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Background/Aims: Enterochromaffin cells (EC cells) constitute the largest population
of enteroendocrine cells and release serotonin (5-HT) in response to mechanical
and chemical cues of the gastrointestinal tract (GIT). How EC cells respond to
altered microbiota such as due to antibiotic treatments remain poorly understood. We
hypothesized that the pacemaker channel HCN2 might contribute to the regulation of
EC cells functions and their responses to antibiotics-induced changes in intestinal flora.

Methods: Mice were given either penicillin or streptomycin or both in drinking water
for 10 consecutive days. The changes in the profile of short chain fatty acids (SCFAs)
in the cecum following penicillin or streptomycin treatments were tested by GC-MS.
Serum 5-HT content, whole intestinal transit time, fecal water content, cecum weight
and expression of HCN2 and TPH1 in cecal mucosa were measured. Ivabradine (a HCN
channels blocker) was used to explore the role of HCN2 in penicillin-induced changes
in 5-HT availability and intestinal motility.

Results: HCN2 immunofluorescence was detected on intestinal EC cells. Both penicillin
and streptomycin caused significant reduction in total SCFAs in the cecum, with
the penicillin-treated group showing greater reductions in butyrate, isobutyrate and
isovalerate levels than the streptomycin group. The expression of HCN2 was increased
in the mice treated with penicillin, whereas TPH1 expression was increased in the mice
treated with streptomycin. Mice treated with antibiotics all had larger and heavier cecum,
elevated serum 5-HT level and increased fecal water content. Besides, mice treated
with penicillin had prolonged intestinal transit time. Intraperitoneal injection of Ivabradine
attenuated the effect of penicillin on serum 5-HT level, cecum size and weight, intestinal
motility, and fecal water content.

Conclusion: Disruptions of the intestinal flora structure due to oral administration
of penicillin may significantly increase serum 5-HT level and inhibit intestinal motility,
at least partially through up-regulating the expression of HCN2. Oral administration
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of streptomycin may alter 5-HT availability by up-regulating TPH1 expression thus
increasing synthesis of 5-HT. Alterations of intestinal flora composition due to exposure
to different antibiotics may regulate 5-HT availability and intestinal motility through
different mechanisms.

Keywords: intestinal microflora, enterochromaffin cells, hyperpolarization-activated cyclic nucleotide-gated
channels 2, tryptophan hydroxylase 1, serotonin, antibiotics

INTRODUCTION

The human gastrointestinal tract (GIT) is inhabited with tens of
trillions of microorganisms (Kau et al., 2011). The vast majority
of intestinal bacteria, estimated to be as many as 3.8× 1013, exist
in the colon (Sebastian Domingo and Sanchez Sanchez, 2018).
In addition, the cecum has been considered as a reservoir and a
“safe house” for anaerobic bacteria to rapidly populate the colon
(Sahami et al., 2016; Brown et al., 2018). Increasing evidence
suggest that the intestinal flora exert major influences on the
host homeostasis. Dysbiosis of the intestinal flora may be closely
related to the occurrence and development of extra-GIT as well
as GI diseases, such as inflammatory bowel diseases, colorectal
cancers, and the autism spectrum disorders (Joossens et al., 2011;
Vuong and Hsiao, 2017; Wong and Yu, 2019).

The interaction between the intestinal flora and the host
is immensely complex. The enteroendocrine cells, which
constitute approximately 1% of the total intestinal epithelial
cells, are strategically located to sense the changes of intestinal
microenvironment, including variations of the intestinal flora
and their metabolites (Martin et al., 2017; Lund et al.,
2018). Amongst the numerous types of enteroendocrine cells,
the serotonin-releasing enterochromaffin (EC) cells are most
numerous and are scattered diffusively throughout the entire
gastrointestinal tract with uneven distribution. It was reported
that the great majority of EC cells are scattered in the small
intestine and colon in human beings; in rats, however, EC cells are
mainly located in cecum and proximal colon (Qin et al., 2019).
The serum 5-HT level of germ-free mice was only 40% of that
of conventional mice, and transplantation of normal intestinal
flora into germ-free mice restored the serum 5-HT level similarly
to that of conventional mice (Reigstad et al., 2015). Moreover,
treatment of primary cultured EC cells with high concentration
of short chain fatty acids (SCFAs) led to increased expression of
tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme for
5-HT synthesis in EC cells (Lyte, 2013). Recent data also suggest
that 5-HT released from EC cells to the lumen may modulate
bacterial colonization in the gut (Fung et al., 2019). These data
suggest that EC cells may be an important interface between the
intestinal flora and the host.

Antibiotics are the most important treatments for infectious
diseases. Dysbiosis of the intestinal flora associated with
antibiotic treatment may potentially alter the synthesis and
the release of 5-HT from EC cells thereby impacting on host
homeostasis, particularly the GI functions. Indeed, antibiotic
exposure reportedly may either increase or decrease 5-HT
availability, depending on types of antibiotics used and animal
species studied (Ge et al., 2017; Hasani et al., 2019). A better

understanding of how antibiotic exposure may alter synthesis and
release of 5-HT from EC cells may provide important insights on
the prevention and management of adverse effects of antibiotics.

Hyperpolarization-activated cyclic AMP-gated cation
channel-2 (HCN2) is a unique ion channel, initially identified
in cardiac pacemaker cells. When the membrane potential
repolarizes to near the resting potential level or the concentration
of intracellular cAMP was increased, the HCN2 channel can
be activated, resulting in an inward current (Ih) promoting
excitation of excitable cells (Emery et al., 2011). Previous studies
have demonstrated functional HCN2 channel in several types
of endocrine cells, such as pituitary lactotrophs (Calejo et al.,
2014), insulin-secreting islet cells (Zhang et al., 2009), and the
GLP-1-secreting intestinal L-cells (Stanley et al., 2004; Reimann
et al., 2005). It is well-known that cholera toxin stimulates
intestinal electrolyte secretion by elevating cAMP (Hudson et al.,
1975; Epple et al., 1997). Some products of commensal bacteria,
such as SCFAs, may also alter intracellular cAMP through Gs or
Gi/o-coupled receptor (Brown et al., 2003; Le Poul et al., 2003).
We therefore speculate that HCN2 might be expressed on EC
cells and may contribute to the regulation of 5-HT availability
following antibiotics exposure.

To test the above hypothesis, we determined HCN2 expression
on EC cells through immunofluorescence and examined the
effects of oral administration of penicillin and streptomycin,
either alone or in combination, on serum 5-HT level, intestinal
motility as well as HCN2 and TPH1 expression. Penicillin is a
β-lactam antibiotic, which inhibits replication of Gram+ bacteria
by interfering with cell wall formation, whilst streptomycin is an
aminoglycoside antibiotic, which kills Gram− bacteria through
inhibition of protein synthesis. Exposure of mice to penicillin was
found to cause an increase in serum 5-HT level and inhibition
of intestinal motility, which was associated with upregulation of
HCN2 expression. Exposure to streptomycin also led to elevation
of serum 5-HT, which was associated with upregulation of
TPH1. Our data indicate that antibiotics exposure may regulate
peripheral 5-HT availability and intestinal motility through
different mechanisms, depending on the antibacterial spectrum.

MATERIALS AND METHODS

Mice and Treatments With Antibiotics
Specific pathogen free (SPF) C57BL/6 mice (7–8 weeks old)
were purchased from Shanghai Lingchang Biotechnology Co.,
Ltd., and housed in a temperature-controlled (23–25◦C) room
within the animal facility of Shanghai Jiao Tong University
School of Medicine. All procedures were conducted within the
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facility and the mice were allowed free access to water and
standard laboratory rodent chow, with a 12 h light and 12 h dark
cycle. All animal care and study protocols were performed in
accordance with the Guiding Principles in the Care and Use of
Animals and the Animal Management Rule of the Ministry of
Public Health, China (documentation 545, 2001) and approved
by the Ethnic Committee for Experimental Use of Animals of
Shanghai Jiao Tong University School of Medicine (document
#SYXK-2013-0050).

Mice were treated with antibiotics in drinking water
for 10 days to disrupt the intestinal flora compositions.
Sterile water containing penicillin G (2 mg/mL, MCE,
United States), streptomycin (4 mg/mL, Yuanye Biology,
China) or penicilin + streptomycin (2 mg/mL and 4 mg/mL)
was available ad libitum during the treatments (n = 5–7 mice for
each group). The dose of antibiotics used was in accordance with
previous studies (Ali et al., 2011; Sato et al., 2016). Weight of mice
were measured daily during the period of antibiotic treatment.
Treatment with the antibiotics did not significantly affect weight
gain (Supplementary Figure 1). To evaluate the role of HCN2
channels in the changes of serum 5-HT and intestinal motility
in penicillin-treated mice, Ivabradine (Iva), a blocker of HCN
channels in clinical use for the treatment of arrhythmia and heart
failure, was given by intraperitoneal injection (20 mg/kg, Biorbyt,
England) daily during penicillin treatment. Another group of
penicillin-treated mice was given intraperitoneal injection of
saline as control (n = 5–10 mice for each group).

Whole Intestinal Transit
On day 11, mice were orally gavaged with 6% carmine dye
(Sigma, United States) in 200 µL 0.5% methyl cellulose (Sigma,
United States) (Golubeva et al., 2017). The fecal pellets of mice
were monitored at 15 min intervals and the time for excretion
of the first red stool was recorded as an index of the whole
intestinal transit.

Fecal Water Content
Fecal particles were collected within 6 h and then the fecal
samples were weighed before and after desiccation at 55◦C for
22 h. The weight difference was recorded as fecal water content
(Nezami et al., 2014).

Serum and Tissue Samples
After intestinal motility test, mice were euthanized by an
overdose of sodium pentobarbital. We focused on cecum tissue
since we noted significant changes in the cecum size following
antibiotics treatments. The total weight and net weight of cecum
were measured. Serum samples were collected and stored at
−80◦C for the detection of 5-HT content. The cecal content was
collected and stored at −80◦C for detection of short chain fatty
acids. The cecal segments were excised and cut longitudinally,
and then washed in cold saline. The mucosa of the cecum
was scraped off and cryopreserved for western blot detection of
HCN2 and TPH1 expression levels.

Western Blot
The cecal epithelium samples were homogenized in the lysis
buffer and then centrifuged (10000 g) for 30 min at 4◦C.
Tissue lysis buffer contained 20 mmol/L Tris–HCl (pH 8.0),
1 mmol/L PMSF, 150 mmol/L NaCl, 1% NP-40, 1 mmol/L
EDTA, protease inhibitor cocktail (Sigma, St. Louis, MO,
United States) and phosphatase inhibitor cocktail (Thermo,
Indianapolis, IN, United States). Total protein concentration
in the supernatants was determined by BCA assay (Pierce,
Rockford, IL, United States). Twenty-two microgram protein of
each sample was loaded on 4–8% Tris-glycine ready gel (Bio-Rad,
Hercules, CA, United States), and the size-separated proteins
were transferred from the gel to a PVDF membrane (Bio-Rad,
Hercules, CA, United States). After blockade with 5% fat-free
milk in Tris-buffered saline (TBS) containing 0.1% Tween-20 for
2 h at room temperature, the membrane was incubated overnight
at 4◦C with rabbit anti-HCN2 (1:400, Alomone, Israel) and rabbit
anti-TPH1 (1:500, Millipore, United States). The membrane was
washed with PBS buffer and then incubated with HRP-conjugated
anti-rabbit secondary antibody (1:3000, Bio-Rad) for 1 h at room
temperature to identify the protein bands of HCN2 and TPH1.
For detection of β-actin, the membrane was then incubated with
3–4 mL striping buffer (Thermo Fisher Scientific, United States)
at 37◦C for 1 h, washed with TBS buffer for three times
and subsequently incubated with mouse anti-β-actin (1:3000,
Abcam) overnight and HRP-conjugated anti-mouse secondary
antibody (1:3000, Bio-Rad) for 1 h. Protein bands were detected
with enhanced chemiluminescence (Thermo, Indianapolis, IN,
United States), and the digital imaging was captured with Image
Quant LAS 4000 mini (GE Healthcare, Life Science). The density
of target protein bands was measured with NIH ImageJ software
and normalized with the density of β-actin.

Immunofluorescence
To detect HCN2 immunofluorescence in murine intestine, mice
were euthanized with an overdose of pentobarbital and were
prefixed through transcardiac perfusion with saline followed by
4% paraformaldehyde (PFA). Intestinal tissues were removed and
post-fixed with 4% PFA overnight at 4◦C. The fixed tissues were
transferred to 30% sucrose for dehydration until the tissue had
sank to the bottom of centrifuge tube. Then the specimens were
embedded with OCT. For immunofluorescence staining, 10 µm-
thick frozen sections were cut. Tissue sections were washed four
times with PBS and blocked with 3% BSA and 10% normal
donkey serum in PBS contained 1% TritonX-100 for 1 h at
room temperature. Then tissue sections were incubated with
rabbit anti-HCN2 (1:1000, Alomone, Israel) or goat anti-5-HT
(1:2000, Abcam, Cambridge, MA, United States) at 4◦C for 48 h.
After four rinses with PBS, the sections were incubated with
donkey anti-rabbit Alexa Fluor 488 secondary antibody (1:1000,
Invitrogen, Eugene, OR, United States) or donkey anti-goat Alexa
Fluor 568 secondary antibody (1:1000, Invitrogen, Eugene, OR,
United States) for 2 h at room temperature. After washing with
PBS, the sections were mounted onto glass slides with mounting
medium, then observed and photographed using fluorescent
microscope (Leica DM 2500, Germany).
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Determination of 5-HT Concentration by
ELISA
Serum 5-HT concentrations were measured using the Serotonin
ELISA Kit (LDN, Germany) according to the manufacturer’s
instructions. The concentration of 5-HT in each sample was
extrapolated from the standard curve.

Quantification of Short Chain Fatty Acids
The cecum content of mice from different groups was sonicated
in 0.005 M aqueous NaOH (at 4◦C) and centrifuged. Then
supernatant was collected for detection of short chain fatty
acids (SCFAs) by gas chromatography-mass spectrum (GC-MS)
using an Agilent 7890B gas chromatography system coupled to
an Agilent 5977A mass spectrometric detector (MSD, Agilent
Technologies, Santa Clara, CA, United States).

Data Analysis
All values are presented as mean ± SEM. Statistical analysis was
performed by GraphPad Prism 7 (La Jolla, CA, United States).
Two-way ANOVA was used to compare differences among
multiple groups. Student’s t-test was used to compare the
difference between two groups. Differences were considered
statistically significant when the P value was less than 0.05.

RESULTS

Murine Intestinal Enterochromaffin Cells
Express HCN2 Channels
Previous studies have shown functional HCN2 channel in
GLP-1-secreting intestinal L-cells (Reimann et al., 2005).
To determine whether HCN2 channel is also expressed in
enterochromaffin (EC) cells, we conducted immunofluorescent
staining of the murine intestinal tissues. HCN2 immunoreactive
cells were detected in epithelium of the duodenum, the jejunum,
the ileum and the colon. Figure 1 shows typical HCN2
immunofluorescence in murine jejunum and colon. Double
immunofluorescence assay confirmed colocalization of HCN2
immunoreactivity with 5-HT in EC cells. Besides, there also
exist some HCN2 positive (but 5-HT negative) cells in close
proximity to 5-HT positive cells. This is consistent with previous
findings that other enteroendocrine cells (e.g., GLP-1-secreting
L cells) may also express HCN2. These results suggest that the
pacemaker channel HCN2 may play a role in regulation of 5-HT
release from EC cells.

Co-administration of Penicillin and
Streptomycin Results in Up-Regulated
HCN2 Expression, Elevated Serum 5-HT
Level and Enlargement of the Cecum
To test whether antibiotics-induced disruption of the intestinal
flora may alter serum 5-HT level, a group of mice (n = 6) were co-
administered with penicillin and streptomycin (P-S) in drinking
water for 10 consecutive days. Control mice (n = 6) were given
normal drinking water. It was quite apparent that the P-S group

had larger cecum. Accordingly, P-S-treated mice had greater wet
cecum weight/body weight (0.0585± 0.00057 vs. 0.053± 0.0030,
P < 0.001) and net cecum weight/body weight (0.0037 ± 9.8e-
005 vs. 0.0074 ± 0.00020, P < 0.001) (Figures 2A–C) compared
with the control mice. The serum 5-HT concentration of mice
treated with P-S was significantly higher than that of the control
mice (P < 0.05, Figure 2D). Additionally, it was found that HCN2
expression in the cecal epithelium was significantly higher in P-S-
treated mice than the control mice (0.24 ± 0.053 vs. 1.26 ± 0.11,
P < 0.001) (Figures 2E,F). However, TPH1 expression was
not significantly different between the two groups. These data
show that intestinal dysbiosis resulting from co-administration
of penicillin and streptomycin may impact EC cells and alter the
peripheral 5-HT level.

Penicillin and Streptomycin Differentially
Alter the Profile of SCFAs in the Cecum
Penicillin and streptomycin have different antibacterial spectrum.
Oral administration of penicillin or streptomycin alone likely
may result in differences in intestinal flora compositions, thereby
may impact EC cells and intestinal function differently. To test
this possibility, we first observed the effects of oral administration
of penicillin or streptomycin on the level of short-chain fatty
acids (SCFAs) in the cecum. Thus, two groups of mice (n = 5
each) were given 10 days of penicillin and streptomycin in
drinking water, respectively. A control group (n = 5) were given
normal drinking water. Following the treatment, the level of
SCFAs in the cecum content of the mice was analyzed by GC-
MS. Penicillin or streptomycin treatment both led to significant
reductions of acetic acid, butyrate, isobutyrate, and isovalerate
levels but slight increases of propionate in the cecum, compared
with the control group (Figure 3). The penicillin group showed
greater decreases in butyrate, isobutyrate, and isovalerate level
than the streptomycin group. The streptomycin group but not
the penicillin group showed significant reduction in valerate
level. The differences in the profile of cecum SCFAs between
the penicillin and the streptomycin groups support the notion
that the two antibiotics may differentially alter the intestinal flora
composition in mice.

Mice Treated With Penicillin Alone Had
Larger Cecum, Elevated Serum 5-HT and
Up-Regulation of HCN2 Expression
In another cohort of mice, we found that mice treated with
penicillin alone (n = 6) had larger and heavier cecum compared
with the control mice (n = 6) (Figures 4A–C). Serum level
of 5-HT was also significantly increased in penicillin-treated
mice than the control mice (P < 0.05, Figure 4D). Western
blot showed that, compared with the control group, penicillin-
treated mice had significant up-regulation of HCN2 expression in
cecal mucosa (P < 0.05, Figures 4E,F). However, the expression
of TPH1 protein was not significantly different between the
penicillin-treated mice and the control mice. Immunofluorescent
staining of the colonic tissues showed that the number of 5-HT+
EC cells were not significantly different between the two groups
(Supplementary Figure 2), suggesting that the increase in serum
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FIGURE 1 | HCN2 channels were expressed on murine enterochromaffin cells. (A) Representative microphotographs of HCN2 immunofluorescence (green) in
mouse jejunum. Specificity of antibody for HCN2 was confirmed by absorption test. (B) Representative microphotograph of HCN2 (green) and 5-HT (red)
immunofluorescence in mouse colon. The asterisks indicate co-labeling of HCN2 and 5-HT immunoreactivity in EC cells. White (HCN2) and pink (5-HT) arrows
indicate HCN2 and 5-HT immunoreactivity in different enteroendocrine cells in close proximity. Images are representative of at least three experiments.

5-HT levels in the penicillin-treated mice was independent of
altered EC cell numbers.

It is well known that 5-HT secreted by EC cells may influence
intestinal motility and secretion (Kojima et al., 2017; Bhattarai
et al., 2018; Stakenborg et al., 2019). We therefore examined
how penicillin-treatment may affect the whole intestinal transit
and fecal water content. Carmine dye test showed that intestinal
transit time of penicillin-treated mice was significantly prolonged
than that of the control mice (351.5± 22.07 vs. 439.3± 14.3 min,
P < 0.01) (Figure 4G). Moreover, we found that fecal water
content of the mice treated with penicillin was also significantly
increased than that of the control mice (47.54 ± 2.16 vs.
63.45 ± 0.66%, P < 0.001) (Figure 4H). The slowed intestinal
transit and increased fecal water content tend to suggest that
penicillin exposure may inhibit intestinal motility but increase
epithelial fluid secretion.

Mice Treated With Streptomycin Alone
Had Larger Cecum, Elevated Serum 5-HT
and Up-Regulation of TPH1 Expression
We then asked how streptomycin, with a different antibacterial
spectrum than that of penicillin, would alter serum 5-HT level
and intestinal motility. Streptomycin-treated mice (n = 6) also
had larger and heavier cecum than the control mice (n = 6)
(Figures 5A–C), albeit cecum enlargement appeared to be less

pronounced than penicillin-treated mice. The serum 5-HT level
was significantly increased in the streptomycin-treated mice
compared with the control group (P < 0.05, Figure 5D).
Western blot showed that expression of HCN2 in cecal
epithelium of streptomycin-treated mice was not significantly
different from that of the control mice. However, expression
of TPH1 was significantly up-regulated in streptomycin group
compared with the control mice (P < 0.05, Figures 5E,F).
Streptomycin treatment had no significant effect on intestinal
transit time, but led to a significant increase in fecal water content
(P < 0.01, Figures 5G,H). The above results suggested that
streptomycin treatment may cause changes in 5-HT availability
and intestinal function through a mechanism different from
penicillin treatment.

HCN Channel Blocker Ivabradine (Iva)
May Attenuate the Effects of Penicillin
Treatment on Serum 5-HT and Intestinal
Motility
The data presented above have shown that oral administration of
penicillin, either alone or in combination with streptomycin, may
increase 5-HT levels availability with concomitant up-regulation
of HCN2 expression in the cecum epithelium. We have also
detected HCN2 protein levels in the colon mucosa of mice
treated with the antibiotics in comparison with their respective
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FIGURE 2 | Co-administration of penicilin-streptomycin (P-S) caused significant changes in serum 5-HT, cecum size and weight and HCN2 expression in cecal
epithelium. (A) Photos of the typical cecum of control and P-S-treated mice. (B,C) Comparisons of the wet (with cecum content) and dry (net) cecum weight
(normalized to the body weight) between P-S-treated and control mice. (D) Comparisons of the serum 5-HT content between P-S-treated and control mice. Data
were normalized to serum 5-HT content in control mice. (E) Western blot detection of HCN2, TPH1, and β-actin in cecal mucosa of the control mice and the mice
treated with P-S. (F) Quantification of relative HCN2 and TPH1 protein in the cecal mucosa. ∗P < 0.05 and ∗∗∗P < 0.001 vs. control. n = 6 mice for each group.

FIGURE 3 | GC-MS analysis of short chain fatty acids (SCFAs) in cecum contents of mice. (A) Statistical analysis of acetate, propionate, and butyrate. (B) Statistical
analysis of isobutyrate, isovalerate, and valerate. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001. n = 5 for each group.

controls. The results showed that co-administration of penicillin
and streptomycin (P-S) or penicillin alone also led to significant
up-regulation of HCN2 expression in the colonic mucosa, in
addition to the cecum mucosa (Supplementary Figures 3A,B).

Streptomycin-treated mice only showed small (statistically
insignificant) increase of TPH1 expression in the colon mucosa
(Supplementary Figure 3C). We then tested whether the
increased HCN2 expression might be responsible for the elevated
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FIGURE 4 | Effects of penicillin treatment on serum 5-HT level, cecum size and weight, intestinal motility and expression of HCN2 and TPH1 in cecal epithelium.
(A–C) Comparison of cecum size and weight between the penicillin-treated and control mice. (D) Comparison of the serum 5-HT content between the
penicillin-treated and the control mice. Data were normalized to serum 5-HT content in control mice. (E) Western blot detection of HCN2, TPH1, and β-actin in the
cecal mucosa of the control mice and the mice treated with penicillin. (F) Quantification of relative HCN2 and TPH1 protein in the cecal mucosa. (G) Intestinal transit
time of the mice detected by carmine dye test. (H) Fecal water content of the mice. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001. n = 6 mice for each group.

serum 5-HT and slower intestinal motility following exposure
to penicillin. Therefore, mice (n = 5–10 for each group) were
given daily intraperitoneal injection of Ivabradine (Iva, 20 mg/kg)
while the mice were treated with penicillin. Another group
of penicillin-treated mice were given saline as vehicle control.
As shown in Figure 6, Iva treatment significantly attenuated
the effects of penicillin on serum 5-HT level, cecum size and
weight and fecal water content. Iva treatment also resulted in
shorter intestinal transit time compared with the penicillin-
treated vehicle control group, although the difference did not
reach statistical significance. The results suggested that HCN2
channels may be involved in the intestinal flora-host interaction
by regulating the secretion of 5-HT.

DISCUSSION

The primary aim of the current study was to test the hypothesis
that the pacemaker channel HCN2, previously known to be
expressed on GLP-1-secreting L cells, may play a role in the
responses of enterochromaffin cells to altered intestinal flora
due to oral administration of penicillin. For this purpose,
conventional SPF mice were given penicillin G, one of
the most frequently used antibiotics for Gram+ bacterial
infections, in drinking water for a period of 10 days. For
comparison, streptomycin, which is used for Gram− bacterial
infections, were administered to separate groups of mice,
also in drinking water for 10 days. It was quite apparent

that exposure of mice to the antibiotics was sufficient to
cause disruptions of the intestinal flora compositions, with
consequent changes in serum 5-HT level, cecum size and
weight and intestinal functions. In support of our hypothesis,
HCN2 immunofluorescence was detected on intestinal EC
cells and penicillin treatment caused upregulation of HCN2
expression in cecum and colon mucosa. Streptomycin
treatment, however, caused upregulation of TPH1, the rate-
limiting enzyme for 5-HT metabolism. Our results suggest that
antibiotics exposure may alter 5-HT availability and intestinal
function through mechanisms that may vary depending on the
antibacterial spectrum.

We found that the mice treated with antibiotics all had
larger and heavier cecum than the control mice, which was
consistent with the previous studies (Ge et al., 2017; De
Vadder et al., 2018). Cecum is a storage site of intestinal
flora and an important digestive organ in some species.
Mammiferous cecum is inhabited with specific symbiotic
bacteria, which could secrete cellulase to digest cellulose
in food (Delpretti et al., 2013). Antibiotics intake may
cause a significant decrease of the cellulose-degrading
microorganisms. Accordingly, fibrous food may not be fully
digested and may abnormally accumulate, leading to significant
enlargement of the cecum. Cecum is also an important
immune organ. Conceivably, bidirectional interaction between
the flora and immune system may also be involved in the
enlargement of cecum following antibiotic treatment. The exact
mechanisms notwithstanding, cecum enlargement appears
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FIGURE 5 | Effects of streptomycin treatment on serum 5-HT level, cecum size and weight, intestinal motility and expression of HCN2 and TPH1 in the cecal
epithelium. (A–C) Comparison of cecum size and weight between the streptomycin-treated and control mice. (D) Comparison of the serum 5-HT content between
the streptomycin-treated and the control mice. Data were normalized to serum 5-HT content in control mice. (E) Western blot detection of HCN2, TPH1, and β-actin
in the cecal epithelium of the control mice and the mice treated with streptomycin. (F) Quantification of relative HCN2 and TPH1 protein in the cecal mucosa.
(G) Intestinal transit time of the mice detected by carmine dye test. (H) Fecal water content of the mice. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001. n = 6 mice for
each group.

to be a typical manifestation of antibiotic-induced intestinal
dysbiosis in mice.

Enteroendocrine cells are strategically positioned in the gut to
sense changes in luminal contents including bacterial products.
EC cells, by far the most abundant enteroendocrine cell type,
synthesize and release 5-HT, a hormone with wide spread actions
within and outside GIT. Previous studies have demonstrated
functional HCN2 channels in some endocrine cells including the
GLP-1-secreting L cells in the gut (Reimann et al., 2005; Zhang
et al., 2009; Calejo et al., 2014). In the current study, we show
that EC cells also express HCN2 immunoreactivity. Indeed, we
found that within the gut, HCN2 immunoreactivity was most
enriched in enteroendocrine cells and was co-labeled with 5-
HT immunoreactivity, with weak expression also detected in the
enteric nervous system. We speculate that HCN2 channel may
play an important role in the regulation of EC cells excitability
and 5-HT release.

Our observations showed that either penicillin or
streptomycin treatment for 10 days was sufficient to significantly
increase serum 5-HT levels and fecal water content in mice.
5-HT is known to promote intestinal motility and intestinal
fluid secretion through interacting with 5-HT3 and 5-HT4
receptors (Kojima et al., 2017; Bhattarai et al., 2018; Stakenborg
et al., 2019). Intriguingly, however, penicillin-treated mice

showed significantly prolonged intestinal transit time, in
spite of the increased 5-HT availability. The reason for the
slowed intestinal transit was not clear but seemed to be
independent of 5-HT signaling, since streptomycin-treated
group had similarly elevated serum 5-HT level without showing
prolongation of intestinal transit time. Previously, mice treated
with a combination of four antibiotics (ampicillin, neomycin
sulfate, metronidazole, and vancomycin) for 4 weeks displayed
decreased intestinal motility with concomitant decrease of 5-HT
availability, whereas administration of vancomycin alone for
7 days resulted in prolongation of intestinal transit time with
concomitant increase of GLP-1 positive cells and serum GLP-1
levels (Ge et al., 2017; Xu et al., 2019). These data together suggest
that intestinal dysbiosis due to antibiotics treatments may impact
intestinal motility via different mechanisms depending on the
antibacterial spectrum of the antibiotics administered.

Short-chain fatty acids (SCFAs) are the main metabolites
of intestinal flora which may interact with epithelial cells
including enteroendocrine cells (Larraufie et al., 2018; Lund
et al., 2018). Acetic acid, propionic acid, and butyric acid
estimatedly account for about 95% of total SCFAs in intestinal
tract (Morrison and Preston, 2016; Sun et al., 2017). We
found that both penicillin and streptomycin treatments for
10 days caused significant reductions in the content of SCFAs
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FIGURE 6 | HCN channels blocker Ivabradine (Iva) attenuated the effect of penicillin on serum 5-HT level and intestinal motility. (A–C) Comparisons of the cecum
size and weight amongst three groups of mice. (D) Serum 5-HT levels in three groups of mice. Data were normalized to serum 5-HT content in control mice.
(E) Intestinal transit time detected by carmine dye test in the three groups of mice (F) Fecal water content in the three groups of mice. ∗P < 0.05, ∗∗P < 0.01, and
∗∗∗P < 0.001. n = 5–10 mice for each group.

in cecum of mice, but the resultant cecum SCFAs profiles were
obviously different between penicillin and streptomycin-treated
mice. Accordingly, the penicillin-treated mice had more dramatic
decreases in butyrate, isobutyrate and isovalerate levels than the
streptomycin-treated mice, with the streptomycin group showing
greater reduction in valerate. These results are consistent with
the notion that penicillin and streptomycin treatments may alter
the intestinal flora structure differently due to their different
antibacterial spectrum. It was also noted that both penicillin
and streptomycin treatments caused increases in propionic acid
levels in the cecum. Although propionic acid is one of the
main fermentation products of intestinal microorganisms with
an anti-inflammatory role by modulating regulatory T (Treg)
cells, excessive concentration of propionic acid may impair
mitochondrial function (Frye et al., 2013, 2015; Furusawa et al.,
2013; Murugesan et al., 2018). Clostridium spp. is the main
intestinal bacteria to produce propionic acid (Macfabe, 2012,
2013). The increase of propionic acid in cecum indicated
that either penicillin or streptomycin-induced disturbance of
intestinal flora may favor the proliferation of Clostridium
spp. Studies have indicated that elevated intestinal propionic
acid content and Clostridium spp. density may be related to
neuropsychiatric diseases, such as the autism spectrum disorders
(Macfabe et al., 2007; Shuaib et al., 2012; Frye et al., 2013; Dejean
de la Batie et al., 2014; Ding et al., 2017; Coretti et al., 2018;
de la Batie et al., 2018).

Short chain fatty acids interact with the intestinal epithelium
by activating specific G protein-coupled receptors. Studies have
demonstrated that EC cells in small intestine and colon express
FFAR3 and FFAR2 (Bellono et al., 2017; Lund et al., 2018). FFAR3
is coupled to Gq or Gi/o and FFAR2 specifically activates the Gi/o
pathways (Brown et al., 2003; Le Poul et al., 2003; Nilsson et al.,
2003). Activation of either FFAR2 or FFAR3 may down-regulate
cAMP levels in EC cells. Conceivably, the decrease of cecal SCFAs
contents may raise cAMP level in EC cells, which may in turn
promote activation of HCN2 channel and 5-HT release.

We found that penicillin treatment caused significant
upregulation of HCN2 expression in the cecal and colonic
mucosa, indicating that HCN2 might be primarily responsible for
the increased serum 5-HT level and the concomitant increases
in fluid secretion (increased fecal water content). Indeed,
Ivabradine (Iva), a blocker of HCN channel, not only attenuated
the elevation of serum 5-HT and increase of fecal water
content, but also ameliorated cecum enlargement associated
with penicillin treatment. In contrast to penicillin, streptomycin
treatment did not significantly alter HCN2 expression but
resulted in an increase of TPH1 expression in the cecal
epithelium, indicating that the elevation of serum 5-HT might
be primarily due to increased 5-HT synthesis. However, it
was previously reported that a combination of four antibiotics
(ampicillin, neomycin sulfate, metronidazole, and vancomycin)
for 4 weeks caused significant reduction of TPH1 mRNA
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expression and the number of 5-HT positive cells in colon of
mice (Ge et al., 2017). Furthermore, those mice (treated with
four antibiotics) displayed significantly less body weight gain
than non-treated mice, whereas we found that mice treated with
penicillin and streptomycin, either alone or in combination for
10 days, displayed similar body weight gain as the control mice.
The reason for such discrepancies is not very clear but may be
related to differences in the intestinal flora structure as a result
of the different antibiotic treatments. Conceivably, the intestinal
flora structure was altered much more robustly in the study of Ge
et al. (2017) than in the current investigation. These data together
suggest that antibiotics exposure may alter EC cells function
and peripheral 5-HT availability through diverse mechanisms
depending on the antibacterial spectrum. The current findings
support the HCN2 channel playing a role in the communication
between EC cells and the intestinal flora.

CONCLUSION

The current study has shown that disruptions of the intestinal
flora structure due to oral administration of penicillin may
cause significant increases in serum 5-HT levels and changes
in intestinal functions, at least partially mediated through
HCN2 signaling. Oral administration of streptomycin may
alter 5-HT availability by up-regulating TPH1 expression thus
increasing synthesis of 5-HT. Alterations of the intestinal flora
composition due to antibiotics treatment may alter peripheral 5-
HT availability through different mechanisms, depending on the
antibacterial spectrum.
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Supplementary Figure 2 | Oral administration of penicillin did not significantly
alter the EC cell density in mouse colon. (A) Representative microphotographs of
5-HT immunofluorescence (red) in the colon of control and penicillin-treated mice.
(B) Bar graph showing that the average number of 5-HT positive cells in
penicillin-treated mice was not significantly different from the control mice (each
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Supplementary Figure 3 | HCN2 and TPH1 protein expression in the colon
mucosa of control and antibiotics-treated mice. (A) Western blot detection of
HCN2 and TPH1 expression in the colon mucosa of control mice and mice treated
with penicillin + streptomycin (P-S); (B) HCN2 and TPH1 protein expression in the
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