
disease severity. Thus, the suggested intervention with TA should
exclude critically ill patients. Future studies should address the
timing of the intervention in light of the emerging data on SARS-
CoV-2 dynamics and COVID-19 features (Sun et al., 2020; Zheng
et al., 2020).

Administering alpha 2-antiplasmin (alpha 2-AP) is an
alternative treatment to alleviate the respiratory distress of
COVID-19 patients. Alpha 2-AP is a potent plasmin scavenger
and is usually used as alpha 2-AP replacement therapy for
patients with a homozygous alpha 2-AP deficiency. These
patients are hemophilia-like and tend to bleed mainly after
surgery and alpha 2-AP replacement therapy is the only efficient
treatment for these patients (Saes et al., 2018). Therefore, this
treatment should be reserved for those critically ill COVID-19
patients with low plasma alpha 2-AP levels.
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SUMMARY

This proposed mechanisms and treatment modality are founded
on a comprehensive review of reported investigations on
the interactions between the coagulation-fibrinolysis and
inflammation pathways in coronaviruses diseases. The severity
of COVID-19-associated pneumonia places the patient at
risk for irreversible ARDS and death. A balanced assessment
of the risk-benefit ratio in a deteriorating patient with
COVID-19 sometimes requires the implementation of an
out-of-the-box treatment in the absence of an alternative
proven treatment.
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