
Frontiers in Physiology | www.frontiersin.org 1  November 2020 | Volume 11 | Article 604241

ORIGINAL RESEARCH
published: 11  November 2020

doi: 10.3389/fphys.2020.604241

Edited by: 
Tao Huang,  

Chinese Academy of Sciences (CAS), 
China

Reviewed by: 
Hui Huang,  

Sichuan Academy of Medical 
Sciences and Sichuan Provincial 

People’s Hospital, China
Yuan-Lin Zheng,  

Jiangsu Normal University, China

*Correspondence: 
Dan Li  

lihao325657@163.com

Specialty section: 
This article was submitted to  

Systems Biology,  
a section of the journal  
Frontiers in Physiology

Received: 09 September 2020
Accepted: 15 October 2020

Published: 11  November 2020

Citation:
Li D, Lin H and Li L (2020) Multiple 

Feature Selection Strategies Identified 
Novel Cardiac Gene Expression 

Signature for Heart Failure.
Front. Physiol. 11:604241.

doi: 10.3389/fphys.2020.604241

Multiple Feature Selection Strategies 
Identified Novel Cardiac Gene 
Expression Signature for Heart 
Failure
Dan Li 1*, Hong Lin 2 and Luyifei Li 1

1 Department of Cardiovascular Medicine, First Hospital Affiliated to Harbin Medical University, Harbin, China, 2 Internal 
Medicine-Cardiovascular Department, Harbin Chest Hospital, Harbin, China

Heart failure (HF) is a serious condition in which the support of blood pumped by the heart 
is insufficient to meet the demands of body at a normal cardiac filling pressure. Approximately 
26 million patients worldwide are suffering from heart failure and about 17–45% of patients 
with heart failure die within 1-year, and the majority die within 5-years admitted to a 
hospital. The molecular mechanisms underlying the progression of heart failure have been 
poorly studied. We compared the gene expression profiles between patients with heart 
failure (n = 177) and without heart failure (n = 136) using multiple feature selection strategies 
and identified 38 HF signature genes. The support vector machine (SVM) classifier based 
on these 38 genes evaluated with leave-one-out cross validation (LOOCV) achieved great 
performance with sensitivity of 0.983 and specificity of 0.963. The network analysis 
suggested that the hub gene SMOC2 may play important roles in HF. Other genes, such 
as FCN3, HMGN2, and SERPINA3, also showed great promises. Our results can facilitate 
the early detection of heart failure and can reveal its molecular mechanisms.
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INTRODUCTION

Heart failure (HF) is a serious condition in which the support of blood pumped by the heart 
is insufficient to meet the demands of body at a normal cardiac filling pressure (Ramachandra 
et  al., 2020). Defined as a syndrome with high morbidity and mortality, HF is the major 
cause of death and a serious threat to human health for a long period (Jarcho, 2020). 
Approximately 26 million patients worldwide are suffering from heart failure, and the society 
faces the long-term great stresses on patients, medical stuff, and medical systems (Bowen 
et  al., 2020). About 17–45% of patients with heart failure die within 1   year, and the majority 
die within 5  years admitted to a hospital in worldwide (Davison and Cotter, 2015; Zhou et  al., 
2020). However, the survival rates for patients with HF have improved in many parts of the 
world in recent years along with the advanced therapies and patient management systems. 
Heart failure is a complex disease, and so many factors are responsible that it is hard to 
blame it on one specific issue (McMurray and Pfeffer, 2005).
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Over the past decades, the genetic causes and molecular 
mechanism underlying the progression of heart failure have 
been partially illustrated. Most previous studies in heart 
failure are limited by inadequate biological samples from 
patients with heart failure (Prohászka et  al., 2013). Since 
then, studies have focused on the molecular mechanism of 
heart failure by virtue of animal models in combination 
with molecular biological techniques. Previous studies 
suggested that classification of disease status for HF is much 
important for the decision of treatment and improvement 
of prognosis (van Oort et  al., 2011). They have discovered 
that novel gene biomarkers play a vital role in various diseases 
depending on the leapfrog development of RNA-Seq technology 
(Asakura and Kitakaze, 2009). According to previous reports, 
the specific gene expression is related to the pathological 
conditions of HF.

Liu et al. (2015) collected six samples from three controls, 
one ischemic heart disease (ISCH), and two dilated 
cardiomyopathies (DCMs) and used RNA-Seq to filter novel 
gene signatures for HF, and precisely categorize HF status 
in larger samples of 313 patients. Vigil-Garcia et  al. (2020) 
selected novel genes induced during pathological cardiac 
hypertrophy that are relevant for human HF through 
cardiomyocyte-specific gene expression analysis. These results 
recognized PFKP as a novel potential therapeutic target to 
prohibit the succession of HF. Tan et al. (2002) used microarrays 
to describe gene expression fingerprints of HF etiologies 
based on seven non-failing human hearts and eight failing 
human hearts with a diagnosis of end-stage dilated 
cardiomyopathy. Zhou et  al. (2020) proposed that valosin-
containing protein could protect the heart against pressure 
overload-induced heart failure using RNA-Seq and a 
comprehensive bioinformatics analysis. Kittleson et al. (2004) 
used microarrays of 48 myocardial samples and gene expression 
profiling to predict biomarkers in determining prognosis and 
response to therapy in HF precisely. All these studies were 
based on microarrays, which have been the remarkable method 
for gene expression studies because of their ability to filter 
thousands of transcripts.

In our study, we  tried to detect the novel HF signature 
genes and their networks from previous transcriptomic data 
which included the gene expression profiles in patients with 
heart failure (n  =  177) and without heart failure (n  =  136) 
using advanced bioinformatics methods. Compared with 
previous studies, which are intended to find the biomarker 
for HF put the focus on separated gene, our study focused 
on the linkage among them. We  built the support vector 
machine (SVM) model with the application of multiple 
feature selection methods: Monte Carlo Feature Selection 
(MCFS; Draminski et  al., 2008; Chen et  al., 2018a, 2020; 
Pan et  al., 2019b; Li et  al., 2020a) and incremental feature 
selection (IFS; Zhang et  al., 2016; Chen et  al., 2018b, 2020; 
Wang et  al., 2018; Pan et  al., 2019a). What is more, we used 
the Search Tool for the Retrieval of Interacting Genes 
(STRING) database (Szklarczyk et  al., 2018) to explore  
the protein interaction networks. A remarkable result of 
our study is that 38 selected genes can serve as novel  

biomarkers for HF and can conduce to revealing the 
pathological mechanism of HF.

MATERIALS AND METHODS

The Microarray Data of Heart Failure 
Patients
We downloaded the microarray gene expression data of 177 
patients with heart failure and 136 patients without heart failure 
from Gene Expression Omnibus (GEO) at https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE57338 (Liu et al., 2015). 
The expression levels of 33,297 probes corresponding to 
20,254 genes in the cardiac tissue were measured with 
Affymetrix Human Gene 1.1 ST Array. The probes 
corresponding to the same gene were averaged to obtain 
the gene expression levels, and the gene expression levels 
were quantile normalized using function normalize.quantiles 
from R/Bioconductor package preprocessCore1 to minimize 
the systematic variance. The normalized data were used for 
further feature selections.

Select the Genes Based on Their 
Importance to Classify the Heart Failure 
Patients
There have been many methods for identifying differentially 
expressed genes (DEGs), such as t-test. But such methods only 
consider the distribution of one gene each time, and do not 
consider the relationship among genes (Tao et  al., 2020). That 
leads to two limitations: (1) The distribution difference of a 
gene is not equivalent to its classification ability; and (2) The 
combinations of the most significant DEGs may not have good 
performance since they may be  redundant and do not help 
each other to achieve a better performance. Therefore, we adopted 
machine learning based multiple feature selection strategies to 
objectively select the optimal heart failure signature. The machine 
learning-based methods have been widely used and achieved 
great success in biomarker discovery (Wang and Huang, 2019; 
Li et  al., 2020a,b; Yuan et  al., 2020; Zhang et  al., 2020a,b; 
Zhu et  al., 2020).

The proposed multiple feature selection strategies can 
be  summarized as Figure  1. First, the expression profiles 
of 20,254 genes in 177 patients with heart failure and 136 
patients without heart failure were normalized. Second, 
we  randomly selected many subset data to construct the 
classification trees using Monte Carlo strategy (Draminski 
et  al., 2008; Chen et  al., 2018a, 2020; Pan et  al., 2019b; Li 
et al., 2020a). To perform MCFS, we used the dmLab software 
version 2.3.0 from https://home.ipipan.waw.pl/m.draminski/
mcfs.html. Third, all these trees were ensembled to calculate 
the classification importance of the genes. The important 
genes should appear in a large number of trees and  
be  able to correctly classify the samples into right groups.  

1 https://bioconductor.org/packages/preprocessCore/
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Fourth, the top ranked genes (1,000  in this study) were 
further analyzed using IFS strategy (Zhang et al., 2016; Chen 
et  al., 2018b, 2019; Wang et  al., 2018; Pan et  al., 2019a). 
Each time, a gene set including the top K most important 
genes (K  =  1, 2, 3, …, 1,000) was used to train a SVM 
model, and its performance was evaluated with leave-one-out 
cross validation (LOOCV; Li and Huang, 2018). To build 
the SVM, we  used the function svm from R package e1071.2 
Fifth, the optimal heart failure signature was the gene set 
with the best performance. If the IFS curve did not reach 
its peak or the plateau area and kept increasing as the 
number of genes increased, more top genes should be analyzed. 
Sixth, to better understand the underlying regulatory 
mechanisms of the signature and increase the interpretability 
of the signature, we constructed the signature network based 
on STRING database version 11.0 (http://string-db.org; 
Szklarczyk et  al., 2018; Shi et  al., 2020).

RESULTS

The Optimal Heart Failure Signature 
Identification
We adopted multiple feature selection strategies (Figure  1) 
to identify the optimal heart failure signature. It integrated 
the strategies of MCFS and IFS. Step A was data preprocessing. 
MCFS included Steps B and C. IFS included Steps D and 
E. Step F was to interpret the biological mechanisms of 
the signature. As demonstrated in Figure  1D, the actual 
IFS curve was shown in Figure  2. The highest LOOCV 
accuracy was 0.974 when the top  38 MCFS genes were 
used to train the SVM model. Therefore, these 38 genes 

2 https://CRAN.R-project.org/package=e1071

were chosen as the optimal heart failure signature, which 
was shown in Table  1. The confusion matrix of the 38 
optimal heart failure signature genes which compared the 
actual class labels and precited class labels of all samples 
were given in Table  2. Their LOOCV sensitivity, specificity, 
and accuracy were 0.983, 0.963, and 0.974, respectively. The 
performance was great.

A D E

B C F

FIGURE 1 | The workflow for optimal heart failure signature identification. The workflow integrated the strategies of Monte Carlo Feature Selection (MCFS) and 
incremental feature selection (IFS). Step (A): data preprocessing. Steps (B,C): MCFS. Steps (D,E): IFS. Step (F): signature network.

FIGURE 2 | The IFS curve of optimal heart failure signature identification. 
It showed the relationship between the number of genes (x) and their 
LOOCV accuracy (y). The peak accuracy was 0.974 when 38 genes were 
used. Therefore, the 38 genes were chosen as optimal heart failure 
signature.
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The Expression Pattern of the 38 Genes in 
Patients With HF and Without HF
We plotted the heatmap of the 38 genes in 177 patients with 
heart failure (HF) and 136 patients without heart failure 
[non-heart failure (NHF)] in Figure  3. It can be  seen that 
most samples were clustered into the correct groups. Only 
very few samples were misclustered. Within the 38 genes, 17 
genes (ZMAT1, APBB3, MNS1, AP3M2, BTN3A1, KCNN3, 
TTC3, SMOC2, LUM, ASPN, FRZB, SFRP4, MATN2, ISLR, 
PDE5A, ECM2, and FREM1) were highly expressed in HF 
and 20 genes (FAM58A, CSDC2, C15orf59, S1PR3, VSIG4, 
CD163, SEMA4B, SLCO4A1, SERPINA3, GGT5, FURIN, 

ZDHHC16, LAD1, USP31, TUBA3D, TUBA3E, ST6GALNAC3, 
LCN6, HMOX2, and FCN3) were lowly expressed in HF.

The Network of the 38 Genes
Signature genes were not necessarily key regulators. They could 
be only markers. But if the signature genes have clear biological 
functions, they certainly can be  better interpreted. Therefore, 
as we  stated in Figure  1F, we  searched the interaction among 
the STRING database (https://string-db.org/; Szklarczyk et  al., 
2018) and plotted the networks of the 38 genes in Figure  4. 
It can be  seen that SMOC2 is located in the hub position of 
the network.

SMOC2, a member of the SPARC family, which is highly 
expressed during embryogenesis and wound healing. Previous 
studies recognized that inflammatory pathways were generally 
dysregulated in right ventricular failure (RVF) tissue. Williams 
et  al. (2018) analyzed mRNA datasets of human non-failing 
and failing heart samples from patients, and concluded that 
SMOC2 was differentially expressed. SMOC2 could be a potential 
significance factor that altered remodeling and inflammation 
for further study in the mechanism of HF. Laugier et al. (2017) 
found that SMOC2, involved in matrix remodeling, is potentially 
associated with the increased T-helper 1 cytokine-mediated 
inflammatory damage in heart, using genome-wide cardiac 
DNA methylation on global gene expression in myocardial 
samples in chronic Chagas disease cardiomyopathy, which is 
an inflammatory cardiomyopathy presenting with heart failure 
and arrhythmia.

DISCUSSION

In the present study, 38 genes were selected from our 
prediction model of SVM, implying strong relevance with 
the pathological mechanisms of HF. After literature retrieval 
and utilization, several evidences and analysis results have 
been retrieved to validate the dependability and reality of 
our analysis.

FCN3, a member of ficolin/opsonin p35 lectin family which 
consists of a collagen-like domain and a fibrinogen-like domain, 
which were found in all human serum. Prohászka et  al. (2013) 
reported that the main initiator molecules of the lectin complement 
pathway MBL, FCN2, and FCN3 were related to chronic heart 
failure (CHF). Low FCN3 levels were related to decreased 
concentrations of complement factor C3 and increased complement 
activation product C3a (Prohászka et  al., 2013). They also 
provided evidence for a significant association of low FCN3 
levels with advanced HF and outcome (Prohászka et  al., 2013). 
FCN3 is reported to be  increased in microvesicles obtained 

TABLE 1 | The 38 optimal heart failure (HF) signature genes.

Rank Gene symbol Full name Importance

1 HMGN2
High mobility group nucleosomal binding 
domain 2

0.571

2 HMOX2 Heme oxygenase 2 0.527
3 SERPINA3 Serpin family A member 3 0.499
4 TUBA3D Tubulin alpha 3d 0.489
5 ECM2 Extracellular matrix protein 2 0.481
6 FREM1 FRAS1 related extracellular matrix 1 0.461
7 FCN3 Ficolin 3 0.458
8 ZMAT1 Zinc finger matrin-type 1 0.405
9 SMOC2 SPARC related modular calcium binding 2 0.386
10 CSDC2 Cold shock domain containing C2 0.383
11 LCN6 Lipocalin 6 0.359
12 LUM Lumican 0.356

13 FURIN
Furin, paired basic amino acid cleaving 
enzyme

0.349

14 LAD1 Ladinin 1 0.338
15 MNS1 Meiosis specific nuclear structural 1 0.338
16 ASPN Asporin 0.317
17 FRZB Frizzled related protein 0.310
18 GGT5 Gamma-glutamyltransferase 5 0.296
19 TUBA3E Tubulin alpha 3e 0.293
20 PDE5A Phosphodiesterase 5A 0.292

21 ISLR
Immunoglobulin superfamily containing 
leucine rich repeat

0.289

22 S1PR3 Sphingosine-1-phosphate receptor 3 0.279
23 SFRP4 Secreted frizzled related protein 4 0.271

24 APBB3
Amyloid beta precursor protein binding 
family B member 3

0.270

25 USP31 Ubiquitin specific peptidase 31 0.268

26 SLCO4A1
Solute carrier organic anion transporter 
family member 4A1

0.251

27 VSIG4
V-set and immunoglobulin domain 
containing 4

0.251

28 KCNN3
Potassium calcium-activated channel 
Subfamily N member 3

0.250

29 FAM58A CCNQ cyclin Q cyclin Q 0.248

30 AP3M2
Adaptor related protein complex 3 
subunit mu 2

0.247

31 C15orf59 INSYN1 inhibitory synaptic factor 1 0.243
32 BTN3A1 Butyrophilin subfamily 3 member A1 0.243
33 ZDHHC16 Zinc finger DHHC-type containing 16 0.241
34 CD163 CD163 molecule 0.238
35 SEMA4B Semaphorin 4B 0.237

36 ST6GALNAC3
ST6 N-acetylgalactosaminide alpha-2,6-
sialyltransferase 3

0.228

37 TTC3 Tetratricopeptide repeat domain 3 0.228
38 MATN2 Matrilin 2 0.219

TABLE 2 | The confusion matrix of the 38 optimal heart failure signature genes.

Predicted HF Predicted NHF

Actual HF 174 3
Actual NHF 5 131
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from activated platelets and abdominal aortic aneurysm (AAA) 
tissue (Fernandez-García et  al., 2017). There is an obvious 
relationship between increased FCN3 plasma levels and AAA 
presence and progression.

HMGN2 binds nucleosomal DNA and is associated with 
transcriptionally active chromatin, which is the top-ranked 
feature recognized by our bioinformatics analysis. HMGN 
protein family could regulate chromatin structure and could 
influence epigenetic modifications. HMGN2 regulates active 
and bivalent genes by promoting an epigenetic landscape of 
active histone modifications at promoters and enhancers (Garza-
Manero et  al., 2019). HMGN2 protected corticogenesis via 
maintaining global chromatin accessibility at promoter regions, 
thus ensuring proper transcriptome regulation (Apelt et  al., 
2020; Gao et  al., 2020). There are few studies to certificate 
the role of HMGN2  in the progress of HF.

SERPINA3 also called Alpha-1-Antichymotrypsin or ACT, 
is first discovered as a plasma protease inhibitor and a 
member of the serine protease inhibitor (Jiang et  al., 2020). 

Previous study showed that SERPINA3 emerged as a responsible 
cardiac secreted factor that is increased in HF patients could 
be  the most robust and promising culprit and were related 
to long-term mortality. Additionally, several researches thought 
that mineralocorticoid receptor antagonists (MRAs) were 
associated to SERPINA3 (Meijers et al., 2018). Gene expression 
of SERPINA3 was significantly increased in the HF group. 
In circulating plasma, the level of SERPINA3 in the HF 
group was confirmed significant increase by ELISA analysis. 
These results suggested that SERPINA3 might play an important 
role in the progression of HF (Zhao et  al., 2020). Asakura 
and Kitakaze (2009) proved that SERPINA3 might become 
novel diagnostic and therapeutic targets linked to the 
pathophysiology of HF using seven microarray datasets 
previously reported.

Due to the length limitation of the article, we cannot describe 
all 38 selected genes in detail. After detailed literature review, 
we  found that all the above-mentioned genes play a vital role 
in the progression of HF, which also verifies the reliability of 

FIGURE 3 | The heatmap of the 38 genes in 177 HF and 136 non-heart failure (NHF) patients. Most samples were clustered into the correct groups. Only very few 
samples were misclustered. Within the 38 genes, 17 genes were highly expressed in HF, and 20 genes were lowly expressed in HF.
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our prediction model. We  believe that these 38 selected genes 
are meaningful in the development of HF. They will contribute 
to the study of molecular mechanism, diagnosis, and treatment 
of HF, and will play an enlightening role in the future molecular 
biology research.
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