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During embryonic central nervous system (CNS) development, the neural and the vascular 
systems communicate with each other in order to give rise to a fully functional and mature 
CNS. The initial avascular CNS becomes vascularized by blood vessel sprouting from 
different vascular plexus in a highly stereotypical and controlled manner. This process is 
similar across different regions of the CNS. In particular for the developing spinal cord 
(SC), blood vessel ingression occurs from a perineural vascular plexus during embryonic 
development. In this review, we provide an updated and comprehensive description of 
the cellular and molecular mechanisms behind this stereotypical and controlled patterning 
of blood vessels in the developing embryonic SC, identified using different animal models. 
We discuss how signals derived from neural progenitors and differentiated neurons guide 
the SC growing vasculature. Lastly, we provide a perspective of how the molecular 
mechanisms identified during development could be  used to better understand 
pathological situations.
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SPINAL CORD DEVELOPMENT

The development of the central nervous system (CNS) of vertebrates starts with the formation 
of the neural tube, an ectoderm-derived embryonic structure that gives rise to the brain and 
the spinal cord (SC). In mouse, this process starts at E7.5–E8 (embryonic day) and, as the 
neural tube grows and matures along the anterio-posterior axis, it partitions into the rostral 
and caudal vesicles. While the rostral vesicles form the prosencephalon, mesencephalon, and 
the rhombencephalon (together, the brain), the caudal vesicle matures into the SC (Lumsden 
and Krumlauf, 1996; Purves, 2008). At around E9.5, the neural tube acquires a dorsal-ventral 
patterning by the controlled secretion of morphogens in a time and concentration dependent 
manner, establishing 13 different neural progenitor domains (Jessell, 2000; Dessaud et  al., 
2008). The identity of these progenitors is characterized by a unique expression profile of 
transcription factors, essential for the specification of the different neuronal subtypes that each 
domain generates. These individual expression profiles result from the combination of different 
morphogens: the floor plate and the notochord generate a gradient of Sonic Hedgehog (SHH), 
the key player for the ventral axis, while the roof plate creates a gradient of Wingless-related 
integration site (WNTs) family members and bone morphogenic proteins (BMPs), required 
for dorsal SC patterning. Other important factors, such as fibroblast growth factors (FGFs) 
and retinoic acid (RA), have been shown to contribute to a correct positioning of the neural 
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progenitors (Diez del Corral et  al., 2003; Duester, 2008; Diez 
Del Corral and Morales, 2017). For more details on neural 
development of the SC, we refer the readers to excellent reviews 
(Jessell, 2000; Wilson and Maden, 2005; Dessaud et  al., 2007, 
2008; Sagner and Briscoe, 2019).

Interestingly, as the neural progenitors undergo active 
proliferation and differentiation, the developing CNS starts 
to be  simultaneously vascularized to meet the increasing 
demand of nutrients and oxygen. The avascular CNS starts 
to be  vascularized at E8.5–E9.5  in mice by the formation 
of the perineural vascular plexus (PNVP) from mesoderm-
derived angioblasts that completely covers the entire neural 
tube (Hogan et  al., 2004; Engelhardt and Liebner, 2014). 
Between E9.5 and E10.5, the first blood vessels from the 
PNVP start ingressing into the developing SC in a stereotypical 
growth pattern (Nakao et  al., 1988; Himmels et  al., 2017). 
Unlike the SC, where vessels ingress from a single vascular 
plexus, the neocortex is vascularized by the ingression of 
vessels from the PNVP and an additional periventricular 
plexus (PVP) (Vasudevan et  al., 2008). There, intrinsic 
transcriptional factors (Nkx2.1, Dlx1/2, and Pax6) expressed 
in endothelial cells are crucial for such vessel patterning 
from the PVP (Vasudevan et  al., 2008).

Research from the last decade suggests that during 
development the nervous and vascular systems actively and 
vitally crosstalk with each other to build a fully functional 
organ system (Paredes et  al., 2018; Segarra et  al., 2019). In 
the next sections, we  will focus on those interactions that 
occur during SC development in coordination with 
vascularization. From the current knowledge of developmental 
studies in SC using different animal models, we  also introduce 
the readers with SC pathologies and the molecular targets 
discovered during development that could prove beneficial 
during injuries and diseases.

SPINAL CORD VASCULARIZATION: 
FROM A SIMPLE PLEXUS TO A 
COMPLEX NETWORK

Development of the PNVP
The early development of the SC vasculature begins at around 
E8.5  in mouse embryos and around E3  in avian embryos 
with the formation of the PNVP, a primitive vascular network 
formed via the process of vasculogenesis (Noden, 1988; Kurz 
et  al., 1996). The assembling of this vascular bed initially 
requires proliferation, migration, and differentiation of 
mesoderm-derived angioblasts, a mesenchymal cell type giving 
rise to the endothelial cell lineage (Noden, 1988; Kurz et  al., 
1996). The identification of the first key factors contributing 
for this process, FGF-2 and vascular endothelial growth factor 
(VEGF), was initially identified by experimentation in quail 
(Cox and Poole, 2000; Hogan et al., 2004). In avian and mouse 
embryos, the first primordial vascular structures neighboring 
the SC and fusing to the PNVP are the dorsal aorta (the 
major artery) and the cardinal vein (the major vein). Mice 
and avians present two dorsal aortas, one dorsal aorta in each 

side of the midline (defined by the notochord) – but fusing 
into a single artery in the mid-trunk region – and two cardinal 
veins, similarly one in each side of the midline along the 
entire body (Hogan and Bautch, 2004; Kurz, 2009). In avians, 
primitive arterial tracts connect each of the dorsal aortas to 
the ventral part of the PNVP, laterally to the FP, precisely 
where the first sprouts from the PNVP ingress into the SC. 
Afterward, the SC vascular circuit is closed and drained into 
the cardinal veins, which are connected to the PNVP in the 
lateral sides of the SC (Kurz, 2009). For the best of our 
knowledge, a similar vascular circuit in mouse has not been 
demonstrated yet.

In zebrafish, the PNVP forms, however, a bit different. 
In zebrafish, the dorsal aorta and the cardinal vein are single 
vessels located below the notochord and extend throughout 
the entire anterior-posterior axis. The PNVP surrounding 
the SC arises by the combination of sprouts from arterial 
and venous intersegmental vessels (ISVs; which sprout from 
the previously formed dorsal aorta and posterior cardinal 
vein) and vertebral arteries (VTAs; Isogai et  al., 2001, 2003; 
Matsuoka et  al., 2016, 2017; Wild et  al., 2017). Bilateral 
VTAs are formed along the SC by sprouting from the 
previously established ISVs. Genetically-ablation studies have 
shown that this process in zebrafish is regulated by VEGF 
secreted from radial glia cells located in the SC (Matsuoka 
et  al., 2017). Interestingly, not only radial glia but also SC 
neurons were also shown to similarly control sprouting of 
venous ISVs around the developing SC in zebrafish (Wild 
et  al., 2017). SC neurons simultaneously secrete VEGF and 
SFLT1 and, in case of a shift in the balance toward the 
former, ectopic sprouting of venous ISVs (not arterial ISVs) 
arise and surround the SC, suggesting that the VEGF signaling 
affects specifically venous ECs during this development stage 
window (Wild et  al., 2017).

Vessel Ingression Into the SC
In avians, single angioblasts are able to invade and migrate 
into the SC and thus contribute, together with the sprouting 
from the PNVP, to SC vascularization (Kurz et  al., 1996). In 
mice, in contrast, once the PNVP is formed, vessel ingression 
into of the SC only occurs from new sprouts arising from 
the PNVP – via sprouting angiogenesis (Nakao et  al., 1988; 
Himmels et  al., 2017).

Blood vessel ingression into the SC occurs in a highly 
stereotypical way. At around E10.5 in mouse embryos, sprouting 
blood vessels from the PNVP invade the neural tissue in a 
very specific pattern: the first sprouts invade the ventral 
part of the SC in between the floor plate and MN columns 
and also from the lateral-ventral side in proximity with the 
MNs (Figure  1). VEGF, demonstrated to be  important for 
PNVP formation, also plays a role in this initial blood vessel 
ingression. Interestingly, different VEGFA isoforms perturbed 
SC angiogenesis at different levels. While ectopic expression 
of VEGFA165 and VEGFA189  in quail embryos resulted in 
a considerable increase of vessel ingression, only a mild 
phenotype is observed after ectopic expression of VEGFA121 
(James et  al., 2009). Although VEGFA plays a role in blood 
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vessel ingression, its expression is not specifically localized 
to areas of ingression, instead is broadly expressed in dorsal 
and ventral areas of the SC. This suggests that VEGFA is 
necessary but may not be  the only factor controlling the 
location and timing of blood vessel sprouting from the PNVP 
(James et  al., 2009). In fact, recent studies show that sFLT1 
expression is also important to control the initial vascular 
sprouting into the SC in mouse (Himmels et  al., 2017) and 
zebrafish (Wild et  al., 2017). SC neurons (MNs in the case 
of mouse embryos) simultaneously secrete VEGF and sFLT1 
to control the regions and timing of vessel ingression from 
the PNVP (Himmels et  al., 2017; Wild et  al., 2017).

WNT ligands play a major role in the initial sprouting of 
vessels into the SC. WNT7a and WNT7b, as other family 
members of the WNT family, are expressed in specific regions 
of the SC coincident with the time of ingression of the first 
vessel sprouts (Parr et al., 1993; Hollyday et al., 1995; Stenman 
et  al., 2008; Daneman et  al., 2009). WNT7a/b are expressed 
by several ventral and dorsal neural progenitors surrounding 
the ventricle at E10.5 and, while single null mutants for WNT7a 
or WNT7b do not present any phenotype, WNT7a/b double 
mutants show defects in their CNS-specific vasculature with 
the embryos dying around E12.5 (Stenman et al., 2008; Daneman 
et al., 2009). Remarkably, double mutant embryos were completely 
devoid of vessels and pericytes in the ventral part of the SC, 
but presented vessels (however with abnormal morphology) 
in dorsal regions of the SC. The fact that vessels continue to 
ingress into dorsal areas after deletion of WNT7a/b might 
suggested a role in SC vascularization for other WNT ligands 

expressed by the dorsal domains (Stenman et  al., 2008). 
Consistently, blocking the canonical WNT signaling pathway 
by the removal of β-catenin from endothelial cells results in 
a more severe phenotype with the complete absence of blood 
vessels in the entire SC (Stenman et  al., 2008; Daneman et  al., 
2009). Interestingly, in those mutants PNVP formation occurs 
normally, indicating that WNT signaling plays a role in the 
initial vessel ingression but not in PNVP formation (Stenman 
et  al., 2008). Additionally, WNT7a/b also promote blood-brain 
barrier (BBB) formation, as lack of WNT7 leads to a reduction 
of GLUT1, the main glucose transporter in ECs of the CNS 
(Stenman et  al., 2008). Wnt7a/b signal via Frizzled receptors 
(Zerlin et  al., 2008) and RECK (reversion-inducing cysteine-
rich protein), a GPI-anchored plasma membrane protein, was 
shown to act as a specific co-receptor for WNT7a/b in ECs 
(Vanhollebeke et al., 2015; Ulrich et al., 2016; Cho et al., 2017).

GPR124 is expressed by endothelial cells and pericytes and 
GPR124 null mice present severe hemorrhages as early as 
E12.5 and embryonic lethality at E15.5 (Kuhnert et  al., 2010). 
Interestingly, GPR124 null mice present the same developmental 
defects observed in WNT7a/b and β-catenin null mice, 
suggesting that both signaling pathways share a common 
mechanism (Kuhnert et al., 2010). Indeed, independent groups 
showed that GPR124 acts as a co-activator of WNT7a/b-specific 
canonical pathway in endothelial cells (Zhou and Nathans, 
2014; Posokhova et al., 2015; Vanhollebeke et al., 2015). Further 
studies have shown that a synergetic action of RECK-
Norrin-GPR124 receptors in WNT7a/b signaling to promote 
vascular development, and the absence of either one is enough 

FIGURE 1 | Stereotypical patterning of spinal cord (SC) vascularization. In normal conditions, the avascular SC starts to be vascularized at embryonic day  
8.5–9.5 in mice by the formation of the perineural vascular plexus (PNVP). Between E9.5 and E10.5, blood vessels ingressing from the PNVP follow a specific 
invading pattern: the first vessel sprouts enter between the floor plate (FP) and motor neuron (MN) columns; subsequently they surround the MN columns and 
continue growing towards dorsal areas, but continuously avoiding the MNs region, the FP and part of the neural progenitors’ area (NP) for a particular development 
time window. At E12.5 MN columns are finally vascularized and a dense network of vessels sustains the continuous growth of the SC. Factors involved in the 
different steps are indicated in the table.
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to reduce, but not completely abolish, WNT7a/b signaling 
(Vanhollebeke et  al., 2015; Cho et  al., 2017).

Vessel Patterning Within the SC
As indicated above, the first vessel sprouts invade the ventral 
part of the SC in between the floor plate and MN columns 
and also from the lateral-ventral side in proximity with the 
MNs (Figure  1). At E11.5, vessels ingressing from both sites 
migrate toward each other and completely surround the MN 
columns, whereas at the same time additional sprouts branch 
from the previous vessels and also extend into dorsal areas 
of the SC, always along and in close contact with the ventricular 
zone occupied by the neural progenitors. Initially vessels do 
not ingress from the most dorsal part of the PNVP (Feeney 
and Watterson, 1946; James et  al., 2009; Himmels et  al., 2017). 
A considerable amount of research has been developed to try 
to understand this well-defined vascular patterning but still 
little is known about how the neural cells and growing blood 
vessels communicate to each other to orchestrate a correct SC 
vascularization pattern. Interestingly, we  and others found that 
it is in the areas that blood vessels initially avoid (the floor 
plate, neural progenitors, and MN columns), where the highest 
amount of VEGF is detected (James et  al., 2009; Ruiz de 
Almodovar et  al., 2011; Himmels et  al., 2017). This suggested 
that together with VEGF other factors were involved in blood 
vessel patterning. In line with this idea, we  demonstrated how 
MNs control their own vascularization during a particular 
development time window (E10.5–E12.5) by simultaneously 
secreting VEGF and its decoy receptor sFLT1  in a hypoxia-
inducible factor 1 (HIF1α) and neuropilin-1 (NRP1) dependent 
manner, respectively (Himmels et  al., 2017). The importance 
of a perfect balance of these molecules is visible when 
overexpressing of VEGF in neural cells in mouse embryos or 
when reducing sFLT1 or NRP1 by knocking down their 
expression using in ovo experiments. Under those different 
conditions premature blood vessel ingression into MN columns 
occurs, showing an example of a neural-to-vessel communication 
mechanism that shapes SC development (Himmels et al., 2017). 
The importance of the balance VEGF-sFLT1 for a correct SC 
vascularization has also been described in zebrafish (Matsuoka 
et  al., 2016, 2017; Wild et  al., 2017).

As mentioned above blood vessels ingress from the ventral 
region and migrate toward dorsal areas along a well-defined 
path: in mice, vessels grow in close contact to the undifferentiated 
neural progenitors next to the ventricle while in avian vessels 
extend in between the undifferentiated neural progenitor zone 
(Sox2+) and the differentiated zone (Sox2− Tuj-1+; Takahashi 
et  al., 2015; Himmels et  al., 2017). Manipulation of these two 
areas in avian by locally disturbing neurogenesis originates a 
change in vascular patterning, suggesting that this particular 
growth path is controlled by the surrounding neural cells 
(Takahashi et  al., 2015). Further, gain-of-function studies in 
chick embryos demonstrated that the stereotypical pattern along 
the neural progenitor area is achieved by the secretion of VEGF 
from the neural progenitors, attracting growing sprouts, but 
simultaneously endothelial cell response to VEGF is fine-tuned 
by sFLT1 secretion by ECs (Takahashi et  al., 2015).

Notably, the degree of angiogenesis needs to be  controlled 
as negative effects on the neural compartment can arise when 
too much VEGF is available. As shown in Himmels et  al. 
(2017), MNs secrete VEGF and sFLT1 simultaneously to 
ensure that a correct level and timing of angiogenesis takes 
place. When this balance of factors is disrupted and excessive 
angiogenesis occurs, MNs are distributed incorrectly and MN 
axons leave the SC defasciculated (Himmels et  al., 2017). 
When extrapolating this to situations, where axon regrowth 
is needed, it is possible that simply inducing regeneration 
of axons and angiogenesis is not enough to promote proper 
axon regrowth, but that angiogenesis needs to be  limited to 
not disrupt the other process.

With respect to the specific pattern of arteries, veins, and 
capillaries, it is well-defined that in the adult SC the main 
arterial supply is achieved by the presence of segmental spinal 
arteries arising from the vertebral arteries, dorsal intercostal 
arteries, and lumbar arteries. Blood flows in the SC through 
these arteries and is further drained into the large and dorsal 
and posterior spinal veins in the SC (Farrar et  al., 2015; 
Mazensky et al., 2017). Yet, it remains to be further characterized 
how the pattern of these three different vessel types appears 
during development.

COMMON MOLECULAR FACTORS IN 
DEVELOPMENT AND PATHOLOGY

CNS pathologies are multifaceted and complex pathologies 
characterized by cell death, axon damage/degeneration, loss 
of vascular integrity, disruption of the BBB and blood-spinal 
cord barrier (BSCB), inflammation, and ECM (extracellular 
matrix) remodeling (Griffin and Bradke, 2020). The BBB and 
BSCB are sophisticated barrier systems in which ECs and 
their tight junctions play a central part in association with 
astrocyte end-feet, perivascular macrophages, pericytes, and 
basement lamina (Bartanusz et  al., 2011). However, they are 
heterogenous in concern to their expression of barrier-specific 
proteins and their functional permeability. Compared to brain, 
ECs in the SC seem to have decreased expression of adherens 
junction (AJ) and tight junction (TJs) proteins and show a 
corresponding increase in permeability to low-molecular-weight 
tracers (Bartanusz et  al., 2011).

It is by now understood that neuronal regeneration events 
during pathology and embryonic development by NPCs elicit 
very similar transcriptomic response making them fairly similar 
processes (Poplawski et  al., 2020). Comparably, pathways that 
regulate vascular development and BBB properties are also 
active in pathological conditions. We provide here some examples 
of these molecules and their signaling pathways that play a 
significant role during vascularization and BBB formation in 
the SC and also during its pathology. Due to space limitations, 
we  took as examples the experimental autoimmune 
encephalomyelitis (EAE), amyotrophic later sclerosis (ALS), and 
arteriovenous malformations (AVMs) in the SC.

Among the available experimental models to understand 
the BSCB pathology, the EAE mouse model, characterized 
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by autoimmune attack to oligodendrocytes in the CNS leading 
to their loss and demyelination of axons, is one of the most 
commonly used (Tonra et  al., 2001; Muller et  al., 2005; 
Schellenberg et  al., 2007; Aube et  al., 2014). Multiple reports 
describe changes in endothelial proliferation, vessel morphology, 
and increased blood vessel density in the SC and brain with 
EAE (Kirk and Karlik, 2003; Roscoe et  al., 2009; Seabrook 
et  al., 2010). In addition, a recent study applying the EAE 
model in Claudin5-GFP reporter line (with ECs expressing 
GFP) shows that remodeling of TJs in ECs and paracellular 
BSCB leakage precedes the EAE disease onset. (Lutz et  al., 
2017). Changes in VEGF expression and increased levels of 
VEGF have been described in EAE and in multiple sclerosis 
(MS) patients (Proescholdt et al., 2002; Su et al., 2006; Shimizu 
et al., 2012) and may eventually be responsible for the increase 
in EC proliferation and vessel density as well as for the leaky 
barrier (Argaw et  al., 2009; Luissint et  al., 2012). Once the 
immune system gets activated, it further exacerbates VEGF 
signaling cascade ending into a feedback loop that would 
further promote BSCB leakage and inflammation (Argaw 
et al., 2006, 2012). Based on this increase in VEGF expression, 
one of the strategies to balance the VEGF availability, learned 
from developmental studies, would be to promote the expression 
of sFLT1 that could titrate the excess of VEGF from the 
system (Himmels et  al., 2017; Wild et  al., 2017).

As mentioned above, WNT ligands are known for their 
specific role in CNS angiogenesis and BBB formation (Stenman 
et  al., 2008; Daneman et  al., 2009). Consistent with its role 
as a co-receptor for WNT ligands, GPR124 also participates 
in BBB formation (Kuhnert et  al., 2010; Anderson et  al., 
2011; Cullen et  al., 2011). The WNT/β-catenin signaling 
pathway is important for adult BBB maintenance as shown 
in multiple reports (Tran et  al., 2016; Chang et  al., 2017; 
Griveau et  al., 2018) and is activated in CNS endothelium 
also in EAE and human MS during the course of disease 
progression (Lengfeld et  al., 2017; Niu et  al., 2019). The 
re-activation of this pathway in pathological conditions may 
suggest a rapid endothelial response toward restoring the 
barrier properties of the damaged vessels. Consistent with 
this hypothesis, in vivo inhibition of WNT signaling in ECs 
exacerbated EAE pathology with increased mortality, greater 
infiltration of CD4+ T cells into the CNS and more drastic 
myelin loss (Lengfeld et  al., 2017). Interestingly, in postnatal 
or adult mice conditional deletion of endothelial GPR124 
resulted in no defects in CNS angiogenesis, BBB development 
or maintenance; making GPR124 dispensable for vascular 
homeostasis in adult CNS (Chang et  al., 2017). However, 
deficiency of GPR124  in a pathological mouse model of 
ischemic stroke or glioblastoma leads to extensive BBB leakage 
and hemorrhage, microvascular damage accompanied by 
pericyte, ECM, and TJ deficits. Thus, similar as the re-activation 
of the WNT signaling pathway, the GPR124-WNT signaling 
axis is important in maintaining vascular homeostasis during 
injury in adult. Considering that BSCB leakage is a primary 
feature of several diseases, one approach to target leakage, 
suggested by those studies, and by the role of the WNT/β-
catenin signaling in BBB formation during development, could 

be  to promote the activation of this pathway in ECs in 
pathological conditions (Liu et  al., 2014; Jia et  al., 2019). 
This was already shown in the above mentioned GPR124 
deletion mouse pathology-model, where EC-specific 
constitutive activation of WNT signaling via activated 
β-catenin restored the vascular defects (Chang et  al., 2017). 
In line with this idea, it was recently also shown that the 
activation of β-catenin in ECs from circumventricular organs 
of the CNS, which under physiological conditions lack  
BBB properties and are permeable, results in a tightened  
BBB in those regions and augmented neuronal activity  
(Benz et  al., 2019).

Amyotrophic lateral sclerosis (ALS) is another SC and 
brain related disease, where the progression of MN degeneration 
leads to muscle atrophy, paralysis, and death. In ALS, BSCB 
impairment is also shown (Taylor et al., 2016). The disruption 
of endothelial TJ proteins like ZO1, occludin, and claudin5 
seems to be  the primary cause of microhemorrhages, reduced 
microcirculation, prior to the MN degeneration and the 
inflammatory response (Zhong et al., 2008). There is increasing 
evidence suggesting that MN degeneration is not only due 
to intrinsic defects, but also that the surrounding cell types 
like microglia, astrocytes, oligodendrocytes, and ECs may also 
be  involved. A variety of growth and neurotrophic factors 
are also reported to mediate the ALS pathology (Bruijn et al., 
2004). Of note, VEGF and WNTs are well studied. Mice 
with reduced VEGF levels (Vegfδ/δ mice) present reduced 
neural vascular perfusion and progressive MN degeneration, 
mimicking the human ALS (Oosthuyse et  al., 2001). Multiple 
studies have shown the importance of VEGF in decelerating 
the disease outcome and providing a protective effect for 
MNs by both maintaining proper vessel perfusion and by 
acting directly on MNs as a survival factor (Lange et  al., 
2016). The underlying pathophysiological mechanisms leading 
to the MN degeneration and fatal outcome observed in ALS 
also seems to be  linked to WNTs (Chen et  al., 2012; Yu 
et  al., 2013; Tury et  al., 2014; Gonzalez-Fernandez et  al., 
2016, 2020; Bhinge et  al., 2017). SOD1G93A ALS mice, as well 
as ALS patients, present a dysregulation in WNT signaling 
with upregulation or downregulation of certain ligands, 
receptors, and coreceptors depending on the distinct cell of 
the CNS analyzed (Gonzalez-Fernandez et al., 2020). As WNT 
ligands can act and exert different functions in different 
cellular context, close examination of their effect in astrocytes, 
neurons, and blood vessels in ALS conditions is required to 
understand their overall outcome. In this regard, upregulation 
of canonical WNT signaling seems to promote glial proliferation, 
that is, eventually neuroprotective during ALS (Chen et  al., 
2012; Li et  al., 2013; Yu et  al., 2013). In a similar manner, 
extrapolating from their role in blood vessel and BBB formation 
in the CNS, upregulated WNT ligands could be  a defense 
mechanism to also promote a tighter BBB. However, their 
role in conjunction with the CNS vessels in this pathology 
needs further investigation.

Arteriovenous malformations (AVMs) are characterized by 
abnormal tangles of blood vessels connecting arteries and veins, 
where blood flow is thus shunted from arteries to veins without 
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passing through a capillary network (Mouchtouris et al., 2015). 
While AVMs can develop anywhere in our body, they occur 
most often in the CNS (being more common in the brain 
than in the SC). Spinal AVMs are mainly represented during 
the adulthood, however, they may also appear as a juvenile 
form, which can be  intramedullary, extramedullary, and 
extraspinal (Ferch et  al., 2001). Most of the molecular studies 
on CNS AVMs have been in the brain and indicate that similar 
mechanisms involved in CNS vascularization are de-regulated 
in AVMs. Although not described in the SC AVMs, here, 
we  will describe those main findings.

Multiple studies suggest active angiogenesis as a feature 
of AVMs. Similarly, inflammation is a major contributor 
toward the pathogenesis and active angiogenesis of AVMs. 
The inflammatory response triggered by hemodynamic factors 
and/or genetic predisposition in the formation and rupture 
of AVMs involves different cytokines (IL-6, IL-1β, TNFα, 
and IL-8), neutrophils, and macrophages (Mouchtouris et  al., 
2015) that eventually upregulate the expression of VEGF. IL-6, 
IL-1β, and TNFα also induce NF-kB expression, which further 
exacerbates VEGF levels (Angelo and Kurzrock, 2007). 
Moreover, it is possible that this AVM niche itself may 
contribute to the stimulation of pathological angiogenesis, 
where the occurrence of focal ischemia leads to a hypoxic 
environment that in turn leads to angiogenesis by the expression 
of VEGF and VEGFR1 (Rothbart et  al., 1996; Koizumi et  al., 
2002; Jabbour et  al., 2009; Mouchtouris et  al., 2015; Gamboa 
et  al., 2017). Worth to mention, the NF-kB-VEGF cascade 
in AVMs is also stimulated under hypoxia by HIF-1 (Ng 
et al., 2005). Consistently, VEGF has been reported in patients 
suffering from recurrent cerebral AVMs (Rothbart et al., 1996) 
and VEGF receptors (VEGFR1 and VEGFR2), matrix 
metalloproteinases-MMP9 and ECM proteins like Collagen 
IV (Rothbart et  al., 1996; Pyo et  al., 2000; Hashimoto et  al., 
2003; Gamboa et  al., 2017) are further thought to play a 
primary role in the pathogenesis of AVMs. As Notch signaling 
plays a critical role in the determining the arterio-venous 
cell fate during vascular development, it is thus crucial in 
AVMs also (Murphy et  al., 2008; ZhuGe et  al., 2009; Tetzlaff 
and Fischer, 2018). Manipulations in the notch signaling 
pathway leads to development of hallmark features of AVMs 
in the brain (Murphy et  al., 2008; Nielsen et  al., 2014). 
Recently a few studies have also shed light on the role of 
Wnt signaling in AVMs. β-catenin gain-of-function in ECs 
can cause arterial defects, including the loss of venous marker 
expression, arterialization of veins, and formation of AVMs 
(Corada et  al., 2010). These ECs show a strong increase in 

Dll4/Notch signaling along with reduced sprouting activity, 
indicating a requirement for fine-tuning Wnt and Notch 
signaling pathways in the pathogenesis of AVMs. Additionally, 
a very recent study on whole-exome RNA sequencing in 
human samples of brain AVMs also showed an activation of 
canonical Wnt signaling via the activity of increased FZD10 
and MYOC (Huo et  al., 2019). All in all, the current 
understanding in AVM pathology, diagnoses, and treatment 
is increasing, but the molecular players and its regulation 
require further investigation. In addition, whether the same 
molecular mechanisms that lead to AVMs in the brain are 
also active in spinal AVMs is also something that remains 
to be  investigated.

These examples show that VEGF and WNT signaling, 
that are important for blood vessel growth and BBB  
formation, during development are also involved in 
distinct pathologies.

CONCLUDING REMARKS

Research in the past recent years has provided further 
mechanistic insight into neuro-vascular interactions and into 
the importance of those interactions for proper development 
and function of the CNS. Here, studies in the SC have been 
fundamental. To advance in our understanding of SC 
development and function further studies focused on delineating 
angiogenic cues and potential bidirectional signaling pathways 
are needed. Spinal cord injuries are debilitating and fatal in 
many cases. Understanding SC development from a neural-
vascular interaction perspective, and the potential reactivation 
or inhibition of those molecular signaling pathways in 
pathological conditions will be important for further developing 
therapeutic strategies.
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