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As a long-standing chronic disease, Temporal Lobe Epilepsy (TLE), resulting from
abnormal discharges of neurons and characterized by recurrent episodic central
nervous system dysfunctions, has affected more than 70% of drug-resistant epilepsy
patients across the world. As the etiology and clinical symptoms are complicated,
differential diagnosis of TLE mainly relies on experienced clinicians, and specific
diagnostic biomarkers remain unclear. Though great effort has been made regarding the
genetics, pathology, and neuroimaging of TLE, an accurate and effective diagnosis of
TLE, especially the TLE subtypes, remains an open problem. It is of a great importance
to explore the brain network of TLE, since it can provide the basis for diagnoses and
treatments of TLE. To this end, in this paper, we proposed a multi-head self-attention
model (MSAM). By integrating the self-attention mechanism and multilayer perceptron
method, the MSAM offers a promising tool to enhance the classification of TLE
subtypes. In comparison with other approaches, including convolutional neural network
(CNN), support vector machine (SVM), and random forest (RF), experimental results
on our collected MEG dataset show that the MSAM achieves a supreme performance
of 83.6% on accuracy, 90.9% on recall, 90.7% on precision, and 83.4% on F1-score,
which outperforms its counterparts. Furthermore, effectiveness of varying head numbers
of multi-head self-attention is assessed, which helps select the optimal number of multi-
head. The self-attention aspect learns the weights of different signal locations which
can effectively improve classification accuracy. In addition, the robustness of MSAM is
extensively assessed with various ablation tests, which demonstrates the effectiveness
and generalizability of the proposed approach.

Keywords: TLE diagnosis, self-attention model, epilepsy classification, temporal lobe epilepsy detection, multi-
head self-attention
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INTRODUCTION

Epilepsy, a chronic central nervous system disease, is typically
caused by the repeated abnormal discharge of neurons and
is characterized by symptoms that are sudden, periodic, and
short-term. According to a recent survey (Beghi and Giussani,
2018), around 70 million people across the world are affected,
of which, 90% are grouped in undeveloped areas. Epilepsy has
a global occurrence rate of 6.38∼7.60% (Jette et al., 2017) and
around 67.77 new cases for every hundred thousand people
are found each year. The ones who fail to take control of
epilepsy after drug treatments are known as drug-resistant
epilepsy (DRE) (Wiebe, 2013), among which, temporal lobe
epilepsy (TLE), a common type of epilepsy widely existing in
young and elderly patients, accounts for around 70% (Mariani
et al., 2019). With the growth of the population and advent
of an aging society, it is inevitable that TLE will be of a
great burden for human beings. Therefore, it is urgent to
identify the subtype, cause, and inducement in the treatment
of TLE. Though progress has been made through subjective
analysis, traditional methods for imaging and clinical symptom
assessment heavily rely on human experts, leading to a long
diagnostic time. Moreover, subjective diagnostic results are often
made from different experts, even for the same patient (Siuly
and Li, 2015). Thus, it is hard to make medical decision
using solely experts. Therefore, it is crucial to develop an
efficient and objective TLE diagnosis method to support the
treatment of TLE.

Typically, TLE can be categorized into three subtypes: simple
partial seizure (SPS), complex partial seizure (), and these two
types coexisting. The key difference between SPS and CPS lies
in the disturbance of consciousness. In comparison with SPS,
CPS is more likely to evolve into drug-resistant epilepsy, which
denotes the ineffectiveness of drug treatments. On the contrary,
taking antiepileptic drugs may result in side effects that affect
the cognition and puberty development of the human brain,
adding great emotional and economic burden to the patients and
their families. An accurate diagnosis in the early stage of disease
outbreak is fundamental to non-drug treatments, which avoids
the dosage of drugs and further ensures a good quality of life
for the patients. To this end, the medical community has put
great effort into exploring the difference between the CPS and SPS
brain networks and studying the treatments for different subtypes
of brain network nodes.

Learning to classify these two subtypes accurately and
objectively will benefit the clinical risk stratification and relieve
the heavy dependency on human experts. In addition, by
predicting the subtypes and taking active measures in advance,
it also keeps the high-risk population with a conscious disorder
from the risk of sudden death that results from the disturbance of
consciousness after epileptic seizures.

In this study, we used collected magnetoencephalography
(MEG) signals to classify the subtypes of temporal lobe epilepsy,
as MEG has emerged as an non-invasive, reliable, fast, and
easy-to-use technique to record functional activities of the
brain (Englot et al., 2016; van Klink and Zijlmans, 2019; Shi
et al., 2020). It has been observed that the spike-wave of

epilepsy is indeed a time-dependent characteristic wave. MEG
shows its great superiorities in acquiring the high-temporal
resolution of data and spatial lateralization and localization
(Liu et al., 2020). Therefore, compared with other tools, such
as electroencephalogram (EEG) (Anastasiadou et al., 2019; Yao
et al., 2019; Serna et al., 2020), MEG has been considered as
an effective tool to diagnose epilepsy and find the location
of cortical pathological activity or damage of epileptic foci
(Burns et al., 2014).

Recent years have witnessed the emerging performance of
deep learning in various research topics, including the study of
epilepsy (Peng et al., 2019, 2020a,b; Niu et al., 2020). For example,
Wu et al., 2018 proposed to deal with TLE lateralization based
on MEG by transferring it into a series of binary classification
problems. To that effect, the resting-state brain network is first
employed to extract features of each participant, upon which
the support vector machine (SVM) is built to achieve the
classification of extracted features. Achilles et al., 2018 developed
a non-invasive automatic system for monitoring epilepsies via
resorting to the convolutional neural network (CNN) to deduce
feature representations to distinctively detect seizures from the
videos. The experimental results from different epileptic seizure
types show a supreme performance of up to 78.33% AUC
value, which demonstrates the promising prospect to utilize deep
learning as a tool for curing epilepsy.

Fang et al., 2015 explored the anatomical connectivity
differences underlying functional variance. Based on the
constructed anatomical networks, multivariate pattern analysis
is applied to extract the anatomical connectivity differences
between the left and right TLE patients. Cantor-Rivera et al.,
2015 derived an accuracy rate of more than 82% by using
clinical parameters and extracting features of MRI and DTI
images to identify TLE. Though a great TLE diagnosis rate of
more than 80% has been made in most studies, a significant
amount of misdiagnosis remains (around 10–20%). Many normal
people are often mistakenly identified with a correct diagnoses
on TLE disease. Moreover, these samples are in a small range
and it is unclear whether they can be directly applied to
other hospitals or not. To solve it, current state-of-the-art
methods consider utilizing the toolbox of machine learning (deep
learning) to achieve a high classification of epilepsy patients
and normal persons (Zafar et al., 2017; Ahmedt-Aristizabal
et al., 2018; Guo et al., 2020), and analyzing the changes
of functional connectivity between enhanced and weakened
brain regions (Rajpoot et al., 2015). Most experimental data
of these methods are collected from EEG, fMRI, EEG fMRI,
etc. (Pedreira et al., 2014; Sarraf and Tofighi, 2016; Vergun
et al., 2016). While the combinations with neural networks
further reduces the possibility of misdiagnoses, the limitation
remains unsolved: Though off-the-shelf approaches can identify
epilepsy patients and normal subjects, they fail to tell the specific
epilepsy subtypes.

In this paper, we investigate the classification of TLE subtypes
by integrating the self-attention mechanism and multilayer
perceptron based method on our collected MEG dataset, aiming
to find out the functional connection and pathogenesis of the
brain network related to the seizure of these two subtypes.
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This research is important to propose a more rapid, more
accurate, and intelligent subtype recognition method. To that
effect, our method, termed MSAM, builds a multi-head self-
attention model to predict epileptic seizures, where the original
MEG signal is fed as its input. The self-attention mechanism
analyzes the influence of the position of the sampled signal, so
as to set different weights for the classification algorithm. The
pre-seizure and interictal periods are separated, and then the
multilayer perceptron model is used to extract the information
of frequency and time domain to realize the feature extraction
and classification. We propose to construct a multi-head self-
attention model and apply it to the temporal lobe epilepsy
subtype recognition algorithm.

To summarize, our main contributions are:

• to investigate the characteristics of TLE subtypes;
• to propose an end-to-end multi-head self-attention model,

called MSAM, that predicts TLE subtypes;
• to evaluate the proposed model on a real-world dataset

with classification task, demonstrating that the MSAM is
superior to all comparative methods.

MATERIALS AND METHODS

In this section, we introduce our multi-head self-attention model
to classify subtypes of epilepsy since the classification of epilepsy
is more important to epilepsy physicians than the position of
epilepsy. On one hand, the same detected discharge location
may cause different symptoms for different patients. On the
other hand, even though the clinical symptoms are the same, the
positioning results may be completely different. Thus, the clinical
symptoms, locations, and subtypes of epilepsy patients are very
complicated. To solve this, in this paper, we propose to make
full use of the self-attention mechanism to distinguish different
symptoms in the same location. Meanwhile, we further adopt
multilayer perceptron to solve the obstacle that the same clinical
symptom possesses varying positions. Figure 1 displays the
framework of our self-attention mechanism based deep learning
network for epilepsy recognition.

We consider a set of N training dataset D= {(ti:li), i= 1,. . .,N}
where ti is the i − th sample and li is its corresponding label.
In our settings, li = 1 if the i − th sample is detected, and
0 if otherwise. Our network takes the i − th sample as its
input and forward it to predict the label li As can be seen
from Figure 1, our framework consists of four components:
data preprocessing level, which processes MEG data; feature
extraction, multilayer perceptron layer, which is a feed forward
neural network; multi-head self-attention layer, which analyzes
the weights of locations; and the last layer, which classifies and
detects TLE subtypes.

Multilayer Perceptron Layer
Multilayer perceptron (MLP) is a feed forward neural network
model. MLP contains one dropout layer and four dense layers.
The MLP module is shown in Figure 1. Each layer of the network
is composed of multiple nodes. Except for the nodes in the output
layer, each node is connected with all nodes in the next layer.

FIGURE 1 | Multi-head self-attention neural networks.

Dropout technology ensures that in the every iteration of
the process for neural network training, dropout technology will
randomly stop a certain number of neurons in the hidden layer,
and use the mask process to set the output of these neurons in
the hidden layer to 0, while the connection weights of the non-
working neurons will not be updated in this iteration process.
When the trained model is used in the test set, all nodes need
to be used, and the neurons in the stopped-working state will
return to work. Dropout technology effectively enhances the
generalization ability of the deep neural network model and
plays an important role in preventing over fitting of the deep
learning model.

In Figure 1, the white nodes represent the neurons that
will stop working according to a certain probability. After the
dropout layer, there are four fully connected layers. The number
of neurons in each hidden layer is 1024, 512, 128, and 32,
respectively, corresponding to the activation functions of ELU,
tanh, tanh, and relu.
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Self-Attention Layer
Self-attention is an attention mechanism relating different
positions of a single input sequence to compute a representation
of the same sequence. In order to obtain these representations,
every input is multiplied with a set of weights for Keys (denoted
as K), a set of weights for queries (denoted as Q), and a set of
weights for values (denoted as V). Then, the self-attention learns
a function mapping query Q to a series of key-value pairs (K, V),
as follows:

AttentionV = QKTV (1)

Attention essentially assigns a weight coefficient to each
element in the sequence, which can also be understood as soft
addressing. If each element is stored, the attention can calculate
the similarity between Q and K. The similarity calculated by Q
and K reflects the importance of the extracted V value, that is, the
weight, and then the weighted summation obtains the attention
value. The special point of the Self Attention mechanism in the K,
Q, V model is that Q= K= V:

Attention (Q, K, V) = softmax

(
QKT
√

dK

)
V. (2)

The multi-head attention mechanism obtains h (i.e., one per
head) different representations of (Q, K, V), computes self-
attention for each representation, and concatenates the results.
This can be expressed in the same notation as Eq. (4):

headi = Attention
(
QWQ

i ,KWk
i ,VW

v
i

)
(3)

MultiHead (Q,K,V) = Contact
(
head1...., headh

)
W0 (4)

where the projections are parameter matrices WQ
i εRd×dk ,

Wk
i ε Rd×dk , Wv

i ε Rd×dv , and Woε Rhdv×d, dk = dv = d/h .

Classification and Detection Layer
To correctly predict if a sample is detected, we further deploy a
softmax layer on top of the neural network. The basic process
of the softmax layer is to map the output representation of the
encoding layer into a probability interval (0, 1). In this paper,
we regard the detection as a binary classification problem. Then,
we forward input samples to the encoding network, outputs of
which are further mapped into the probability interval (0, 1) by
the softmax layer as below:

li = P (ti|Si) =
1

1+ e−(Wcu+bc)
ε (0, 1) (5)

Wc is the weight matrix and bc is the bias term. Finally,
we use cross-entropy between the ground truth visit yi and the
predicted visit

_
Y i to calculate the loss for each patient from all the

timestamps as below:

L (θ) = −
1
N

N∑
i=1

(
yT
i log

(_
y t
)
+
(
1− yt

)T log
(

1−
_
y t
))

(6)

MEG Data
We collected our MEG data by recording 32 epilepsy patients
from Brain Hospital Affiliated to Nanjing Medical University,
China. To ensure the balance of data distribution, half of them
were males and the other half were females. The age range of these
patients varies from 20 to 32. The Institutional Review Board was
approved and written consent was obtained from all subjects.

In more detail, the sampling frequency of our MEG data is
1200 Hz, and the signals have been filtered by the band-pass filter
(0.03∼300 Hz), which is then digitized at 1000 Hz. We collected
at least 20 groups of data for each subject and every group was
observed for 2 min. That is to say, the total duration of the MEG
raw data on each subject was no less than 40 min. The distance
of head movement before and after MEG data collection was
also measured, then those with a distance greater than 5 mm
were discarded and re-measured to ensure the quality of collected
data. In the process of data collection, both audio and video
systems were used to monitor the subjects constantly. Moreover,
the subjects were requested to be in a supine position with their
eyes closed and to keep relaxed, such that the resting-state data
could be observed.

Evaluation Index
To evaluate the performance index, we first built the confusion
matrix, upon which we further calculated the number of true-
positive samples (TP), true-negative samples (TN), false-positive
samples (FP), and false-negative (FN) samples.

To deal with the task of recognizing TLE subtypes, including
CPS and SPS, four evaluation metrics are considered: precision
(denoted as P), accuracy (denoted as ACC), recall (denoted as R),
and the F1 score. In more detail, precision can be defined as:

p =
TP

TP + FP
(7)

Accuracy is expressed as the ratio of the number of correctly
classified samples and the total number of samples on the test
data set:

ACC =
TP + TN

TP + TN + FP + FN
(8)

Recall rate can be formulated as:

R =
TP

TP + FN
(9)

F1 value is the harmonic mean of precision rate and recall rate,
which can be rewritten as:

2
F1
=

1
P
+

1
R

F1 =
2TP

2TP + FP + FN
(10)

As can be seen, a higher accuracy metric will lead to a better
F1 score. Generally, the accuracy indicates the correct number of
positive predictions. Recall represents the number of prediction-
correct positive cases, which is directly related to the true-positive
(TP) samples and false-negative samples (FN).

Compared Methods
To show the effectiveness of our proposed MSAM, we compare
our method with other models including Convolutional Neural
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Network (CNN), Support Vector Machine (SVM), and Random
Forest (RF). CNN is a conventional deep learning model used
to classify TLE subtypes, and SVM and RF are traditional
machine learning algorithms. More details about these models
are provided below:

Convolutional Neural Network (CNN): CNN is a kind of feed
forward neural network with a deep structure using convolution
computation. It is one of the most representative algorithms
in deep learning.

Support Vector Machine (SVM): SVM is a kind of
generalized linear classifier that classifies data using the
supervised labels. Its decision boundary is the maximum margin
hyperplane.

Random Forest (RF): RF is a classifier which contains multiple
decision trees, and the output category is determined by the
category output of individual trees.

RESULTS

Performance Comparison
For fair comparison, all methods, including the proposed MSAM
and the compared CNN, SVM, and RF, are trained with 300
epochs with a batch size of 32 and the results are calculated using
cross-validation across the entire dataset. The head number in the
self-attention of our method is set to 4.

We report the experimental results in Table 1. As can be seen
from the table, the performance of our proposed MSAM takes a
lead position in comparison with others. Specifically, it increases
the performance of CNN by 0.4% on accuracy, 1.1% on recall,
0.7% on precision, and 1.1% on F1-score. Also, it outperforms
SVM by 28.4, 75.5, 35.8, and 15.2% on accuracy, recall, precision,
and F1-score, respectively. Besides, 1.0, 21.9, 13.0, and −1.8%
gains are, respectively, obtained w.r.t accuracy, recall, precision,
and F1-score on the basis of RF. The above experiments well
demonstrate the capacity of our method in dealing with the MEG
data classification.

Effect of Varying Head Number in
Self-Attention
To explore the effect of head number in our self-attention, in
Figure 2 we perform experiments with different head numbers
of 2, 4, 8, and 16. Similarly, the results are calculated using cross-
validation across the entire dataset Figures 2A–D, respectively,
display our performance of accuracy, recall, precision, and F1-
score with different head numbers.

As can be seen, our MSAM obtains its best accuracy and
F1-score performance when the head number is 8, while best

TABLE 1 | Comparison of CNN, SVM, RF, and the proposed MSAM.

Method Accuracy Recall Precision F1-score

CNN 0.832 0.898 0.9 0.823

SVM 0.552 0.154 0.549 0.682

RF 0.826 0.69 0.777 0.852

MSAM 0.836 0.909 0.907 0.834

FIGURE 2 | Performance comparison (A) Accuracy, (B) Recall, (C) Precision,
and (D) F1-score.

recall and precision was obtained with a head number of 4. To
reduce the model complexity, in our implementations we set the
head number to 4.
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TABLE 2 | Comparison of ablated models.

Method Accuracy Recall Precision F1-score

attn_1 0.827 0.854 0.864 0.832

attn_2 0.825 0.845 0.859 0.831

MSAM 0.836 0.909 0.907 0.834

Ablation Study
We further conducted experiments to analyze the contributions
of different components in our proposed method, including
the multi-head self-attention layer and the self-attention layer.
By, respectively, removing these two components, we have the
following testing scenarios:

(1) Atten_1: The self-attention layer is removed;
(2) Atten_2: The multi-head self-attention layer is removed;
(3) MSAM: Both components are preserved, which

makes up our method.

Following the above experimental settings, we train all
models with 300 epochs and a batch size of 32. The head
number is set to 4.

Table 2 shows the testing results. We can observe that our
MSAM obtains the best performance, which demonstrates
that both components of multi-head self-attention layer
and the self-attention layer are crucial in boosting our
classification performance.

DISCUSSION

To correctly classify the subtype of TLE, including CPS and
SPS, is very important to the treatment of patients. Most
existing studies focus on distinguishing if one person suffers
from epilepsy while ignoring the importance of which type
of epilepsy the patient is suffering from. To solve this, in
this paper, we developed a deep learning-based classification
model by integrating self-attention mechanism to enhance the
classification of TLE subtypes.

To this end, our proposed MSAM model is performed on
our collected MEG data from 32 patients, made up of 16 males
and 16 females aged from 20 to 32. As shown in Table 1,
the proposed MSAM significantly outperforms its counterparts,
including CNN, SVM, and RF, with a supreme performance of
83.6% in accuracy, 90.9% on recall, 90.7% on precision, and 83.4%
on F1-score. Thus, our method can be well applied to the problem
of classifying the subtypes of TLE.

By setting head numbers to 2, 4, 8, and 16, we analyze
the effect of different head numbers in Figure 2, which shows
that head number of 4 and 8 rewards the best performance.
In the experiments, to reduce the model complexity, we set
it to 4.

We also conducted an ablation study to explore the efficacy
of different components in our method. The experiments in
Table 2 show that the self-attention layer brings gains of 0.9,
5.5, 4.3, and 0.2% on accuracy, recall, precision, and F1-score,
respectively. Besides, the multi-head self-attention layer also

increased the performance by 1.1% on accuracy, 6.4% on recall,
4.8% on precision, and 0.3% on F1-score. Thus, both components
of our MSAM play an important role in the classification
of TLE subtypes.

Though significant contributions were made, limitations
remain in this paper. First, the experiments were conducted
on our collected single data source. More experiments on
other datasets might be necessary to test the ability of the
classification model. Second, epilepsy is a dynamically changed
process. However, our classification focuses on patients from
the same period, which may impede its practical applications.
A long-term tracking experiment is needed. Third, this paper
lacks studies on the prevention and early treatment of temporal
lobe epilepsy. Due to the limited resources, we could not
solve the limitations completely, which would be our focus
in future work.

To summarize, this paper discusses and analyzes the
classification of TLE subtypes. By integrating a self-attention
mechanism, our MSAM is proposed to offer an effective
classification model. The experimental results well demonstrate
the effectiveness of our MSAM in classifying the TLE subtypes
of CPS and SPS. Further works will be done to implement the
limitations of this work as discussed above.
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