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The mDurance® system is an innovative digital tool that combines wearable surface

electromyography (sEMG), mobile computing and cloud analysis to streamline and

automatize the assessment of muscle activity. The tool is particularly devised to support

clinicians and sport professionals in their daily routines, as an assessment tool in the

prevention, monitoring rehabilitation and training field. This study aimed at determining

the validity of the mDurance system for measuring muscle activity by comparing sEMG

output with a reference sEMG system, the Delsys® system. Fifteen participants were

tested during isokinetic knee extensions at three different speeds (60, 180, and 300

deg/s), for two muscles (rectus femoris [RF] and vastus lateralis [VL]) and two different

electrodes locations (proximal and distal placement). The maximum voluntary isometric

contraction was carried out for the normalization of the signal, followed by dynamic

isokinetic knee extensions for each speed. The sEMG output for both systems was

obtained from the raw sEMG signal following mDurance’s processing and filtering. Mean,

median, first quartile, third quartile and 90th percentile was calculated from the sEMG

amplitude signals for each system. The results show an almost perfect ICC relationship

for the VL (ICC > 0.81) and substantial to almost perfect for the RF (ICC > 0.762) for

all variables and speeds. The Bland-Altman plots revealed heteroscedasticity of error for

mean, quartile 3 and 90th percentile (60 and 300 deg/s) for RF and at mean and 90th

percentile for VL (300 deg/s). In conclusion, the results indicate that the mDurance®

sEMG system is a valid tool to measure muscle activity during dynamic contractions

over a range of speeds. This innovative system provides more time for clinicians (e.g.,

interpretation patients’ pathologies) and sport trainers (e.g., advising athletes), thanks

to automatic processing and filtering of the raw sEMG signal and generation of muscle

activity reports in real-time.

Keywords: wearable, electromyography, knee extension, EMG, validity, muscle contraction, mHealth

INTRODUCTION

The application of surface electromyography (sEMG) has been widely used to measure muscle
activity signals, facilitating access to electrophysiological processes that cause themuscle to generate
force and produce movement (De Luca, 1997). In medical and physiotherapy research, sEMG
has been used for diagnosis of chronic low back pain patients (Randy Neblett et al., 2014),
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or the assessment of isokinetic strength testing in patients with
posterior cruciate-retaining and substituting knee arthroplasties
(Bolanos et al., 1998). In addition, to monitor a physiotherapy
exercise programme used as biofeedback for patellofemoral
pain syndrome rehabilitation, through isokinetic knee extension
strength (Yip and Ng, 2006). Additionally, the muscle activity
has contributed to evaluate risk factors, performance and
training intervention in sports sciences. For example, data
from sEMG have been used to investigate changes in muscle
activation patterns of lower limbs in runners wearing different
types of footwear (Wakeling et al., 2002), or as a risk
factor of injury in football players to prevent the anterior
cruciate ligament tear, through isokinetic knee extension strength
(De Ste Croix et al., 2015).

The electromyographs present valued benefits providing
depth knowledge as an assessment tool in the prevention,
monitoring rehabilitation, and training field. The most advanced
and complex electromyographs in the field of research have
incorporated numerous sEMG channels and synchronization
with other technologies such as accelerometry, force platforms
and motion capture systems (Bioengineering, 2020; Delsys Inc.,
2020). Nevertheless, very few clinicians, physiotherapists and
sport professional, working in private rehabilitation or sport
centers, are familiar with the sEMG techniques. Traditionally, the
prices of electromyographs used in research have been beyond
the reach of most clinics, being one of the drawbacks of sEMG
techniques. Another drawback, in the private field, is that the
muscle activity signal usually needs to be processed and filtered
to perform interpretations (De Luca, 1997; De Luca et al.,
2010), and some commercial sEMG systems only record the
sEMG raw signal without providing software for processing and
filtering to the client. This would require preliminary knowledge
on programming languages such as Matlab or Python, where
programming skills are a must. In addition, it takes time to learn
sEMG techniques, to learn these programming skills and to apply
the code to process and filter the raw sEMG signal, as well as to
create a user-friendly and individualized report for the patient
or athlete. Time that private clinics and sports centers cannot
afford. Due to the complexity and cost of the equipment, the non-
intuitive software and the extensive time to learn and apply signal
processing, the assessment of muscle activity becomes a difficult
task for non-technical people, thus limiting the ability to make
decisions instantly and efficiently.

In recent decades, the technological advances have propelled
novel sEMG solutions expanding the range of possibilities
in the market. Both traditional and new electromyograph
companies are focusing their efforts on the design of portable and
lightweight devices. Thus, for example, novel sEMG solutions
have been embedded into regular sportswear by integrating
electrodes in the textile, although these systems aremostly limited
to measuring thigh muscles via sensorized sports tights (Athos,
2020; Myontec, 2020). In addition, some novel sEMG systems
have automated their signal processing, generating reports for
the patient immediately, hence lowering the complexity that
private clinicians, physiotherapists and sport professionals would
encounter in traditional neuromuscular analyses (Athos, 2020;
BioZen, 2020; Myo, 2020; Myontec, 2020). The mDurance R©

system (mDurance) is one of such examples, a tool that combines
a portable two-channel sEMG device with a mobile application
and a cloud service (sEMG signal store, processing and analysis),
guiding physiotherapists or sport professionals from placing
electrodes by following the European recommendations, until
provide a customized report immediately for the patient or
athlete. The European recommendations followed by mDurance
are part of the SENIAM project (Surface Electromyography for
the Non-Invasive Assessment of Muscles) (Hermens et al., 2000).
Besides, mDurance allows the possibility to evaluate several
muscles along the body given the portable nature of the sensors
(Banos et al., 2015; mDurance, 2020). The sEMG device used by
mDurance is the Shimmer3 EMG unit (Shimmer), a hardware
designed and manufactured by Realtime Technologies Ltd,
Dublin, Ireland (Shimmer, 2020). Shimmer is known and used
during last decade in engineering research, for being a portable,
low-cost and open access device for users with programming
skills (Burns et al., 2010a,b; Ahamed et al., 2012; Ibrahim
et al., 2016). However, practitioners or coaches could hardly use
Shimmer as programming skills are not part of these professional
groups. Therefore, the mDurance system is a set made up of
Shimmer and its proprietary mDurance software (android app
and cloud service), trying to facilitate the sEMG techniques
to private rehabilitation and sport centers, guiding its users
throughout the neuromuscular assessment process, processing
the signal and providing automated reports in real time.

However, all this new technological support must be
validated; if not, interpretations after rehabilitation or a medical
diagnosis could lead to misinterpretations, what would cause
a risk to the patient’s health or sports performance. To
date, mDurance system, which is hardware (Shimmer) and
software (proprietary android app and cloud service), has
not been validated yet, so a joint validation (software and
hardware) is found fundamental. Hence, the aim of the current
study is to evaluate the concurrent validity of the mDurance
system, both hardware and software, for measuring muscle
activity by comparing sEMG output with a reference sEMG
system (i.e., Delsys).

MATERIALS AND METHODS

Participants
Fifteen participants (mean ± SD; age: 27 ± 6 years old; height:
1.76 ± 0.07m; body mass: 76 ± 13 kg) were recruited for
this study. All participants met the inclusion criteria: (1) older
than 18 years old; (2) be able to extend and flex the knee
with a range of motion >90◦ (between 90 and 180◦); and (3)
free of any neurological disorders or musculoskeletal injuries
within the last 6 months. After receiving detailed information
on the objectives and procedures of the study, each participant
signed an informed consent form in order to participate, which
complied with the ethical standards of the World Medical
Association’s Declaration of Helsinki (2013). It was made clear
that the participants were free to leave the study at their
convenience. The study was approved by the Universidad de La
Frontera (Chile).
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Procedures
Participants were refrained from severe physical activity for, at
least, 48 h before the tests. All tests were conducted, at least,
3 h after eating. Prior to all testing, height and body mass were
measured using a precision stadiometer and balance (SECA 222
and 634, respectively, SECA, Corp., Hamburg, Germany) for
descriptive purposes. For the measurements, the vastus lateralis
(VL) and rectus femoris (RF) were collected from both legs and
with both sEMG systems simultaneously (Lynn et al., 2018).
The SENIAM project recommendations for skin preparation and
electrode location on VL and RF were followed (Hermens et al.,
2000). Hence, (1) the skin was shaved if the skin surface was
covered with hair (at which the electrodes had to be placed), and
(2) was cleaned with alcohol and allowed to vaporize before the
electrode was placed. Since this validation is intra-session and
during the same muscle contraction, an impedance recording is
not required (Elsais et al., 2020). Once the electrode area was
found, we marked the place and positioned both mDurance and
Delsys electrodes as close as possible to either sides of the mark.
Delsys was placed proximally with respect to the mark for the
right leg and distally for the left leg; otherwise, mDurance was
placed opposite Delsys, distally on the right leg and proximally
on the left leg (Figure 1). A reference electrode was placed
on the knee at the patella for mDurance, by following its
recommendations. Delsys does not require a reference electrode
(Figure 1).

Material and Testing
For the validation, two-different sEMG systems were used:
mDurance, as a novel sEMG system, and Delsys TrignoTM
Wireless, as a reference system:

• The mDurance R© system (mDurance Solutions SL, Granada,
Spain) is a portable and low-cost sEMG system that consists
of three parts. First, a Shimmer3 EMG unit (Realtime
Technologies Ltd, Dublin, Ireland), that is a bipolar sEMG
sensor for the acquisition of superficial muscle activity. Each
Shimmer sensor is composed of two sEMG channels, with
a sampling rate at 1,024Hz. Shimmer applies a bandwidth
8.4 kHz, the EMG signal resolution is 24 bits and overall
amplification of 100–10,000 V/V. The electrodes used were
pre-gelled Ag/AgCl with a diameter of 10mm and an
interelectrode distance of 20mm. Second, the mDurance
(Android) mobile application is responsible for receiving data
from the Shimmer unit and sending it to a cloud service. And,
third, the mDurance cloud service where the sEMG signals are
stored, filtered, and analyzed, generating the reports.

• TrignoTM Wireless System (Delsys, Inc., Natick, MA, USA),
henceforth Delsys, was the reference system used to compare
with the novel electromyograph. It is a widespread commercial
sEMG system with 16 channels and a sampling rate at
2,000Hz. Besides, Delsys applies a built-in filter of 20–450Hz
bandwidth, the EMG signal resolution is 16 bits, and the inter-
sensor latency<500 us. The acquisition was carried out via the
EMGworks R© Software (Delsys, Inc., in Natick, MA., USA).

Both sEMG systems were compared through their natural
hardware configurations despite their differences (i.e., sampling

FIGURE 1 | Representation for the placement of the mDurance muscle

electrodes (filled circles), and Delsys sensors (bottomless rectangles) to either

sides of the SENIAM recommendation (dashed line). Randomized proximal

and distal position for mDurance and Delsys in each leg. The mDurance

reference electrodes are represented by bottomless circles.

rate, bandwidth filter), and it was taken into account for the
processing and filtering of the signal.

A HUMAC Norm (CSMi, Inc., Stoughton, MA, USA)
isokinetic dynamometer was used to control and measure
angular displacement during knee extension sets. The
dynamometer was used to reduce variability in the performance
of the movement by controlling motion speed and position.

For the validation testing, participants were instructed to
cycle for 10-min on a stationary bike at a self-selected pace
followed by mobility exercises (e.g., dynamics drills) for the
warm up (Figure 2). Then, we carried out the placement of the
electrodes and participants were then seated on the HUMAC
Norm dynamometer (Figure 2). Then, they were positioned
according to the HUMAC testing and rehabilitation user’s
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manual (CSMi Solutions, 2013): hip angle at 85◦, knee flexed
at 90◦, and the ankle in the anatomical position (sole of the
foot perpendicular to the shank). The padded arm of the
dynamometer was positioned 3 cm proximally to the lateral
malleolus and the axis of rotation of the knee aligned with the
axis of rotation of the dynamometer (Kay and Blazevich, 2009).
This position was used to carry out the maximum voluntary
isometric contraction (MVIC) for two repetitions of the knee
extension isometric test during 5 s, separated by a 2min rest
period (Roberts et al., 2012; Luc et al., 2016) (Figure 2). In
addition, this position was maintained during all subsequent
dynamic tests and familiarization repetitions were included in all
tests with each speed andmovement (Figure 2). FollowingMVIC
testing, participants performed two sets with three repetitions of
concentric knee extension at 100% of intensity for each testing
speed: 60, 180, and 300 deg/s (Lynn et al., 2018). No repetitions at
sub-maximal intensity were performed to avoid failed attempts,
thus reducing the risk of adding potential variables that influence
the SEMG signal (such as accumulated fatigue or increased
sweating). Three repetitions is a reliable amount to maintain
the intensity between contractions and sets (Sole et al., 2007).
Between sets, a 1min and 30 s rest period was defined. Besides,
during the concentric knee flexion, the isokinetic dynamometer
did not offer any resistance to be useful as a rest period between
repetitions (Lynn et al., 2018). The dynamic tests were carried out
unilaterally, so all the sets of one leg were performed and followed
by the other leg separately, with randomized order.

Signal Processing and Filtering
For the processing and filtering of the raw signals of the
two independent systems into the sEMG output signal, we
implemented in Python the mDurance methodology used in its
cloud service. (1) First, both the isometric and dynamic tests
were filtered using a fourth order Butterworth bandpass filter
with a cut-off frequency at 20–450Hz, only for mDurance raw
signal since Delsys already includes this filter by the hardware.
(2) Second, the signal was smoothed using a window size of
0.025 s root mean square (RMS) and a overlapping of 0.0125 s
between windows for both systems separately. (3) And third,
the MVIC value was calculated using the average of the three
maximum peaks of the RMS signal during the 5 s isometric test,
and being the MVIC used for normalized the RMS signal of each
system. The use of the average (following mDurance mythology)
instead of the peak for the MVIC calculation will not affect the
magnitude of the sEMG outputs inter-systems (Burden, 2010).
Python libraries used for the analysis were Numpy (Van Der
Walt et al., 2011) for numerical computations, Scipy (Virtanen
et al., 2020) for signal analysis and Pandas (McKinney, 2010) for
processing the CSV files that contained the raw sEMG.

To determine the onset and offset of each muscle contraction,
a threshold of 10% was applied to the normalized RMS signal
from the MVIC (Figure 3) (De Luca, 1997). Subsequently and
for the analysis of sEMG amplitude signals, we calculated the
following variables of each contraction for each sEMG system
separately: mean, median, first quartile (Q1), third quartile (Q3)
and 90th percentile (PERC90). These metrics represent the
different levels of the sEMG amplitude signal for each muscle

FIGURE 2 | Overview diagram of the validation testing.

contraction: (i) PERC90 represents the highest level of the
contraction, (ii) Q3 is the next level, (iii) median and mean that
represents the middle level of the muscle contraction and, (iv) Q1
represents the lowest level of the contraction (Figure 3). Finally,
the average of each set executed with three useful contractions in
all variables was calculated (i.e., mean, Q1, Q3, or PERC90), as
sample for statistical analysis in this concurrent validation. The
inclusion criteria for a useful contraction was established at a
baseline noise below 15 µVrms and a correct execution of the
participant respecting the contraction-rest times. These inclusion
criteria were used to decide the useful sets for the statistical
analysis. All sEMG outputs were based on the RMS amplitude
since mDurance have no integrated a sEMG frequency analysis
(i.e., Fourier transform).

Statistical Analysis
A total of thirty-eight sets were used, which correspond to
the number of useful series that met the inclusion criteria.
Data analysis was conducted using SPSS (vs. 25, SPSS Inc.,
Chicago, IL). Descriptive statistics are represented as mean and
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FIGURE 3 | Representation of the 10% threshold (gray horizontal solid bar) applied to an exemplary set, with a root mean square (RMS) signal normalized by the

maximum voluntary isometric contraction (MVIC). Besides, representation of the muscle activity parameters for an exemplary muscle contraction. sEMG amplitude

parameters: 90th percentile (PERC 90), third quartile (Q3), mean and median, and first quartile (Q1).

standard deviation (SD). In order to examine the concurrent
validity between systems (i.e., mDurance vs. Delsys), the level of
agreement between sEMG data from both devices was examined.
To that end, a comparison of means (t-test) was conducted
between systems, and the Cohen’s d effect size (ES) was used to
interpret the magnitude of the differences (Cohen, 1988) (i.e.,
trivial ES < 0.19, small 0.2–0.49, medium 0.5–0.79, and large
ES ≥ 0.8). A Pearson correlation analysis was also conducted.
To properly interpret the magnitude of the correlations, the
following criteria were adopted: < 0.1 (trivial), 0.1–0.3 (small),
0.3–0.5 (moderate), 0.5–0.7 (large), 0.7–0.9 (very large), and
0.9–1.0 (almost perfect) (Hopkins et al., 2009). The validity
analysis was reinforced by calculating the intra class correlation
coefficients (ICCs) between mDurance and the reference system.
Based on a previous study (Koo and Li, 2016), the authors
conducted a two-way random-effects model (ICC [2,k]), mean
of measurements and absolute definition for the ICCs. The
magnitude of the ICC was interpreted according to the following
benchmarks (Landis et al., 1977): ICC< 0 (poor), 0–0.20 (slight),
0.21–0.40 (fair), 0.4–0.60 (moderate), 0.61–0.80 (substantial),
and >0.80 (almost perfect). Finally, Bland-Altman plots, based
on the limits of agreement method (Bland and Altman, 1995),
let us examine the presence of systematic and proportional bias
between systems. Heteroscedasticity of error was defined as an
r2 > 0.1 (Atkinson and Nevill, 1998). The level of significance
used was p < 0.05.

RESULTS

Despite the pairwise comparisons showed some significant
differences (p < 0.05) between systems for measuring the sEMG
activity of the RF at different speeds (Table 1), the ES resulted
trivial and small differences in all cases. The Pearson correlation
analysis reported very large relationships (r > 0.7) between data
from both systems for all parameters at 60, 180, and 300 deg/s.
The ICCs reported almost perfect relationships (ICC > 0.81) for
every variable at any speed condition (60, 180, and 300 deg/s).

Regarding the other muscle (i.e., VL), the means comparison
revealed the lack of differences at any speed (Table 2). The
correlation analysis reported significant correlation with large
to very large Pearson coefficients (r > 0.609, p < 0.001),
and substantial to almost perfect ICCs (ICC > 0.762) for all
parameters at every speed.

In order to ensure the lack of effect of electrode position (i.e.,
proximal vs. distal), a between systems comparison (i.e., Delsys
vs. MDurance) was performed for every parameter at every speed
for both right and left leg. Almost perfect ICCs were obtained,
with ICCs > 0.88, where the confidence interval spans between
moderate and almost perfect (0.411–0.980) in all cases.

The Bland-Altman plots revealed heteroscedasticity of error
for some sEMG-related parameters of the RF at 60 deg/s (i.e.,
mean, Q3, and PERC90), at 180 deg/s (i.e., PERC90), and 300
deg/s (i.e., mean, Q3, and PERC90) (Figure 4).

For the VL (Figure 5), the Bland-Altman plots also revealed
heteroscedasticity of error for mean and PERC90 at 300 deg/s,
whereas no heteroscedasticity was found in any sEMG parameter
at 60 or 180 deg/s.

DISCUSSION

This study aimed at determining the validity of the mDurance
system for measuring muscle activity during isokinetic knee
extensions at three different speeds (i.e., 60, 180, and 300 deg/s),
for two muscles (i.e., RF and VL) and two different electrodes
locations (i.e., proximal and distal placement), by comparing
sEMG output with a reference sEMG system, the Delsys. The
results obtained suggest that the mDurance system provides
valid sEMG output data for VL and RF during knee extensions
at 60, 180, and 300 deg/s speed, showing a strong concurrent
validity as compared to Delsys sEMG system, based on Pearson’s
coefficients and ICCs referring to a relative validity. However,
Bland-Altman plots suggest an acceptable absolute validity, due
to the random errors, going from±8% for the mean to±15% for
the Perc90.

Frontiers in Physiology | www.frontiersin.org 5 November 2020 | Volume 11 | Article 606287

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Molina-Molina et al. Validating an Innovative sEMG System

TABLE 1 | Concurrent validity (i.e., Delsys vs. mDurance systems) of RMS normalized for the RF muscle at different speeds of movement (i.e., 60–180–300 deg/s).

Speed Variable Delsys MDurance P-value (Cohen’s d) Pearson coefficient (r) ICC (95% CI)

60 deg/s Mean 47.36 (12.47) 49.30 (10.28) 0.045 (0.17)* 0.890*** 0.927 (0.855–0.963)

Median 47.08 (13.38) 49.24 (11.54) 0.057 (0.17) 0.862*** 0.915 (0.833–0.956)

Q1 33.53 (10.59) 35.17 (8.97) 0.116 (0.17) 0.806*** 0.882 (0.773–0.939)

Q3 60.04 (16.53) 63.11 (13.80) 0.039 (0.20)* 0.844*** 0.900 (0.801–0.949)

PERC90 72.05 (19.87) 75.64 (16.16) 0.058 (0.19) 0.823*** 0.885 (0.776–0.941)

180 deg/s Mean 44.91 (13.90) 46.73 (12.01) 0.149 (0.14) 0.819*** 0.893 (0.801–0.942)

Median 46.73 (12.01) 44.93 (14.91) 0.286 (0.13) 0.807*** 0.890 (0.796–0.941)

Q1 27.15 (9.11) 28.85 (10.63) 0.112 (0.16) 0.774*** 0.862 (0.744–0.926)

Q3 60.30 (20.64) 62.80 (17.60) 0.227 (0.13) 0.771*** 0.863 (0.747–0.926)

PERC90 73.72 (25.15) 76.60 (19.52) 0.295 (0.13) 0.717*** 0.819 (0.666–0.903)

300 deg/s Mean 42.23 (14.17) 44.08 (11.30) 0.131 (0.15) 0.835*** 0.895 (0.805–0.943)

Median 40.53 (14.44) 43.22 (12.83) 0.024 (0.19)* 0.858*** 0.912 (0.829–0.954)

Q1 24.60 (8.90) 26.54 (9.15) 0.049* (0.21)* 0.763*** 0.857 (0.731–0.924)

Q3 57.91 (20.79) 60.21 (15.36) 0.236 (0.13) 0.807*** 0.870 (0.759–0.930)

PERC90 71.79 (26.49) 72.67 (18.23) 0.747 (0.22) 0.749*** 0.827 (0.677–0.907)

RMS, root mean square; RF, rectus femoris; Q1, quartile 1; Q3, quartile 3; PERC90, 90th percentile.

*denotes p < 0.05; ***denotes p < 0.001.

TABLE 2 | Concurrent validity (i.e., Delsys vs. MDurance systems) of RMS normalized for the VL muscle at different speeds of movement (i.e., 60–180–300 deg/s).

Speed Variable Delsys MDurance P-value (Cohen’s d) Pearson coefficient (r) ICC (95% CI)

60 deg/s Mean 46.15 (11.76) 45.51 (10.80) 0.666 (0.06) 0.721*** 0.840 (0.671–0.922)

Median 45.88 (12.74) 44.85 (11.36) 0.524 (0.09) 0.729*** 0.842 (0.677–0.923)

Q1 31.98 (9.75) 31.83 (9.52) 0.899 (0.01) 0.768*** 0.872 (0.737–0.938)

Q3 59.32 (15.73) 58.55 (14.08) 0.715 (0.05) 0.691*** 0.818 (0.626–0.911)

PERC90 71.91 (19.38) 70.30 (16.85) 0.561 (0.09) 0.642*** 0.781 (0.550–0.892)

180 deg/s Mean 46.77 (14.57) 45.23 (12.91) 0.310 (0.12) 0.779*** 0.872 (0.756–0.933)

Median 44.04 (14.97) 43.47 (13.58) 0.682 (0.04) 0.824*** 0.903 (0.813–0.950)

Q1 27.10 (10.06) 27.71 (9.93) 0.526 (0.06) 0.832*** 0.910 (0.827–0.953)

Q3 63.26 (20.58) 60.39 (19.18) 0.250 (0.14) 0.715*** 0.831 (0.677–0.912)

PERC90 79.26 (26.67) 75.68 (22.66) 0.196 (0.15) 0.681*** 0.801 (0.619–0.896)

300 deg/s Mean 48.40 (15.62) 47.17 (13.17) 0.387 (0.15) 0.856*** 0.916 (0.831–0.958)

Median 46.86 (16.72) 46.28 (14.25) 0.711 (0.17) 0.847*** 0.913 (0.824–0.957)

Q1 26.45 (7.87) 26.85 (7.72) 0.741 (0.05) 0.609*** 0.762 (0.516–0.883)

Q3 67.04 (24.26) 64.03 (20.05) 0.214 (0.13) 0.827*** 0.895 (0.789–0.948)

PERC90 83.40 (30.51) 80.51 (24.00) 0.351 (0.11) 0.818*** 0.886 (0.771–0.944)

RMS, root mean square; VL, vastus lateralis; Q1, quartile 1; Q3, quartile 3; PERC90, 90th percentile.

***denotes p < 0.001.

The main use of the mDurance is the muscle assessment
for clinics and sports professionals, due to its low price, low
weight and automated signal processing. Typical situations to
use mDurance could be the clinical evaluation of low back pain
through the endurance test (Banos et al., 2015) or the flexion-
relaxation phenomenon (Carrillo-Perez et al., 2018), and the
neuromuscular assessment of the curve sprint in football at
high intensity, in the field of sport biomechanics (Filter et al.,
2020). Nevertheless, the use of a non-validated novel sEMG
system could be harmful to the health of patients or affect
the performance of athletes, due to potential misinterpretations.
Regarding relative validity, the ICCs where reported an almost

perfect relationship for the VL (ICC > 0.81) and substantial or
almost perfect relationship for the RF (ICC > 0.762), for all
analyzed variables. Another interesting result has been a very
large relationship (r > 0.7, p < 0.001) reported by the Pearson
correlation analysis for the RF, and significant for the VL (r >

0.609, p < 0.001), for all speeds and all variables. In comparison
with our results, Burns et al. (2010a) compared Shimmer with
a commercial EMG system (Grass P511AC Amplifier system)
in biceps brachii muscle during isometric contractions. They
found a variation for the mean of approximately 8%, between
systems. On the other hand, our results revealed a lack of
differences at any speed for VL with 1–2% mean differences
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FIGURE 4 | Bland-Altman plots for the measurement of muscle activity parameters (i.e., mean, median, first quartile, third quartile, and 90th percentile) for the RF

muscle at different speeds of movement: (A) 60 deg/s, (B) 180 deg/s, and (C) at 300 deg/s. The plots includes the mean difference (dotted line) and 95% limits of

agreement (dashed lined), along with the regression line (solid line).
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FIGURE 5 | Bland-Altman plots for the measurement of muscle activity parameters (i.e., mean, median, first quartile, third quartile, and 90th percentile) for the VL

muscle at different speeds of movement: (A) 60 deg/s, (B) 180 deg/s, and (C) at 300 deg/s. The plots includes the mean difference (dotted line) and 95% limits of

agreement (dashed lined), along with the regression line (solid line).
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approximately and some differences for RF, being the effect size
trivial in all cases, with 2–3% mean differences approximately.
We suggest that although RF and VL are part of the quadriceps
and the longitudinal muscles, the slight differences found could
be caused by slight anatomical differences between them. The
anatomical differences could be related to the location of the
muscle in relation to the quadriceps, the proximity of other
muscles, tendons or ligaments affecting crosstalk (Blanc and
Dimanico, 2014), and the difference in size for the optimal
electrode placement site which is greater for RF (Hogrel et al.,
1998; Barbero et al., 2012). Besides, a prior work showed that the
RF muscle is regionally non-uniformly activated longitudinally
(Watanabe et al., 2014).

A similar study compared a textile sEMG system with a
traditional electromyograph for the quadriceps musculature in
isokinetic knee extensions at 60, 180, and 300 deg/s (Lynn
et al., 2018). Similar to our results, they observed that both
systems had no significant differences for all of the computed
variables. Moreover, their Pearson’s coefficients showed a similar
magnitude and directionality of correlation for both systems,
without a significant inter-system difference. For instance, they
found correlations between 0.69 and 0.74 for all their muscles
at the speeds of 60 and 300 deg/s, which indicated a very
large agreement between both. In the same way, a prior work
compared a customized sEMG system also with Delsys, although
using dynamic exercises (knee extension, squat, lunge, and
jump). Their findings indicated a good to excellent agreement
between both systems (Fuentes del Toro et al., 2019), with
correlations between 0.51 and 0.96 in their results, with a mean
of 0.60. Although, different types of correlation were performed,
we recommend caution when establishing comparisons between
studies. In comparison with our findings, we observed for the
Pearson correlation analysis a result between 0.72 and 0.89 for
the RF and between 0.61 and 0.83 for the VL. This represents
a very large ratio for each muscle for the concurrent validation
between mDurance and Delsys. Hence, we found similar results
with significant and very large Pearson’s correlation between
mDurance and Delsys. Lastly, although the signal processing and
the parameters obtained between Fuentes del Toro et al. (2019)
and Lynn et al. (2018) are different from ours, they are comparing
a reference system with a new one like we do here, and their
findings and ours are quite similar, obtaining good and excellent
agreements between both systems.

Regarding the absolute validity, the Bland–Altman plots
evaluate the agreement between the mDurance and Delsys. Our
plots for the RF revealed heteroscedasticity for the mean, Q3,
and Per90 at 60 and 300 deg/s and only Per90 at 180 deg/s.
Although for VL muscle, we only found heteroscedasticity for
mean and Per90 at 300 deg/s. The heteroscedasticity refers to
the relationship between the difference in the two methods and
the size of the measured variable. In addition, the systematic
bias for the mean was −2% with a random error of ±7.34%,
and 1.23 ± 8.55% random error, for RF and VL, respectively
and for all speeds. Being a good-enough systematic bias and
random error for clinic assessments as the flexion-relaxation
phenomenon associated with chronic low back pain (Alschuler
et al., 2009) and testing the efficacy of sEMG biofeedback in knee
osteoarthritis by knee extensions at 60 and 180 deg/s (Yilmaz

et al., 2010). However, the Per90, which represents the top of
the muscle contraction, showed a systematic bias for all speeds
of 3.03% and a random error of ±13.76% for RF, and 2.8 ±

16.03%, being an acceptable systematic bias and random error
in this context. This may result because sEMG is more variable
as closer to the peak (Hibbs et al., 2011). In this direction, the
random error was wider at higher speeds for all variables in both
muscles. For example, Perc90 at 60 deg/s showed a random error
of±15.3%, however at 300 deg/s was±17.5%.

All our findings indicate that there is an excellent agreement
between mDurance and Delsys, although it should be noted that
there are various limitations to this study. Firstly, all the tests
were carried out at 100% of the MVIC, aiming to not make
extra attempts, and avoid causing fatigue because of it. Limiting
ourselves to not having information about the effect of fatigue on
the different systems. Secondly, in order to create a controlled
environment, only the quadriceps musculature and isokinetic
knee extensions were assessed. Therefore, for future studies it
is recommended to check the validity of other musculature
in addition to checking more functional tests for clinical (i.e.,
lumbar flexion for low back pain patients or gait) and sports
(i.e., running, squats, or jumps) applications. Thirdly, the lack of
standardized methods and analysis for sEMG validations studies
may make difficult to compare with similar validations. Finally,
an important consideration is that validation data were obtained
from an analysis based on within-participant variation (CV)
rather than on different days (i.e., test-re-test) so, our current
reliability statistics might not generalize to runs performed
several days apart.

CONCLUSIONS

The results indicate that the mDurance R© sEMG system is a valid
tool to measure muscle activity during isokinetic contractions
over a range of speeds, tested in laboratory conditions. Our
results revealed an excellent relative validity for all variables,
and an acceptable to good-enough absolute validity, with a
systematic bias of 1.62 ± 8% random error for the mean. From a
practical standpoint, mDurance as a systemmade up of Shimmer
sensor and proprietary software, is a valid sEMG system, as
compared to Delsys. This novel system includes a user-friendly
software, a light hardware and a reasonable price, which make it
more affordable and accessible for clinicians and sport trainers.
In addition, it provides more time for interpretation and for
addressing patients’ pathologies or making recommendations to
athletes instantly, thanks to the generation of real-time reports.
Further research is required to establish reliability (test-re-
test) over several days and to check the validity of mDurance
measurements in more muscles from other areas and sizes, in
more exercises modalities (i.e., walking, running, cycling) and at
different submaximal intensities.
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