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The neural crest (NC) cells and cranial placodes are two ectoderm-derived innovations
in vertebrates that led to the acquisition of a complex head structure required for a
predatory lifestyle. They both originate from the neural border (NB), a portion of the
ectoderm located between the neural plate (NP), and the lateral non-neural ectoderm.
The NC gives rise to a vast array of tissues and cell types such as peripheral neurons and
glial cells, melanocytes, secretory cells, and cranial skeletal and connective cells. Together
with cells derived from the cranial placodes, which contribute to sensory organs in the
head, the NC also forms the cranial sensory ganglia. Multiple in vivo studies in different
model systems have uncovered the signaling pathways and genetic factors that govern
the positioning, development, and differentiation of these tissues. In this literature review,
we give an overview of NC and placode development, focusing on the early gene regulatory
network that controls the formation of the NB during early embryonic stages, and later
dictates the choice between the NC and placode progenitor fates.

Keywords: neural border, neural crest, placodes, signaling, gene-regulatory-network, ectoderm patterning,
fate decision

INTRODUCTION

The “New Head” hypothesis (Gans and Northcutt, 1983; Northcutt, 2005) suggests that the
presence of a complex head is a significant evolutionary difference between vertebrates and
other chordates. During evolution, the vertebrate head has appeared concomitantly with two
unique tissues, which are not present (or present in rudimentary form) in earlier-derived
organisms: the neural crest (NC) and the sensory placodes. These tissues are formed at the
border of the neural fold on the dorsal side of the embryo: placode progenitors (PP) are
present rostrally and NC precursors are located more posteriorly (Figure 1A). The NC cells
are morphologically distinguishable at the late neurulation stage when they delaminate and
migrate away from the edge of the neuroectoderm, towards the final locations where they
differentiate (Shellard and Mayor, 2019; Alkobtawi and Monsoro-Burg, 2020; Thiery et al., 2020).
In parallel, during neurulation, the pan-placodal ectoderm is subdivided into thickened epithelial
areas defining each placode, which contribute to cranial sensory structures (Schlosser, 2008,
2010; Pieper et al., 2011; Grocott el al, 2012; Streit, 2018; Buzzi et al.,, 2019). Lineage tracing
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FIGURE 1 | A simplified view of the vertebrate gene regulatory network (GRN) controlling neural crest (NC) and placode induction. (A) Model of a Xenopus embryo
at the mid-neurula stage, depicting the relative positions of the neural plate (NP, blue), the NC (green), and the placode progenitors (PP, red). These tissues express
specific transcription factors (TFs), such as Sox2, Snai2, and Six1 respectively. DV, dorsoventral axis; RC, rostrocaudal axis. (B) The combined effects of signaling
pathways and TFs lead to the development of different tissues in a temporally and spatially regulated manner. Here, the major genes involved at each stage have
been indicated, along with the signaling levels of major secreted pathways (BMP, FGF, and WNT). Signaling pathways and genes have been selected according to
their conserved functions in various vertebrate animal models and to the availability of detailed studies about their regulation and function in ectoderm patterning.
At the mid-gastrula stage (pre-border stage), orange labels the anterior neural border (NB), and yellow depicts the posterior NB. At later stages, green and red
depict the NC and the pre-placodal ectoderm respectively. im., intermediate; var., variable. (C) A synthetic view of the NB-development GRN in Xenopus laevis.
Genes have been arranged from top to bottom according to the first stage during which their function is required. Genes positioned towards the left of the map
favor the NC fate (green) while genes positioned towards the right of the map favor the PP fate (red). Gene-specific requirements of different signaling pathway
activity have been depicted by shapes under the respective gene names (low, intermediate, and high). *Tfap2a has reiterated functions during the different stages,
for which it interacts with different binding partners (de Croze et al., 2011; Rothstein and Simoes-Costa, 2020). Solid lines depict direct interactions, dashed lines
depict epistasis interactions (either indirect or not proven to be direct) and dotted lines depict a feedback regulation. Arrows depict activation and bars depict
repression. The GRN map has been constructed using the BioTapestry software (Longabaugh et al., 2005). Data from other model systems have not been included
for the sake of simplicity, but the selected genes broadly display conserved functions in frog and chick. (For more detailed views of placode and NC GRNSs, refer to
Simoes-Costa and Bronner, 2015; Maharana and Schlosser, 2018; Prasad et al., 2019; Rogers and Nie, 2019; Thiery et al., 2020).

studies have detailed the respective contributions of the NC  conducted in multiple vertebrate species, in particular frog and
and the placodes (Noden, 1975; Keller, 1976; Le Douarin, 1980;  chick embryos, have identified transcription factors (TFs) which
D’Amico-Martel and Noden, 1983; Couly and Le Douarin, 1985,  uniquely demarcate NC and PP (Nieto et al., 1994; Ohto et al.,
1987; Eagleson and Harris, 1990; Garcia-Martinez and Schoenwolf,  1999; LaBonne and Bronner-Fraser, 2000; Gamill and Bronner-
1993; Eagleson et al., 1995; Kozlowski et al., 1997; Streit, 2002;  Fraser, 2002; Plouhinec et al., 2014, 2017; Riddiford and Schlosser,
Bhattacharya et al, 2004; Xu et al, 2008). Genetic screens  2016; Roellig et al., 2017). NC and PP originate from a common

Frontiers in Physiology | www.frontiersin.org

2 November 2020 | Volume 11 | Article 608812


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Seal and Monsoro-Burqg

Fate Control at the Neural Border

ectodermal domain, located between the dorsal neural plate
(NP; future brain and spinal cord) and the ventral non-neural
ectoderm (future epidermis), named the “neural border” (NB,
also called “neural plate border” elsewhere; Meulemans and
Bronner-Fraser, 2004; Groves and LaBonne, 2014; Pla and
Monsoro-Burq, 2018; Thiery et al, 2020). At gastrula stages,
pax3/7 genes (pax3 paralog in Xenopus species, pax7 paralog
in chick, and pax3/7 ancestor gene in lamprey) mark the lateral
and posterior NB, but not it’s rostral most portion, while zicl
marks the anterior NB (Figure 1; Table 1). The formation,
positioning, and henceforth specification of the NB into NC
and PP are regulated by the coordinated activity of multiple
signaling pathways (e.g., FGF, BMP, and WNT pathways) and
specific TFs (e.g., tfap2a/b/c, pax3/7, zicl, and hes4; Figure 1B).
At neurula stages, NC and PP are marked by unique gene
sets (e.g., snai2/foxD3 and sixl/eyal respectively, Table 1).
Principally, the cephalic NC and the placodes form the head
sense organs and peripheral nervous system. The cranial NC
forms neurons, glial cells, melanocytes, secretory cells, osteocytes,
and chondrocytes (Dupin et al., 2018; Etchevers et al, 2019;
Alkobtawi and Monsoro-Burg, 2020). The pan-placodal ectoderm
develops into non-neurogenic placodes (e.g., adenohypophysis,

lens), and neurogenic placodes (epibranchial, otic, paratympanic,
trigeminal, and olfactory). In addition, aquatic anamniote
vertebrates possess lateral line placodes, which generate a lateral
line system comprised of mechanosensory organs in the head
and the trunk (Piotrowski and Baker, 2014; Schlosser, 2014;
Singh and Groves, 2016; Buzzi et al,, 2019). Additionally, by a
coordinated migration and morphogenesis, NC, and placode
cells form the cranial sensory ganglia (D’Amico-Martel and
Noden, 1983; Forni et al., 2011). In humans, defective NC
development leads to neurocristopathies, which represent one-third
of all developmental diseases, such as cleft palate, Waardenburg
syndrome, and Hirschsprung’s disease (Vega-Lopez et al., 2018).
Similarly, defects in placode development lead to diseases such
as BOR/BO syndrome (Kochhar et al, 2007). In order to
understand the development of these tissues and uncover the
molecular basis of human pathologies, functional studies have
been conducted using various vertebrate animal models. In this
brief literature review, we focus on the regulation of the early
stages of NB development, followed by its specification into
NC and PP. We particularly emphasize the common and specific
pathways and the gene regulatory network (GRN) controlling
the balanced emergence of both cell types around the NP.

TABLE 1 | Important references.

Chick

Pera et al., 1999; McLarren et al., 2003; Khudyakov and
Bronner-Fraser, 2009; Linker et al., 2009

McLarren et al., 2003

Cheung et al., 2005; Khudyakov and Bronner-Fraser, 2009;
Simoes-Costa et al., 2012

Khatri and Groves, 2013

Sheng and Stern, 1999

Steventon and Mayor, 2012

Streit and Stern, 1999; Khudyakov and Bronner-Fraser, 2009;
Linker et al., 2009

References
Xenopus

A. Gene

DIx3/5 Feledy et al., 1999; Luo et al., 2001; Pieper et al., 2012

Eyal/2 Pieper et al., 2012; Maharana and Schlosser, 2018

Foxd3 Monsoro-Burg et al., 2003; Sato et al., 2005; Steventon et al., 2009; Maharana
and Schlosser, 2018

Foxi1/3 Matsuo-Takasaki et al., 2005; Pieper et al., 2012; Maharana and Schlosser, 2018

Gata2/3 Pieper et al., 2012; Maharana and Schlosser, 2018

Gbx2 Li et al., 2009; Steventon and Mayor, 2012

Hes4 (Hairy2b)  Nichane et al., 2008a,b; de Croze et al., 2011; Maharana and Schlosser, 2018

Msx1 Suzuki et al., 1997; Tribulo et al., 2003; Monsoro-Burg et al., 2005

Pax3/7 Monsoro-Burg et al., 2005; Sato et al., 2005; Hong and St-Jeannet, 2007;
de Croze et al., 2011; Milet et al., 2013; Plouhinec et al., 2014; Maharana and
Schlosser, 2018

Six1 Pandur and Moody, 2000; Brugmann et al., 2004; Ahrens and Schlosser, 2005;
Pieper et al., 2012; Maharana and Schlosser, 2018

Snai2 Mancilla and Mayor, 1996; Monsoro-Burg et al., 2003, 2005; Steventon et al.,
2009

Tfap2a Luo et al., 2002, 2003; de Croze et al., 2011; Maharana and Schlosser, 2018

Tfap2e Hong et al., 2014

Zict Mizuseki et al., 1998; Monsoro-Burq et al., 2005; Sato et al., 2005; Hong and

St-Jeannet, 2007; Marchal et al., 2009; Milet et al., 2013; Plouhinec et al., 2014;
Maharana and Schlosser, 2018

B. Transcriptome analysis

Plouhinec et al., 2014; Riddiford and Schlosser, 2016; Plouhinec et al., 2017;
Maharana and Schlosser, 2018

Basch et al., 2006; Otto et al., 2006; Khudyakov and Bronner-
Fraser, 2009; Linker et al., 2009; Stuhimiller and Garcia-Castro,
2012; Vadasz et al., 2013; Simoes-Costa and Bronner, 2015
McLarren et al., 2003; Christophorou et al., 2009

Nieto et al., 1994, del Barrio and Nieto, 2002; Khudyakov and
Bronner-Fraser, 2009

Khudyakov and Bronner-Fraser, 2009; Rothstein and
Simoes-Costa, 2020

Khudyakov and Bronner-Fraser, 2009; Simoes-Costa and
Bronner, 2015

Khudyakov and Bronner-Fraser, 2009; Simoes-Costa et al., 2014;
Simoes-Costa and Bronner, 2016; Hintze et al., 2017; Morrison
etal., 2017; Roellig et al., 2017; Trevers et al., 2018

In this mini review article, we have gathered as many references as possible and apologize to the authors whose work could not be quoted. We add here a list of additional
references for each of the genes described in the text and point to several relevant large-scale transcriptome screening. Studies using frog as a model are indicated in blue, studies
using chick embryos in black; A: references describing NC and PP markers; and B: references of transcriptome analysis of NC and PP progenitors.
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NEURAL CREST DEVELOPMENT, AN
OVERVIEW

The neural crest is an exclusive feature of vertebrates, acquired
about 500 million years ago during evolution (Sauka-Spengler
etal., 2007). Since NC generates tissues typical of both ectodermal
(ganglia) and mesodermal (mesenchyme, bone) origin, it has
been referred to as the fourth embryonic germ layer (Hall,
2018). The NC develops from the NB positioned adjacent to
the NP along the rostrocaudal axis during gastrulation and
neurulation. Classically, the NC is subdivided into cranial and
trunk areas, followed by further anatomical subdivisions
(Alkobtawi and Monsoro-Burg, 2020). At the end of neurulation,
upon neural tube closure, the NC cells start to migrate in
multiple streams, delineating the main craniofacial domains
and along the somites in the trunk (Theveneau and Mayor,
2012; Szabo and Mayor, 2018; Rocha et al., 2020). Upon reaching
their target tissues, poorly understood genetic programs and
interactions with the environment dictate NC differentiation
into multiple cell types (Bronner and Le Douarin, 2012).

Before migration, NC cells follow a typical epithelial-to-
mesenchymal transition (EMT), which involves the activation
of specific TFs (EMT-TFs, e.g., Snaill/2, Twistl), a cadherin
switch, and the fine-tuned dynamics of multiple cytoskeletal
and cell-polarity proteins. This results in the loss of the polarized
epithelial phenotype and acquisition of cell motility (Bahm
et al., 2017; Morrison et al., 2017; Shellard and Mayor, 2019).
In most species, NC migration involves “contact inhibition
of locomotion” (CIL), the mechanism allowing cell dispersion
in vitro and in vivo, as well as “co-attraction,” a mechanism
maintaining collective migration of cranial NC cells (Carmona-
Fontaine et al., 2008; Wynn et al.,, 2013; Richardson et al., 2016;
Li et al,, 2019). In addition, cranial NC cells interact with
placodal cells, some of which also delaminate. This helps orient
the direction of migration of both cell types (Freter et al,
2013; Theveneau et al., 2013; Colombi et al., 2020). The cellular
mechanisms of NC migration have been extensively reviewed
elsewhere (Mayor and Theveneau, 2013; Shellard and Mayor,
2019; Alkobtawi and Monsoro-Burg, 2020; Giniunaite et al.,
2020; Piacentino et al., 2020; Thiery et al.,, 2020).

Recent works have focused on premigratory NC induction
and specification, starting at late gastrulation/NP stages, as
denoted by the expression of early NC specifier genes (e.g.,
snai2, foxd3, tfap2e, sox8, and sox9). These earlier NC-specifiers
in turn induce later NC specifiers such as soxI0, etsl, and
twist] during the second half of neurulation, when neural folds
elevate and fuse dorsally (Alkobtawi and Monsoro-Burg, 2020).
The NC specifiers collectively maintain their own expression
by positive feedback stimulations (Lander et al., 2013).

PLACODE DEVELOPMENT, AN
OVERVIEW

Placodes, the second key vertebrate innovation leading to the
formation of specialized head structures, develop from the
dorsal-rostral pan-placodal domain which also derives from

the NB (Figure 1A). Post neurulation, some placodes undergo
epithelial folding. Other placode cells are primed for neurogenesis
and delaminate from the epithelium (Lassiter et al, 2014).
However, unlike NC migration, placode migration does not
seem to involve EMT: EMT markers are absent, and cells do
not exhibit a mesenchymal morphology and migrate as neuronal
cells through a breach in the basal lamina (Graham et al,
2007). During migration, placode cells interact with specific
subpopulations of NC cells to form sensory ganglia.

The Six and Eya family of TFs are the major genes involved
in early PP development. At late gastrula stages, Six1/4 and
Eyal/2 are induced throughout the PP and are essential for its
development (Table 1). These genes are also required at later
stages for placode cell-proliferation and neurogenesis (Schlosser
etal,, 2008). Grown in isolation, PP continues expressing six1/eya2,
but adopts a lens fate “by default, highlighting that additional
regulators control the formation of the other placodes (Bailey
et al, 2006). Although, genetic screens have identified a few
genes functioning upstream/downstream of the Six/Eya complex,
such as Znf462, Homer2, Hes2, Atoh1, the placode GRN remains
incompletely understood (Christophorou et al., 2009; Riddiford
and Schlosser, 2016; Hintze et al., 2017).

REGULATION OF NEURAL CREST AND
PLACODE FATE SPECIFICATION

Neural crest and PP are specified at late gastrula and neurula
stages, while the induction of the NB itself is concomitant to
neural induction in dorsal ectoderm, at early gastrula stages
(de Crozé et al., 2011). Both these processes are tightly regulated
by the activity of signaling pathways and TFs, leading to a
strict temporal developmental sequence, resulting in well-defined
margins demarcating each tissue.

Secreted Signaling Pathways Broadly
Pattern the Ectoderm

Levels of activity and cross-regulations between BMP, FGE,
and WNT signaling pathways are particularly important for
the induction of NC and PP, as they initiate spatial subdivisions
of the dorsal ectoderm during gastrulation (Wilson and
Hemmati-Brivanlou, 1995; Streit and Stern, 1999; Monsoro-
Burq et al., 2003; Kudoh et al., 2004; Steventon et al., 2009;
Stuhlmiller and Garcia-Castro, 2012; Yardley and Garcia-Castro,
2012; Schille and Schambony, 2017). Activity levels are
influenced by the source of ligands and their antagonists.
BMP ligands are secreted by the non-neural ectoderm and
the ventral mesoderm, while the NP and the organizer produce
BMP antagonists (e.g., Noggin, Chordin, Cerberus and
Follistatin; Hawley et al., 1995; Wilson and Hemmati-Brivanlou,
1995; Fletcher and Harland, 2008; Patthey et al., 2008; Branney
et al., 2009; Linker et al., 2009). This sets up a low-to-high
gradient of BMP signaling from the dorsal midline towards
the lateral zones. FGF ligands are produced by the paraxial
mesoderm, while WNT ligands come from both the paraxial
mesoderm and the non-neural ectoderm (Faure et al., 2002;
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Monsoro-Burq et al., 2003; Steventon et al., 2009). Rostral to
the NP, WNT antagonists limit WNT signaling (Pera and De
Robertis, 2000; Wilson et al.,, 2001; Carmona-Fontaine et al.,
2007). All these pathways are also modulated temporally as
they are required at different levels at multiple stages of neural/
NC/PP and epidermis specification. At the early gastrula stage,
FGF signaling, along with BMP and WNT antagonists, promotes
neural development while high BMP and WNT signaling lead
to non-neural ectoderm development (Groves and LaBonne,
2014). Henceforth, FGF/BMP antagonists activate neural factors
demarcating the dorsal ectoderm (e.g., sox2/3, otx2; Streit et al.,
2000). BMP activity upregulates the expression of tfap2a, foxil,
gata2/3, and dlx3/5 in the non-neural ectoderm (Nguyen et al.,
1998; Luo et al, 2002; Tribulo et al, 2003; Matsuo-Takasaki
et al., 2005; Esterberg and Fritz, 2009; Kwon et al., 2010;
de Croze et al., 2011).

Between the neural and non-neural ectoderm, the lateral
NB is characterized by high FGE high WNT, and low to
intermediate BMP activity, and uniquely marked by pax3/7
with an overlapping expression of tfap2a, msxI, zicl, gbx2,
and hes4 (Table 1). In contrast, the anterior NB is subjected
to high FGF/low BMP/low WNT levels (Figure 1C; Chang
and Hemmati-Brivanlou, 1998; Piacentino and Bronner, 2018;
Tambalo et al., 2020). The NB is progressively subdivided into
NC, PP, dorsal neural tube, and non-neural ectoderm progenitors.
Different relative levels of BMP and WNT activity control NC
induction and fate maintenance (Steventon et al., 2009; Steventon
and Mayor, 2012). It is not yet completely understood how
the activity levels of these pathways change dynamically in
time and space. One hypothesis is that morphogenesis during
neurulation positions the NB close to distinct parts of the
mesoderm over time: at mid/late gastrula stages, the dorsal-
lateral marginal zone (immature paraxial and intermediate
mesoderm precursors) is required for NC induction, while the
intermediate mesoderm (pronephros progenitors) maintains NC
identity at the early neurula stage. In frog and chick neurula
embryos, premigratory NC progenitors exhibit increased BMP
activity due to novel signaling modulators (Tribulo et al., 2003;
Kwon et al, 2010; Piacentino and Bronner, 2018). Although
it remains difficult to compare stages between different species,
in zebrafish embryos, a low level of BMP signaling is essential
for NC induction while it seems to inhibits PP formation
(Nguyen et al., 1998).

Emerging functions of other signaling pathways also contribute
to this complex patterning. Retinoic acid signaling contributes
to NC induction and migration (Villanueva et al., 2002; Martinez-
Morales et al., 2011). Notch signaling is required for bmp4
and snail2 expression, regulating NC induction and cell fates
at the neural NB (Endo et al.,, 2002, 2003; Hernandez-Lagunas
et al,, 2011). AKT signaling is required for premigratory NC
induction and maintenance (Sittewelle and Monsoro-Burg, 2018).

Transcription Factors Control Fate
Decisions at the Neural Border

The integration of those multiple signals triggers the activation
of specific TFs, which in turn bias NB cells towards a given
fate (Figure 1C). Tfap2a and Gbx2, the earliest genes involved

in NC induction, both activate msxl, pax3, and hes4
(Li et al., 2009; de Croze et al, 2011). Tfap2a is required
for both PP (sixl/eyal) and NC (foxd3) fates (Luo et al,
2003; Kwon et al.,, 2010; Pieper et al., 2012; Maharana and
Schlosser, 2018). In contrast, Gbx2 favors NC fate by inhibiting
six] expression (Li et al., 2009). Gata2/3 and Foxi TFs (frog
foxila and chick foxi3) promote the PP fate by directly
activating six] expression and also upregulating dIx3/5
expression (McLarren et al, 2003; Matsuo-Takasaki et al,
2005; Kwon et al., 2010; Sato et al., 2010; Pieper et al., 2012;
Khatri et al, 2014; Hintze et al, 2017). DIx3 (frog) and DIx5
(chick) are necessary for PP formation through enhancer-
mediated activation of sixI (Sato et al., 2005, 2010). On the
other hand, in mouse, chick, and zebrafish, Msx1 inhibits PP
fate by repressing sixI expression, thus promoting NC fate
(Zhang et al, 1997; Phillips et al., 2006; Sato et al., 2010).
Interestingly, a recent study in Xenopus suggests that Msx1 is
required for sixl/eyal expression, as Msx1 depletion slightly
decreases sixI expression, while its overexpression expands six1/
eyal ectopically (Maharana and Schlosser, 2018). These seemingly
contradictory results may be explained by distinct stage-specific
requirements for each gene in different experimental settings.
Accordingly, it is known that certain genes, like tfap2a and
msx1, are also required for later NC developmental steps (de
Croze et al, 2011; Rothstein and Simoes-Costa, 2020).
Mechanistically, the Tfap2a protein dimerizes with either Tfap2c
or Tfap2b, at NB and NC stage, respectively, to activate different
sets of targets (Rothstein and Simoes-Costa, 2020).

The NB marker Pax3 and the more anteriorly localized
Zicl factor are necessary and sufficient for inducing NC and
PP in “naive” ectoderm (Monsoro-Burq et al., 2005; Hong and
Saint-Jeannet, 2007; Milet et al., 2013; Bae et al., 2014; Plouhinec
et al., 2014). In vivo and in ectoderm explants, fate choice is
controlled by their relative levels: high Pax3 promotes a hatching
gland fate (frog-specific ectoderm cell type), high Zicl promotes
PP fate, while a combination of Pax3 and Zicl promotes NC
fate. Zicl induces PP fate in a DIx3-dependent manner while
Pax3 strongly represses sixl/eyal expression (Maharana and
Schlosser, 2018). Pax3/Zic1 together lead to the direct expression
of the NC specifiers snail, snai2, and foxd3 (Milet et al., 2013;
Plouhinec et al., 2014; Simoes-Costa et al., 2014). Consequently
in vivo, during gastrula NB stages, the PP forms in the Zicl-
positive/Pax3-negative anterior NB portion, while NC forms
in the region where Pax3 and Zicl overlap. Interestingly, there
is some overlap between pax3/7-negative and sixI/eyal-positive
areas, thus leading to an interesting conundrum: how are cells
sorted in this overlap region? In chick, a few NB cells continue
expressing combinations of fate-specific markers until neurula
stages and ultimately get sorted into their final domains (Roellig
et al, 2017). Future studies considering the temporal and
morphogenetic differences in the neurulation between different
species will further address this question.

Several recent transcriptomics screens have uncovered novel
regulators of NC/PP fate choice (Table 1). For example, in
Xenopus, hes4 (hairy2b) and znf703, expressed broadly at the
NB, are required for NC induction. Hes4 upregulates foxd3,
maintains NC multipotency, and, through the activity of Notch/
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Delta signaling triggering Id3, promotes NC differentiation
(Nagatomo and Hashimoto, 2007; Nichane et al., 2008a,b; de
Croze et al., 2011). Znf703, a target of Pax3 and Zicl, is
required for NC specifiers expression (Hong and St-Jeannet,
2017; Janesick et al,, 2019). In chick, Axudl, a target of WNT
signaling, cooperates with NB specifiers Pax7 and Msx1 for
NC induction (Simoes-Costa and Bronner, 2015), while Znf462
and Pdlim4 regulate foxi3 and dix5 respectively, affecting PP
development (Hintze et al., 2017). These studies highlight the
urgent need for functional studies weaving those numerous
novel regulators into the current scaffold of the NB-GRN.

DISCUSSION

Research in multiple model systems has highlighted essential
elements of the GRN governing NB induction and NC/PP
fate choice (a frog-specific simplified NB-GRN is shown in
Figure 1C). Importantly, the functions of the key regulators
are largely conserved across species (Table 1). However major
questions remain unanswered. Genetic and transcriptome screens
show that the NB-GRN is largely incomplete. Moreover, while
complex epistasis relationships begin to be established, most
direct regulations await a functional validation. Furthermore,
complex feed-back and feed-forward mechanisms between
signaling pathways and NB specifiers remain incompletely
understood (Litsiou et al., 2005; Garnett et al., 2012). BMP
signaling activates Tfap2a, Foxil, and Gata3, which then regulate
each other (McLarren et al., 2003; Ahrens and Schlosser, 2005;
Litsiou et al,, 2005; Kwon et al., 2010; Pieper et al., 2012;
Khatri et al., 2014). Gata2 upregulates both BMP and WNT
ligands (Sykes et al., 1998). The NB specifiers Pax3, Zicl, Msx1,
Hes4, and Tfap2a regulate each other in a feed-forward loop
and require additional WNT signaling (Monsoro-Burq et al.,
2005; Sato et al., 2005; Maczkowiak et al, 2010; de Croze
etal., 2011; Simoes-Costa and Bronner, 2015). Frog PP specifiers
six1/eyal affect NB and NC specifiers expression (pax3, foxd3)
as well as NB inducers (tfap2a, msx1, dlx3, gata2, foxil; Maharana
and Schlosser, 2018). As a whole, these complex cross-talk
and feedback regulations stabilize fate choices.

Another debated question is how multipotency, a key
characteristic of NC and placodes, is controlled during NB
development (Baggiolini et al., 2015). Whether high (NC) or
more limited (placodes), the diversity of NC/placode derivatives
surpasses other cells’ potential at a similar stage and promotes
the formation of the New Head. While the molecular basis
of placode multipotency remains unexplored, a first model
has proposed that NC progenitors retained blastula-type
multipotency (Buitrago-Delgado et al., 2015). However, this
model is debated since single-cell transcriptomes have shown
that the multipotency gene signature proposed by Buitrago-
Delgado et al. was not specific to multipotent cells (Briggs
et al., 2018). Rather, functional analysis of the vertebrate-specific
genetic innovations Nanog/Oct4 (and their orthologs Ventx/
Pou5) before or after gastrulation rather suggests that NC
progenitors de novo activate pluripotency regulators after NB
induction (Scerbo and Monsoro-Burg, 2020). This reinitiates

multipotency and promotes the ectomesenchyme fate. From
an evolutionary perspective, the cranial NB/NC-GRN requires
Ventx/Nanog, Pou5/Oct4 and later NC specifier Ets1 to promote
jawed structures formation in gnathostomes (Simoes-Costa
and Bronner, 2016; Martik et al., 2019; Soldatov et al., 2019;
Scerbo and Monsoro-Burq, 2020). Later on, NC specifiers’
downregulation leads to the loss of pluripotency and the
initiation of cell differentiation (Dottori et al., 2001; Sasai et al.,
2001; Teng et al., 2008; Betancur et al, 2010; Mundell and
Labosky, 2011; Dupin et al., 2018).

Despite their limitations, all these studies shed light on the
two alternative models proposed for NB development. The
“binary competence” model proposes that early in development,
the competence to develop either NC or placodes is restricted
to the NB and the non-neural ectoderm, respectively (Schlosser,
2008; Pieper et al, 2011, 2012). The “NB” model proposes,
that early on, the multipotent NB generates both NC and PP,
the relative positions of which are determined at later stages
by distinct specifiers. Recent experiments suggest a combination
of both models in vivo: at blastula to late-gastrula stages, the
multipotent NB shows co-expression of markers of either fate
and no spatial segregation of fate-biased cells (NB model),
but as development proceeds, the capability to form either
NC or PP would restrict to subzones of the border (binary
competence; Roellig et al., 2017; Briggs et al., 2018; Maharana
and Schlosser, 2018). When single-cell transcriptomics studies
will explore these early stages with increased resolution in the
near future, it will be interesting to re-evaluate how cell lineage
choices are controlled at the NB. Altogether, the recent functional
analyses of early ectoderm patterning have shed important
novel information, increasing knowledge of the GRN acting
to promote NC and/or PP for the benefit of future studies of
human pathologies.
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