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Nonsense mutations that lead to the insertion of a premature termination codon (PTC) in
the cystic fibrosis transmembrane conductance regulator (CFTR) transcript affect 11%
of patients with cystic fibrosis (CF) worldwide and are associated with severe disease
phenotype. While CF rat models have contributed significantly to our understanding
of CF disease pathogenesis, there are currently no rat models available for studying
CF nonsense mutations. Here we created and characterized the first homozygous CF
rat model that bears the CFTR G542X nonsense mutation in the endogenous locus
using CRISPR/Cas9 gene editing. In addition to displaying severe CF manifestations
and developmental defects such as reduced growth, abnormal tooth enamel, and
intestinal obstruction, CFTR G542X knockin rats demonstrated an absence of CFTR
function in tracheal and intestinal sections as assessed by nasal potential difference
and transepithelial short-circuit current measurements. Reduced CFTR mRNA levels
in the model further suggested sensitivity to nonsense-mediated decay, a pathway
elicited by the presence of PTCs that degrades the PTC-bearing transcripts and thus
further diminishes the level of CFTR protein. Although functional restoration of CFTR
was observed in G542X rat tracheal epithelial cells in response to single readthrough
agent therapy, therapeutic efficacy was not observed in G542X knockin rats in vivo. The
G542X rat model provides an invaluable tool for the identification and in vivo validation
of potential therapies for CFTR nonsense mutations.

Keywords: cystic fibrosis, nonsense mutation G542X, rat model, rat epithelial cells, translational readthrough

INTRODUCTION

Cystic fibrosis (CF) is an autosomal recessive disease that affects 1 in 2,500 births among the people
of European descent (Rowe et al., 2005; Quon and Rowe, 2016). As a multi-organ disease, CF
primarily affects epithelial cells in the intestine, respiratory system, pancreas, gall bladder, and sweat
glands (Quon and Rowe, 2016; De Boeck et al., 2017). Approximately 2,000 disease variants have
been described in the CFTR gene, and many lead to a disease phenotype (Mutyam et al., 2016;
Guimbellot et al., 2017). Of these, premature termination codon (PTC) mutations affect 11% of CF
patients worldwide.
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The substitution of single base pair in the genome leads to the
insertion of a premature stop codon (UGA, UAG, or UAA) in the
open reading frame of messenger RNA (mRNA), which is also
subject to degradation by the cellular surveillance mechanism
nonsense-mediated decay (NMD; Chang et al., 2007; Linde et al.,
2007; Keeling et al., 2014). People with nonsense mutations
exhibit a severe CF phenotype as a result of often severely
reduced transcript levels and production of little or no truncated,
and mostly non-functional, protein (Wilschanski, 2012). While
CFTR potentiators such as ivacaftor (VX-770) or correctors
such as lumacaftor (VX-809), tezacaftor (VX-661), or elexacaftor
(VX-445) are available for many CFTR mutations (Van Goor
et al., 2009; Ramsey et al., 2011; Ren et al., 2013; Wainwright
et al., 2015; Guimbellot et al., 2017; Davies et al., 2018; Sala
and Jain, 2018), there are no therapies currently available that
specifically address CFTR nonsense mutations. Certain drugs,
primarily aminoglycosides and ataluren (PTC124), have been
shown to induce readthrough at PTCs by facilitating an insertion
of near-cognate aminoacyl tRNA at the stop codon site in
experimental models (Wilschanski et al., 2003; Malik et al.,
2010; Sermet-Gaudelus et al., 2010; McDonald et al., 2017;
Sharma et al., 2020). However, none of these compounds has
significantly improved clinical outcomes, principally due to
insufficient efficacy (Smith et al., 1986; Molitoris, 1997; Linde
et al., 2007; Peabody Lever et al., 2020), lack of specificity, or
toxicity (Mingeot-Leclercq and Tulkens, 1999; Saleh et al., 2016).

Animal models of CFTR nonsense mutations are essential
tools to understand the biological consequences of stop codon
readthrough therapy. Current animal models are primarily
murine species that have been generated either with no
CFTR channel (Clarke et al., 1992; Snouwaert et al., 1992),
endogenous knockin (i.e., within the native locus) CFTR G542X
mutations (McHugh et al., 2018), or a hypermorph with
non-endogenous/transgenic CFTR containing G542X mutations
(Du et al., 2002, 2006; Keiser and Engelhardt, 2011; Wilke et al.,
2011). Furthermore, CFTR transgenic mouse models express
human CFTR cDNA which are not subject to NMD, thus limiting
the detection of definite readthrough in in vivo settings. Although
these mice models have proven useful for understanding
the CF intestinal phenotype, they have failed to recapitulate
human airway physiology (Scholte et al., 2004), unlike pigs,
ferrets, and rats. Therefore, an animal model beyond murine
species that exhibits more defined CF lung pathophysiology and
expresses CFTR nonsense mutations in an endogenous CFTR
locus is needed.

Previously, we developed a CF knockout rat model that
enables the longitudinal study of muco-obstructive lung disease
characteristic of CF patients (Guilbault et al., 2007; Rogers et al.,
2008; Birket et al., 2018), providing some advantages over other
available species. More recently, the G551D gating mutation
has been introduced into CF rats, permitting pharmacological
research (Birket et al., 2020). For the present study, we
generated a knockin CF rat expressing the CFTR G542X
mutation within its native locus. We also assessed the effects of
readthrough treatment on CFTR function in vivo in the model,
as well as in vitro using rat tracheal epithelial cells (RTECs)
(Stasi et al., 2015).

MATERIALS AND METHODS

Ethical Approval
This study was carried out in compliance with the guide for the
Care and Use of Laboratory Animals of the National Institutes
of Health. Protocols were approved by Horizon Discovery, Inc.,
or University of Alabama at Birmingham (UAB) Institutional
Animal Care and Use Committee (IACUC; UAB Approval
Number 09479). All procedures were performed under sodium
pentobarbital or ketamine/xylazine/acepromazine anesthesia,
with all efforts made to minimize animal suffering.

Generation of the G542X-CFTR Rat
Model
The Cftr G542X point mutation rat model was designed and
generated by Horizon Discovery (now Envigo RMS, Saint
Louis, MO, United States) using CRISPR-based technology.
Specifically, a Cas9 single guide RNA (sgRNA) targeting to the
rat Cftr gene Gly542 (c.1652)-encoding site was transcribed
in vitro using T7 RNA polymerase-based in vitro transcription
methods from a DNA template (Kouranova et al., 2016).
The DNA template was amplified by overlapping PCR with
a forward oligo DNA containing the T7 promoter, an sgRNA
target site, and a reverse oligo DNA complementary to a
Cas9 tracrRNA sequence (Kouranova et al., 2016). To validate
sgRNA activity, the in vitro transcribed sgRNA was purified,
quantified, and nucleofected into rat C6 cells that stably express
SpCas9 using Lonza’s nucleofection kit. Twenty-four hours post
nucleofection, the sgRNA-transfected cells were collected and
genomic DNA was extracted. A DNA fragment flanking the
sgRNA target site in the rat Cftr gene was PCR amplified
using Cel1-F and Cel1-R primer pair (Supplementary Table 1).
The Cas9/sgRNA cutting efficiency was quantified by Surveyor
mutation assay (Transgenomic SURVEYOR kit) using previously
described methods (Carbery et al., 2010). The validated active
sgRNA targeting GAACAAGACAACACAGTTCT(TGG) of the
rat Cftr gene was complexed with SpCas9 protein to form
ribonucleoprotein (RNP) complex prior to delivery into rat
embryos (Figure 1). An oligo donor DNA comprising the
G542X coding sequence and ∼68nt homology arms on each
side was synthesized by IDT (Supplementary Table 1). The
oligo donor DNA along with the Cas9/sgRNA RNP complex
was nucleofected into fertilized one-cell stage rat embryos
isolated from superovulated Sprague-Dawley donor females
using a method described previously (Kouranova et al., 2016).
Following microinjection, 25–30 eggs were transferred into each
pseudopregnant female rat. Cftr mutant rats were birthed 3 weeks
later. Tail or toe biopsies from those live births were collected
for genomic DNA extraction and analysis to identify founder
rats by PCR and Sanger sequencing. Specifically, genomic DNA
extracts from those rats were screened for correct integration
of this G542X point mutation by PCR and Sanger sequencing
with the Cel1-F and Cel1-R primer pair (Supplementary
Table 1). Sanger sequencing data show that out of 42 rats
genotyped, at least 15 rats had the expected G542X mutation
(representative wild type and G542X rat sequences are shown
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FIGURE 1 | Generation of CF G542X rats. (A) A Cas9 sgRNA was designed to target close to the desired Cftr Gly542 encoding site. The partial wildtype (WT) and
targeted allele DNA sequence (5′–3′) are listed along with their respective encoding amino acid sequences (N-C, shown above their codons). The gRNA binding site
and PAM site (TGG) is underlined. The single point mutation (G to T) mutation changes the amino acid from Gly542 to a stop codon X, both of which are shown in
red. The bottom two panels are Sanger sequencing data from a wildtype and a biallelic G542X mutation rats, respectively. (B) Body size. (C) Dentition shows
yellowish brown enamel in wild type (left) and white incisors in G542X (right). (D) Gross ileal section showing intestinal blockage in G542X rat. (E) Mean values of
body weight by age from wild type and G542X rats. (F) Survival curve for G542X rats with and without treatment with enteral PEG as compared to wild type rats.
N = 8–10 animals per group.

in the Supplementary Material). Among those 15 founder rats,
in addition to the desired G542X mutation, most of those
founders also have other NHEJ-based insertion or deletion
mutations at the target site, indicating mosaicism genotype in

the founder stage. Three samples show a single chromatogram
peak at the desired G542X mutation site, suggesting the same
biallelic G542X mutation in those three founders (Figure 1).
Selected G542X founder rats were backcrossed to wild type
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Sprague Dawley rats to generate heterozygous F1 rats. The
genotype of all F1 rats was revalidated by PCR and Sanger
sequencing using the same Cel1 primer set. Animals were bred
and housed in standard cages maintained on a 12 h light/dark
cycle with ad libitum access to food and water. Routine health
monitoring of the colony was performed at IDEXX (Columbia,
MO, United States) and indicated no evidence of infection
with known serious pathogens. All animal generation work
at Horizon Discovery was performed in accordance with the
approved animal protocol (Protocol # 001) overseen by Horizon
Discovery’s IACUC.

Propagation of the Strain
Male and female Sprague-Dawley CFTR rats heterozygous
for the G542X mutation were bred to produce wild type
and G542X-homozygous rats. Litters remained with lactating
dams through 21 days post birth. Following identification by
sequencing, wild type and G542X rats were weaned and were
provided regular chow, DietGel R© 76A, and water containing
polyethylglycol (236 g, GoLytely, Braintree Laboratories, Inc.) to
reduce intestinal blockage.

Gene Sequencing
Tail snips were taken between 10 and 14 days after birth
for collection of genomic DNA using the Accuris 1 Hour
Mammalian Genotyping Kit (Stellar 87 Scientific, Baltimore, MD,
United States). One microliter DNA was mixed with 0.5 µL
of each primer (forward 5′TTAACCAGCTAAGTGAATTGCAT
and reverse 5′CCCTAGAGACAGAGCACAAGC, Integrated
DNA Technologies, Skokie, IL, United States) and evaluated
under standard PCR conditions: 95◦C for 5 min, followed by 35
cycles of 95◦C for 30 s, 60◦C for 30 s, and 68◦C for 40 s, with a
final fixed cycle at 68◦C for 5 min, resulting in an amplification
of a 357bp sequence spanning the point mutation. Samples were
subsequently purified with the USB PCR Product Pre-Sequencing
Kit (Thermo Fisher Scientific, Waltham, MA, United States) and
sequenced using the Sanger method.

Western Blotting
Intestinal tissue was homogenized in PBS on ice followed by
lysis in RIPA buffer (Thermo Fisher Scientific, Rockford, IL,
United States) with Halt protease inhibitor cocktail (Thermo
Fisher Scientific), as previously described (Tuggle et al., 2014).
Protein quantification was performed using the BCA assay kit
(Thermo Fisher Scientific). Samples were mixed with 4× sample
buffer and incubated at 37◦C for 10 min. Equal amounts of
protein (20 µg) were loaded for electrophoresis. Wild type
Sprague-Dawley rat trachea and lung extract were used as positive
controls for CFTR detection. Membranes were then blocked in
5% non-fat dry milk dissolved in PBST, followed by incubation
with monoclonal anti-CFTR (1:3,000; UNC 596) and mouse
monoclonal anti-β-actin (1:5,000; Thermo Fisher Scientific), and
subsequently goat anti-mouse secondary antibody conjugated
to HRP (1:10,000; Dako North America, Inc.). Images were
captured by ChemiDocXRS (Bio-Rad) using SuperSignal West
Femto ECL kit (Thermo Fisher Scientific).

Real Time Reverse-Transcriptase
Quantitative PCR
RNA was isolated from rat tissues (lung and ileum) and
tracheal epithelial cells using an RNAeasy isolation kit (Qiagen).
RNA quality was measured using a NanoDrop (Thermo Fisher
Scientific). Real-time polymerase chain reaction (RT-PCR) was
performed using TaqMan RNA to Ct 1-Step kit in Quant
Studio3 applied BioSystems (Thermo Fisher Scientific). Relative
transcript levels were normalized to Gapdh. Two additional
housekeeping genes (Hprt and Rps9) were also tested in a
confirmatory study (Supplementary Figure 2). Primers were
purchased from Life Technology (see Supplementary Table 2 for
the list of primer ID numbers).

Nasal Potential Difference
Calomel electrodes and electronic data capture (AD Instruments)
were used to measure potential difference as previously described
for rats, mice, and humans (Pyle et al., 2010; Solomon et al., 2010;
Tuggle et al., 2014; Kaza et al., 2017). Ketamine (200 mg/kg)
and xylazine (30 mg/kg) intraperitoneal injection were used to
anesthetize rats. Nasal cavities were perfused sequentially with
(1) Ringer’s solution containing 140 mM NaCl, 5 mM KCl,
1 mM MgCl2, 2 mM CaCl2, 10 mM HEPES, and 100 µM
amiloride (pH 7.3); (2) with amiloride; (3) Cl−free Ringer’s
solution (6 mM Cl−, pH 7) with amiloride; (4) Cl−free Ringer’s
solution, amiloride, and forskolin (20 µM); and (5) Cl−free
Ringer’s solution, amiloride, glybenclamide, and CFTRInh-172
(10 µM) as performed earlier (Tuggle et al., 2014). Each condition
was perfused at a steady flow rate of 1.5 ml/h for 5 min or until a
stable signal was achieved.

Intestinal Short-Circuit Current (Isc)
Measurements
Isc measurements of intestinal ileal sections were obtained using
Ussing chamber analysis under voltage clamp conditions as
previously described (Du et al., 2002; Tuggle et al., 2014). Four
to six tissue segments approximately 5–6 mm in length sectioned
5 cm above the cecum were dissected as previously described
(Tuggle et al., 2014), and incubated in TTX (Tetrodotoxin,
3.3 × 10−4 µM in PBS) for 10 min to block neuronal
action potential by binding to voltage-gated sodium channels.
Intestinal segments were mounted as flat sheets onto sliders
(area ∼0.16 cm2). Bath solutions were constantly circulated
with 95% O2:5% CO2. Ringer’s solution (in mM) 120 NaCl, 25
NaHCO3, 3.33 KH2PO4, 0.83 K2HPO4, 1.2 CaCl2, 1.2 MgCl2,
and 10 glucose was used for monitoring Isc. Ion transport
associated with phospholipase C or A2 activity was blocked
by adding indomethacin (10 µM) to both chambers. Tissues
were equilibrated for 10 min in Ringer’s solution followed by
10 min of recording. Low Cl− Ringer’s contained (in mM) 1.2
NaCl, 25 NaHCO3, 3.33 KH2PO4, 0.83 K2HPO4, 1.2 CaCl2,
1.2 MgCl2, 141 Na gluconate, and 10.8 mannitol. Mucosal side
chambers were changed to 1:1 regular Ringer’s:low Cl− Ringer’s.
After 15–20 min of incubation, forskolin (10 µM) and IBMX
(3-Isobutyl-1-methylxanthine, 100 µM) were added to both
chambers for 15–20 min, followed by addition of glybenclamide
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(200 µM) to block forskolin-activated CFTR Isc. Because
polyethylene glycol (PEG) used to prevent intestinal obstruction
can reduce intestinal ion channel activity, PEG was omitted
2-3 days before necropsy.

Tracheal Isc Measurements
Isc measurements were performed as described in previous
studies under voltage clamp conditions in Ussing chambers
(Physiologic Instruments) (Tuggle et al., 2014). Briefly, trachea
were excised, opened longitudinally, and sectioned into 1–2
segments. Tracheal tissues were mounted as flat sheets in
Ussing chambers (area ∼0.031 cm2). Chambers were constantly
maintained at 37◦C and bubbled vigorously with 95% O2:5%
CO2. Tissue segments were equilibrated for 10 min in regular
Ringer solution that contained (in mM) 120 NaCl, 25 NaHCO3,
3.33 KH2PO4, 0.83 K2HPO4, 1.2 CaCl2, 1.2 MgCl2, and
10 mannitol to establish a baseline. This was followed by
administration of CFTRInh-172 (10 µM) to block constitutively
active CFTR-dependent chloride current, and then sequential
addition of amiloride (100 µM), ATP (10 µM), and bumetanide
(100 µM). Isc divergence was calculated after subsequent
attainment of stable plateau after baseline and CFTR inhibitor
treatment for several minutes for each sample as previously
reported (Tuggle et al., 2014).

Rat Tracheal Epithelial Cell Culture
Rat trachea were dissected and placed immediately in 10 ml
RTEC media [500 ml F12 media, 5 ml of 5,000 units/ml
Penicillin-Streptomycin (Thermo Fisher Scientific), and 25 µg
amphotericin (Sigma Aldrich)]. Once the connective tissue was
removed from the trachea, it was processed with lumen exposed
in 10 ml Pronase solution [10 ml RTEC media and 15 mg
Pronase (Sigma Aldrich)] overnight at 4◦C. On day 2, tubes
containing tracheal tissue were rocked a few times and kept at
4◦C for 30–60 min. Tracheae were then washed a few times
using RTEC media (500 ml F 12 media, 100 ml heat inactivated
FBS, 25 µg amphotericin) in 15 ml tubes by inverting. RTEC
media supernatants were then mixed with the Pronase solution
and centrifuged at 1400 rpm for 10 min at 4◦C. The pellet was
resuspended in 2 ml DNase solution (Sigma Aldrich) [18 ml
F12 media, 2 ml BSA (10 mg/ml), and 10 mg DNase1]. The
cell suspension was centrifuged at 1400 rpm for 5 minutes at
4◦C and the resulting pellet was resuspended in 8 ml of RTEC
media (475.5 ml of DMEM/F12 media, 7.5 ml 1M HEPES,
10 ml of 200 mM glutamine, 2 ml of 7.5% NaHCO3, 5 ml of
100X Penicillin-Streptomycin, and 25 µg amphotericin). The cell
suspension was then plated on a T25 flask and incubated at 37◦C
for 5 h. Cells were pooled from the flask, and the flask was rinsed
twice with RTEC media, followed by centrifugation of the cell
suspension at 1,400 rpm for 10 minutes at 4◦C. The pellet was
resuspended in RTEC media with 5 ml of heat-inactivated FBS
and cells were seeded (7.5 × 104–1 × 105 cells/well) on filters
pre-coated with collagen-1 at a liquid–liquid interface. Cells were
cultured in complete PneumaCult-Ex (Stem Cell Tech) media
for one week. After the seventh day, cells were maintained at
air–liquid interface with PneumaCult Maintenance (Stem Cell
Tech) media supplemented to the basolateral surface only.

RTEC Isc Measurements
Rat tracheal epithelial cell Isc was assessed similarly as above
in Ussing chambers with a baseline and amiloride inhibition
measurements in Ringer’s solution followed by addition of low-
Cl− + amiloride solution in the mucosal side of the chamber,
administration of forskolin (10 µM), and finally CFTRInh-172
(10 µM). Isc alterations resulting from CFTR agonist and
antagonist treatments were obtained once a stable plateau was
achieved in all electrophysiological measurements.

Pharmacokinetic Drug Levels by Liquid
Chromatography-Mass Spectroscopy
Rats were treated with amikacin (170 mg/kg, Sigma) once daily
for 5 days by subcutaneous dosing. Blood samples were collected
24 h before the final dosing from tail veins and 1 h after the final
dosing by heart puncture to measure steady state plasma levels
using liquid chromatography–mass spectroscopy (LC-MS).

Statistical Analysis
Data are presented as mean ± SEM or as individual
data points. Unpaired two-tailed Student’s t-test or one-way
ANOVA was used where appropriate for measuring statistical
significance. For survival analysis, Kaplan–Meier survival curves
were plotted. Analyses were performed using Prism software
(GraphPad Inc.), and differences were regarded as statistically
significant at P ≤ 0.05.

RESULTS

Generation of CFTR G542X Knockin Rats
and Litter Demographics
G542X knockin rats were generated using CRISPR-Cas targeting
of c.1624 to engineer a G > T point mutation (Figure 1A)
into fertilized embryos. Guide RNAs were designed to avoid
silent mutations and preserve the applicability of this model
for testing readthrough agents. In the first 50 microinjections,
15 founders were generated and identified by sequencing as
described above. Of the 15 founders, 3 pups were identified
to have the targeted point mutation on one allele, without
evidence of other variants introduced to the CFTR gene on the
second allele. These pups were bred to generate F1. Rats with
each genotype were born at the expected Mendelian frequency.
Heterozygotes did not display any differences from wild type
animals in general appearance and growth.

CFTR G542X Knockin Rats Exhibit
Developmental Defects
CFTR G542X rats displayed development-associated
consequences similar to those seen in CFTR knockout rats
(Tuggle et al., 2014; Stalvey et al., 2017). Marked growth
retardation in homozygous rats was observed after 21 days of
age, although body sizes between groups appeared similar at
birth. At day 28 after birth, the G542X rats looked smaller in size
(Figure 1B), their teeth had thick enamel deposits (Figure 1C),
and they exhibited intestinal obstruction typically occurring at
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the time of weaning (Figure 1D). Although body weight was
generally preserved (Figure 1E), intestinal obstruction limited
survival (30% survival at 3 weeks after weaning) as compared to
wild type rats (100% survival, Figure 1F, P< 0.001). The addition
of PEG as a dietary supplement improved life expectancy to 70%
(P = 0.1573 Figure 1F). Together, CFTR-G542X knockin rats
exhibited developmental abnormalities, retarded growth, and
intestinal obstruction as observed in established CFTR knockout
rats (Tuggle et al., 2014) and human subjects (Ferrazzano et al.,
2012; Mentessidou et al., 2018).

Bioelectric Measurements
Assessment of nasal potential difference (NPD) has been widely
used to evaluate ion transport defects in vivo in rat, mouse,
and ferret models of CF and other diseases characterized by
alterations in ion channel activity (Kaza et al., 2017). We used
NPD to assess CFTR activity in the upper airways of G542X and
wild type rats (representative tracings, Figure 2A). There was no
difference between wild type and G542X rats following perfusion
with amiloride (G542X−5.6± 1.4 mV, wild type−3.7± 0.9 mV,
Figure 2B), as we have observed with CF knockout rats (Tuggle
et al., 2014; McCormick et al., 2018). G542X rats exhibited
no CFTR-dependent hyperpolarization following perfusion with

chloride-free Ringer’s solution plus forskolin, whereas responses
in wild type littermates were typical of other non-CF species
(G542X = −0.4 ± 1.5 mV,wild type = −13.4 ± 3.5 mV,
P< 0.01, Figures 2A,C) and prior publications (Kaza et al., 2017).
Similarly, changes in potential difference after perfusion with
CFTR antagonists GlyH101 plus CFTRinh-172 showed moderate
inhibition in wild type rats, but there was no response in G542X
rats (G542X =−0.3± 0.6 mV, wild type = 1.6± 0.3 mV, P < 0.05,
Figure 2D). These measurements demonstrate the absence of
CFTR activity in the nasal lumen of CFTR G542X rats.

Tracheal Isc Measurements
We next investigated CFTR-dependent ion transport in
tracheal tissues evaluated ex vivo by Isc analysis, a definitive
measure of CFTR activity. Trachea from G542X animals
demonstrated diminished baseline Isc compared to wild type
(G542X = 25.5± 9.1 µA/cm2, wild type = 608.8± 33.4 µA/cm2,
P < 0.0001, Figures 3A–C), with minimal CFTRinh-172-sensitive
Isc in G542X relative to wild type (G542X = −5.4 ± 5.5 µA/cm2,
wild type =−392.7± 76.3 µA/cm2, P< 0.0001, Figures 3A,B,D).
The contribution of sodium-dependent currents was comparable
for both genotypes, as measured by addition of the ENaC
inhibitor amiloride (Figures 3A,B,E), findings consistent with

FIGURE 2 | Electrophysiologic defect by nasal potential difference (NPD) in G542X CFTR rats. (A) Representative NPD tracings from G542X and wild type rats
showing serial perfusion of Ringer’s, Ringer’s + amiloride, zero Cl, zero Cl + forskolin, and Glyh101 + CFTRInh-172. (B–D) Summary of change in PD following
perfusion with (B) amiloride (100 µM), (C) Cl-free + forskolin (20 µM), and (D) Cl -free + CFTR inhibitors (GlyH101 + CFTRInh-172, 10 µM each). N = 4–6
animals/group. ∗P < 0.05, ∗∗P < 0.01 by ANOVA with Tukey post hoc testing.
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FIGURE 3 | Functional and biochemical defects in the lung of G542X CFTR rats. (A) Representative tracheal Isc tracing from G542X and wild type rats with perfusion
of CFTRInh-172 (10 µM), amiloride (100 µM), ATP (10 µM), and bumetanide (100 µM). (B) Summary of tracheal Isc from G542X and wild type rats. (C–G) Summary
data showing baseline Isc (C), CFTRInh-172-mediated inhibition (D), amiloride inhibition (E), ATP peak (F), and bumetanide inhibition (G) in G542X and wild type rats.
Each point represents an individual animal. (H) Western blot of CFTR and ß-actin loading control in two pairs of G542X and wild type tracheal sections. N = 4–5
animals/group ∗∗P < 0.01, ∗∗∗∗P < 0.0001 by ANOVA with Tukey post hoc testing.

NPD (Figures 2A,B). ATP addition generated non-CFTR
dependent currents as evidenced by an acute increase in Isc
in both G542X (805.7 ± 236 µA/cm2) and wild type rats
(945.3 ± 363 µA/cm2, Figures 3A,B,F, P = NS). Similarly,
subsequent bumetanide strongly inhibited ATP-sensitive
currents in both wild type and G542X rats (Figures 3A,B,G).
In separate studies, we altered the order of ion transport
modulators, and applied amiloride and forskolin, followed by
ATP and bumetanide in Ussing chamber conditions. In these
studies, aside from the difference in baseline currents that
recapitulated prior experiments, we observed a compensatory
increase of ATP-dependent Cl− transport with truncated
CFTR (G542X rats) compared to wild type (Supplementary
Figure 1, stimulatory protocol), which has also been seen in
CFTR knockout rats and CF patients (Tuggle et al., 2014).
Western blot further corroborated functional data, as G542X
rats showed diminished CFTR protein expression in tracheal
sections compared to wild type CFTR rats (Figure 3H). These

findings suggest the absence of CFTR expression and activity in
G542X rat airways.

Intestinal Isc Measurements
CFTR protein is abundantly expressed in intestinal and rectal
tissues (Crawford et al., 1991; Mutolo et al., 2018). To confirm
the multi-organ ion transport defect in this rat model, we next
examined intestinal Cl− transport in excised ileal segments.
Ex vivo ileal Isc measurements showed significantly reduced
forskolin-stimulated current in G542X rats compared to wild type
(G542X = 29.8± 4.0 µA/cm2, wild type = 188.0± 11.7 µA/cm2,
P < 0.0001, Figures 4A,B). This was accompanied by lack of
GlyH101 inhibition in G542X rats versus the reduced currents
observed in wild type rats (G542X = 29.05 ± 2.77 µA/cm2, wild
type = −20.59 ± 4.692 µA/cm2, P < 0.01 Figures 4A,C). These
findings indicate the functional absence of CFTR activity in the
intestinal ileal epithelium, noting CF rats do have a small amount
of non-CFTR dependent forskolin-activated Isc.
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FIGURE 4 | Functional CFTR decrements by Isc analysis of small intestine of G542X rats. (A) Representative Isc tracings of ileal sections with serial perfusion of
forskolin (10 µM)/IBMX (100 µM) and the inhibitor glybenclamide (200 µM). (B) Summary of forskolin/IBMX-stimulated currents. (C) Summary of
glybenclamide-inhibitable currents. Each point represents an individual animal. N = 4 rats/group. ∗∗P < 0.01, ∗∗∗∗P < 0.0001 by ANOVA with Tukey post hoc testing.

Diminished CFTR mRNA Expression in
CFTR G542X Knockin Rats Compared to
Wild Type Rats
Nonsense-mediated decay plays an important role in
genetic diseases caused by nonsense mutations by degrading
PTC-bearing transcripts and can limit therapeutic efficiency
of readthrough agents (Linde et al., 2007; Silva and Romao,
2009; Kervestin and Jacobson, 2012; Keeling et al., 2013). This
provided a major impetus for the development of a knockin
G542X CFTR rat, rather than a transgenic species not subject to
NMD. To determine the degree of NMD-mediated degradation
of CFTR mRNA, we measured CFTR transcript levels in G542X
and wild type rats. Considering that NMD intensity can exhibit

different levels in different tissues (Geiger et al., 2008; Zetoune
et al., 2008; Thada et al., 2016), we examined mRNA levels in
both the right lung and ileum. Steady-state CFTR mRNA levels
relative to Gapdh were 6 times less abundant in G542X rat lung
and ileal sections compared to wild type (16% of wild type,
P < 0.0001 and P < 0.05, Figures 5A,B, respectively), indicating
the presence of robust G542X mRNA degradation. Comparison
with additional reference genes (Rps6 and Hprt) showed similar
findings (Supplementary Figures 2A,B).

Characterization of RTECs
To examine treatment modalities, address the poor availability of
human bronchial epithelial cells from donors homozygous for the

FIGURE 5 | Rescued CFTR transcript levels from lungs and ileal sections of G542X CFTR rats. CFTR transcript levels were evaluated using qRTPCR. (A) CFTR
mRNA levels relative to Gapdh from left lung section from G542X and wild type CFTR rats. (B) CFTR mRNA levels relative to Gapdh from ileal sections. N = 3–6
animals/group. ∗∗∗∗P < 0.0001 by ANOVA with Tukey post hoc testing.
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same PTC, and maximally utilize the G542X rat model, we next
characterized primary RTECs cultured at air-liquid interface.
We first examined CFTR transcript levels obtained from RTECS
derived from G542X and wild type rats, and found a 4-fold
mRNA reduction in G542X animals (P < 0.0001, Figure 6A).
This suggested that G542X mRNA was subjected to NMD
degradation in cell culture of isolated epithelial cells, as in tissues.
We then evaluated CFTR-associated Isc. CFTR G542X RTECs
showed significantly reduced forskolin-stimulated Isc compared
to wild type RTECs (G542 X = -0.3 ± 0.2 µA/cm2, wild
type = 68.6 ± 10.5 µA/cm2, P < 0.001, Figures 6B,C). In
addition, Isc was reduced by addition of CFTRInh-172 in wild
type, but not G542X RTECs (G542X = -0.3 ± 0.2 µA/cm2, wild
type = -49.1 ± 8.0 µA/cm2, P < 0.001, Figures 6B–D). These

findings further support the absence of CFTR activity in CFTR
G542X knockin rats.

Treatment With Readthrough Agents
Rescues CFTR Function in vitro
To examine CFTR functional improvements in response to
readthrough treatment therapies, we next evaluated the
aminoglycosides G418 and amikacin, agents known to induce
translational readthrough (Manuvakhova et al., 2000; Du et al.,
2006), in G542X RTECs. Dose-response studies evaluating
G418 at a dose range of 1–100 µM and amikacin at a range of
50–341.5 µM revealed that doses greater than 12.5 µM (G418)
and 341.5 µM (amikacin) disrupted the cell monolayer and

FIGURE 6 | Absent CFTR mRNA expression and CFTR-dependent Isc in rat tracheal epithelial cells (RTECs) derived from G542X and wild type rats. Cells were
grown on transwell filters until terminal differentiation. (A) CFTR mRNA levels relative to Gapdh in G542X cells compared to wild type RTECs. (B) Representative Isc

tracings in RTECs from each group showing serial addition of amiloride, low Cl + amiloride, forskolin, and CFTRinh-172. (C,D) Summary data showing change in
forskolin-stimulated Isc (B) and CFTRinh-172 mediated inhibition (C). N = 3–6 monolayers/condition. ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001 by ANOVA with Tukey post hoc
testing.
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corresponding Isc tracings (Supplementary Figures 3A–D). At
the optimal dose, G418 (3 µM) elicited statistically significant
rescue of CFTR function (1.4 ± 0.6 µA/cm2, P = 0.05), but
only approached ∼3% of wild type RTEC CFTR activity
(68.63 ± 18.2 µA/cm2), while amikacin (170.8 µM) did not
improve function (Figures 6A,B). The low efficacy of these
aminoglycosides in rescuing CFTR function is likely due in
part to the significantly reduced transcript levels (P < 0.05,
Figures 5A,B) for which single readthrough agent treatment
may not be sufficiently efficient in overcoming.

Readthrough Treatment Response in vivo
Although amikacin was not active in vitro, we next evaluated
the activity of amikacin in vivo based on the finding that
amikacin is more efficacious than gentamicin in humanized
CFTR G542X transgenic mice (McHugh et al., 2018) and noting
that G418 is toxic in vivo. To accomplish this, amikacin was
administered to G542X rats via subcutaneous injection at a high
dose (170 mg/kg daily for 12 days). The steady-state plasma
peak and trough levels of amikacin were 177.5 ± 37.5 µg/ml
and 0.6 ± 0.2 µg/ml, respectively, 24 h after the last treatment,
achieving adequate levels. We did not observe any adverse

effects in the treated rats, as determined by body weight,
measured daily during the treatments. To determine the
nonsense suppression effect of amikacin, we then measured Isc in
tracheal and intestinal sections following the 12-day treatment.
While baseline tracheal currents were significantly higher in
amikacin-treated G542X rats (treated −206.5 ± 35.2 µA/cm2

vs. untreated −25.5 ± 9.1 µA/cm2, P < 0.05, Figures 8A,B),
a potential indicator of a treatment effect, Isc reduction
with CFTRInh-172 was no greater in amikacin-treated
(2.9 ± 5.5 µA/cm2) vs. untreated (−7.3 ± 4.4 µA/cm2)
rats (Figures 8A,C), indicating this effect was likely not specific
to CFTR. We conclude that although amikacin as a readthrough
agent treatment was well-tolerated, there was no significant
treatment response likely because aminoglycoside therapy
could not overcome the effect of reduced levels of CFTR
transcripts via NMD.

DISCUSSION

In this study, we have generated and characterized a novel
CF rat model for the CFTR nonsense mutation G542X. To

FIGURE 7 | Increased CFTR-dependent Isc with treatment with the translational readthrough agent G418 but not amikacin in CFTR G542X RTECs. RTECs were
grown until terminally differentiated and then treated with the readthrough agents G418 (3 µM) and amikacin (170.8 µM) for 48 h before the assay.
(A) Representative Isc tracings for each condition showing serial perfusion with forskolin (FSK), VX-770, and CFTRinh-172 (10 µM, each). (B) Summary data of
forskolin-stimulated and CFTRinh-172-inhibited Isc. N = 2–5 filters/condition, ∗P < 0.05 by ANOVA with Tukey post hoc testing.

FIGURE 8 | The effect of amikacin treatment in vivo on effects on tracheal currents in G542X rats. Rats were treated with amikacin (170 mg/kg) subcutaneously daily
for 12 days, then underwent necropsy for tissue analysis. (A) Isc summary tracings. (B) Baseline Isc in G542X (treated and untreated) and wild type animals.
(C) CFTRInh-172-mediated inhibition in G542X (treated and untreated) and wild type rats. N = 3 animals/group. ∗P < 0.05, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001 by ANOVA
with Tukey post hoc testing.
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the best of our knowledge, this is the first report of a rat
model expressing a CFTR nonsense mutation. This model
will offer new opportunities to investigate the ramifications
of CF disease progression, severity, and respiratory pathology
resulting from CFTR nonsense mutations in a longitudinal
manner (Birket et al., 2018), as well as provide a relevant
animal model to study emerging therapies where the mucus
defect (Birket et al., 2018) or the pharmacology of CFTR (Birket
et al., 2016) are important parameters. As CFTR nonsense
mutations remain the largest untreated mutation type among
CF patients, this should help expedite research into these efforts,
as well as other diseases for which nonsense mutations play
an important role.

CFTR G542X knockin rats demonstrated severe CF
manifestations and developmental defects. CF-related
abnormalities included reduced growth, aberrant tooth enamel,
and meconium ileus (Figure 1), similar to observations
in CF rodent models and patients (Wright et al., 1996;
Arquitt et al., 2002; Meyerholz et al., 2010; Tuggle et al.,
2014; Stalvey et al., 2017). Reduced CFTR expression and
activity was evident in multiple organs (Figures 2–4). As
seen in adult CF knockout rats (Tuggle et al., 2014), G452X
knockin rats exhibit the unique electrophysiological phenotype
with constitutively active baseline CFTR current in ex vivo
tracheal sections, prior to cAMP stimulation (Figure 3 and
Supplementary Figure 1), as opposed to the neonatal rats where
pre-activation is not apparent (McCormick et al., 2018). NPD
results (Figure 2) were similar to knockout rats of similar age
(Tuggle et al., 2014).

Importantly, G542X knockin rats exhibited sensitivity to
NMD (Figure 5), a pathway highly relevant to the rescue of
nonsense mutations but distinct from transgenic mouse models
which do not exhibit this property (Du et al., 2006). CFTR
transgenic mice express human CFTR cDNA containing the
G542X mutation, but this does not result in intron splicing
that triggers NMD when a PTC is encountered during the
pioneer round of translation (Maquat, 2004; Du et al., 2006);
this substantially reduces the predictive capacity of transgenic
mice since humans with CFTR nonsense mutations exhibit
NMD sufficient to reduce transcript levels to 20–40% of normal
(Sharma et al., 2018; Clarke et al., 2019) and NMD is also
known to alter drug response to pharmacological therapy
directed against nonsense mutations (Linde and Kerem, 2011;
Sharma et al., 2020). Further, the human CFTR cDNA in
G542X mice is driven by a rat Fatty Acid Binding Protein
(FABP) promoter that results in high levels of intestinal-
specific expression, obviating the effects of low transcript levels
and limiting tissue assessments to the intestine where it is
expressed (Du et al., 2006). CFTR G542X rats should provide
a much more relevant system in these respects, while also
providing organ systems suitable for monitoring biochemical
and functional rescue of CFTR, in addition to gastrointestinal
and respiratory phenotypes. Future studies can be implemented
to understand the complexity of the specific NMD branches
involved in the recognition and degradation of the G542X CFTR
mutation, potentially leading to new insights and therapeutic
opportunities, since inhibition of NMD is under consideration

as a therapeutic approach (Huang et al., 2018; Sharma et al.,
2020). The G542X rat can also be used to evaluate drugs in
development targeting PTCs, including those identified from
high-throughput screens.

To help establish the principle that G542X CFTR knockin
rats could be useful in pharmacological drug development for
nonsense mutations, we evaluated translational readthrough
induced by clinically available aminoglycosides in addition to
the more efficacious tool compound G418 (geneticin) in vitro.
We chose aminoglycosides since they are the best studied
among readthrough agents, but note that aminoglycoside-
mediated translational readthrough has shown mixed results in
published studies since efficacy is marginal. Aminoglycosides
have partially restored CFTR expression and/or function in vitro
and in vivo in some studies (Howard et al., 1996; Bedwell
et al., 1997; Barton-Davis et al., 1999), while in several
others no definitive rescue of full-length functional protein has
been shown (Wilschanski et al., 2000; Dunant et al., 2003;
Politano et al., 2003; Howard et al., 2004). Unfortunately,
while in vitro activity could be observed with G418 in
RTECs (Figure 7), the safer but less active aminoglycoside
amikacin was not sufficient to restore CFTR activity either
in vitro or in vivo (Figure 8). While there was small degree
of normalization of baseline Isc of excised trachea, this was
not accompanied by increased forskolin stimulated Isc, nor
correction of NPD; we interpret this as an effect not specific
to induction of translational readthrough. This differs from
findings in transgenic G542X expressing mice, where amikacin
(Du et al., 2006), in addition to gentamicin (Du et al., 2002)
and other readthrough agents (Rowe et al., 2011; Xue et al.,
2014), have been shown to exhibit bioactivity. We expect
this is related to preserved CFTR mRNA in mice, but not
in knockin rats in vivo. The mRNA degradation in G542X
knockin rats was sufficient to comprise detection of the
low-level readthrough induced by amikacin (Figures 5,6), but
does not impact the G542X transgenic models that are not
affected by reduced mRNA transcript levels. It may be why
some therapies have shown to be efficacious in transgenic
G542X mice, but not active in human subjects (Clancy et al.,
2007). We suspect the G542X rat will provide a more specific
test of this question, and can be implemented sequentially
with transgenic mice within a drug evaluation program
for that purpose.

Supporting the use of G542X rats for in vivo applications,
we also developed a method to procure and test RTECs. This
may help address the limited availability of primary human
bronchial epithelial cells from individuals homozygous for CFTR
nonsense mutations that are necessary to assess readthrough
molecules and the concomitant use of CFTR modulators.
RTECs provide a potentially unlimited source to explore novel
therapies for nonsense mutations, and are amenable to Isc
analyses that are a mainstay of CFTR modulator development.
The close relationship between the properties of RTECs and
the in vivo and ex vivo evaluation of G542X rats with
respect to biochemical CFTR expression and electrophysiological
CFTR function suggest they will predict in vivo response
to rats, complementing reporter assays or transfected cell
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lines. Ultimately, given RTECs are primary in nature, and are
not devolved by repeated passaging, these cells may better
reflect the in vivo context and might ultimately be used to
help predict efficacy, as primary human bronchial epithelial
cells have been implemented for CFTR modulator therapies
(Clancy et al., 2019). It should be noted that the CFTR
sequence is native to rats, so treatments dependent on the
human sequence may not be reflected in studies involving the
G542X knockin rat.

Our results with amikacin treatments in vitro or in vivo
demonstrated that single readthrough agent therapy is not
sufficient to surpass the therapeutic threshold for CF nonsense
mutations when not over-expressed, and evaluated in the absence
of an active CFTR modulator to augment post-translational
CFTR activity of the resulting protein. The sensitivity to
NMD can cause serious repercussions for these therapies,
including dampening the efficacy of readthrough by lowering
the substrates available for readthrough treatment. Inhibition of
NMD could be a potential way to improve the availability of
PTC-containing transcripts for readthrough therapy. In addition,
approaches like tRNA suppression or gene therapies might
prove beneficial for CF patients bearing nonsense mutations
and this knockin G542X rat model provides an important
tool to test these therapies. Multi-agent therapy to augment
readthrough could be an alternative approach, and ultimately
evaluated in in vivo models such as the G542X rat we
have developed here.
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