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Currently, research in physiology focuses on molecular mechanisms underlying the
functioning of living organisms. Reductionist strategies are used to decompose systems
into their components and to measure changes of physiological variables between
experimental conditions. However, how these isolated physiological variables translate
into the emergence -and collapse- of biological functions of the organism as a
whole is often a less tractable question. To generate a useful representation of
physiology as a system, known and unknown interactions between heterogeneous
physiological components must be taken into account. In this work we use a Complex
Inference Networks approach to build physiological networks from biomarkers. We
employ two unrelated databases to generate Spearman correlation matrices of 81 and
54 physiological variables, respectively, including endocrine, mechanic, biochemical,
anthropometric, physiological, and cellular variables. From these correlation matrices
we generated physiological networks by selecting a p-value threshold indicating
statistically significant links. We compared the networks from both samples to show
which features are robust and representative for physiology in health. We found
that although network topology is sensitive to the p-value threshold, an optimal
value may be defined by combining criteria of stability of topological features and
network connectedness. Unsupervised community detection algorithms allowed to
obtain functional clusters that correlate well with current medical knowledge. Finally,
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we describe the topology of the physiological networks, which lie between random
and ordered structural features, and may reflect system robustness and adaptability.
Modularity of physiological networks allows to explore functional clusters that are
consistent even when considering different physiological variables. Altogether Complex
Inference Networks from biomarkers provide an efficient implementation of a systems
biology approach that is visually understandable and robust. We hypothesize that
physiological networks allow to translate concepts such as homeostasis into quantifiable
properties of biological systems useful for determination and quantification of health
and disease.

Keywords: physiological networks, complex inference network, homeostasis, anthropometric measures, blood
test biomarkers

INTRODUCTION

Communication and interaction between physiological systems
and organs are the essence of physiology (Ganong, 1969; Bashan
et al., 2012; Bartsch et al., 2015; Ivanov et al., 2016). This
integration of organisms as a whole results in an inherent
complexity of physiological phenomena (Burggren et al., 2005)
that has implications for the behavior of physiological systems
in health and disease. For example, it has become clear that
the simultaneous occurrence of diseases in the same individual
(comorbidity) occurs more often than would be expected from
the individual prevalence of each disease by chance alone
(Alberti et al., 2009). Additionally, when a comorbid state is
present, the clinical expression of each individual disease is
usually more difficult to treat and associated with worsened
outcomes (Wu et al., 2019). Although these observations are
common in medical practice, relatively few health conditions
are regarded with an extensive perspective. Some of the most
common examples are the metabolic syndrome (Alberti et al.,
2009), and the asthma-obesity-diabetes triad (Wu et al., 2019).
Mainstream methodology in disease diagnosis and disease
treatment employs a reductionist approach to physiology,
where at most two variables are studied simultaneously. This
presents an immediate challenge for the study of complex
comorbidities where several physiological systems are involved.
An emerging paradigm for this problem is the systems biology
perspective, where the organism is visualized as an open
system composed of interacting components (Von Bertalanffy,
1968). The integration of these body components generates
physiological states that can be studied in health and disease
through complexity approaches (Ivanov et al., 2016). A way of
representing and conceptualizing systems is through networks.
This approach facilitates the visualization and analysis of
potentially large numbers of interactions (Pavlopoulos et al.,
2011). Networks have been applied in very diverse fields of
science, including economy, sociology, ecology, and they have
been generalized recently for the study of biomedical sciences
(Albert and Barabási, 2002; Boccaletti et al., 2006). Currently,
most approaches to network analysis in biomedical science are
restricted to homogeneous datasets, i.e., where all the variables
and interactions are of the same kind, e.g., differential gene
expression networks. However, physiology is not constructed

from interactions between components that are all of the
same kind. Some novel approaches to address physiological
networks have been developed where physiological integration of
different systems within the organism is demonstrated through
time-series analysis (Ivanov and Bartsch, 2014). Multiple time
scales may be involved in different physiological interactions
and their measurements (Bartsch et al., 2014). For instance,
some physiological interactions occur in seconds and are
measured with great accuracy in fractions of seconds. Other
physiological interactions occur in cycles of days or months
and may only be quantified as isolated point measurements
and not continuously as time series (Barajas-Martínez et al.,
2020). Moreover, while networks are usually constructed through
links that are associated with known, experimentally verified
interactions, such as the Kyoto Encyclopedia of Genes and
Genomes, KEGG (Ogata et al., 1999), it is likely that certain
important interactions in biological systems remain unknown.
The methodology of Complex Inference Networks allows the
construction of networks where the links are inferred, instead
of being directly observed. Correlation networks are a common
and widespread method to make such inferences (Batushansky
et al., 2016) that may be later verified through conventional
mechanistic studies. A network approach provides also a new
level of study where global properties of the system, that are not
apparent at the local level, emerge from the interactions of the
multiple components. These interactions are revealed by changes
in topology and connectivity (Ivanov and Bartsch, 2014).

How to approach multivariate datasets to generate insight in
physiology is an area under development. Principal Component
Analysis (PCA) and network analysis are two current data
analysis techniques that have been transferred to biology from
other areas of science (Liu et al., 2015; Asada et al., 2016).
The coupling between physiological variables can be explored
through the change in the covariance observed in different
samples (Hofer and Sliwinski, 2001). For correlation networks, an
association would be found between those variables that interact
directly or indirectly within the physiological network. Here, the
physiological network is modeled as a continuous association
of pairs of variables. For this correlation model, a correlation
matrix was constructed for the chosen physiological parameters.
These variables are often of different nature, ions in solution,
mechanical forces and hormones. Their interactions are also
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of different kinds, direct and indirect, through very different
physiological mechanisms. In summary, physiological variables
are correlated along all their biologically plausible spectrum. In
this scenario, the associations between parameters are present
even for healthy values and represent a continuum. From the
systems biology perspective, the network structure is a direct
result of the coordination, or lack thereof, of components that are
linked by homeostatic feedback (Goldstein, 2019). For example,
in a simple negative feedback a change in a regulated variable
is detected by a comparator in the organism that through
effector variables counteracts the perturbation (Fossion et al.,
2018). These variables, along with buffer variables, result in the
covariance of multiple variables in biological systems.

The aim of this work is to generate a mainstream workflow for
developing physiological networks from heterogeneous datasets
including endocrine, mechanic, biochemical, anthropometric,
vital signs, and cellular elements that are readily accessible
and already being employed without a holistic perspective. In
this contribution we have constructed a physiological network
for control subjects (young adults, asymptomatic, clinically
diagnosed as healthy) from physiological, biochemical, and
anthropometric data.

METHODOLOGY

Ethics Statement
The study was developed according to Good Clinical Practice
guidelines and the Declaration of Helsinki. All procedures
involving participants were in accordance with these ethical
standards and followed the procedures required by the
corresponding ethics committees. All the participants signed
a written informed consent form with full knowledge of
the interventions involved in this protocol. All databases
employed here were constructed with authorization of the Ethics
Committees as detailed below.

Databases
In the present contribution, 2 different datasets of multivariate
and heterogeneous physiological data were analyzed (C22_14
and Project_42) allowing to compare the physiological networks
obtained from different datasets and to confirm the robustness
of the approach and the consistency of the results obtained.
The C22_14 database comprised 81 variables of which 46 were
unique; the Project_42 database recorded 55 variables of which
19 were unique; 36 variables were in common between both
datasets (see Table 1). The physiological network corresponding
to the 36 variables in common was also constructed to allow
comparison between both datasets.

C22_14 Database
Ethical and human research considerations
This study was carried out in accordance with current regulation
of the Mexican Official Normativity, NOM-012-SSA3-2012. The
Ethics Committee of the “Instituto Nacional de Enfermedades
Respiratorias” (INER) approved the procedures and protocols

for this study as project C22_14, all the participants provided a
written informed consent.

Demographic description of the participants
134 participants from Mexico City and surroundings were
evaluated, corresponding to 43 men and 91 women with an age
ranging from 25 to 67 years old (median age = 46 years old).
Overweight and obesity were highly prevalent, being present in
42% and 39% of the participants, respectively. 81 independent
variables were measured through anthropometry, bioimpedance,
spirometry, complete blood count, blood chemistry and ELISA
(see list of variables in Table 1). Several derived variables of
common use in medical practice were calculated for the database
(see list of derived variables in Table 2).

Measurement of physiological variables
Approximately 10 mL of venous blood was taken from
each participant in fasting conditions and stored in darkness
throughout the biospecimen handling process. EDTA or heparin
was used as an anticoagulant according to the determinations
to be made. The samples were centrifuged, plasma was obtained
and routine clinical analysis was performed to know the health
state of individual subjects. The set of bioclinical tests included
hematologic analyses, biochemistry, C-reactive protein, which
were carried out in the local clinical laboratory in compliance
with current quality standards. Additionally, analyses by ELISA
were performed. Spirometry was carried out in the Clínica de
Ayuda para dejar de Fumar at the INER.

Project_42 Database
Ethical and human research considerations
This study was carried out in accordance with current regulation
contained in the Mexican Official Normativity, NOM-012-SSA3-
2012. The Ethics Committee of the Facultad de Medicina
of the Universidad Nacional Autónoma de México (UNAM)
approved the procedures and protocols for this study as
project FM/DI/023/2014. All the participants provided a written
informed consent.

Demographic description of the participants
This sample was based on first and second year students at the
School of Medicine at the UNAM, all living in Mexico City and
its surroundings. 69% of the sample were women, with an age
ranging from 18 to 28 years old (mean age of 20± 2 years-old). 54
independent variables were measured through anthropometry,
bioimpedance, hematic biometry, blood chemistry (see list of
variables in Table 1). Derived variables used commonly to
characterize meaningful relations between variables are present
in the database (see list of derived variables in Table 2).

Measurement of physiological variables
After a medical check-up, all samples and anthropometric
measurements were realized in fasting conditions from 7:00
to 9:00 h. Anthropometric measurements were performed
employing the corresponding WHO guidelines. All participants
were advised to abstain from alcohol and other substances
24 h prior to the measurements. All blood samples were
stored at 4◦C and processed the same day. A full description
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TABLE 1 | Description of physiological variables.

Category ID database Name Variable Description Units

Vital signs 1 C22_14 Project_42 SBP Systolic blood pressure Pressure of the blood in the
arteries when the heart pumps. It
is the higher of two blood
pressure measurements.

mmHg

2 C22_14 Project_42 DBP Diastolic blood pressure Pressure of the blood in the
arteries when the heart is filling. It
is the lower of two blood
pressure measurements.

mmHg

Anthropometric
measures

3 C22_14 Project_42 waist Waist circumference Waist size (waist circumference)
is an indicator of abdominal
obesity.

cm

4 C22_14 Project_42 Wt Weight Amount that someone weighs. kg

5 C22_14 Project_42 Ht Height Anthropometric measurement of
size (length from the bottom to
the top).

cm

Bioimpedance 6 C22_14 Project_42 BF Body fat Estimated amount of fat weight
through bioimpedance.

kg

7 C22_14 Project_42 SMM Skeletal muscle mass Estimated weight of muscle. kg

8 C22_14 Project_42 TBW Total body water Estimated amount of water
through bioimpedance.

kg

9 C22_14 Project_42 VF Visceral fat High risk adiposity surrounding
internal organs.

kg

Hematic
biometry

10 C22_14 Project_42 Leuk Leukocytes White blood cells concentration. 103/mm3

11 C22_14 Project_42 Neut Neutrophiles Innate immunity white blood cell. 103/mm3

12 C22_14 Project_42 Lymph Lymphocytes Adaptative immunity white blood
cell.

103/mm3

13 C22_14 Project_42 Mono Monocytes Innate immunity macrophage
precursor.

103/mm3

14 C22_14 Project_42 Eos Eosinophiles Allergic and parasitic response
blood cell.

103/mm3

15 C22_14 Project_42 Baso Basophiles Least common type of
granulocyte.

103/mm3

16 C22_14 Project_42 Eryt Erythrocytes Oxygen transport blood cell. 106/mm3

17 C22_14 Project_42 Hb Hemoglobin Oxygen carrier protein. g/dL

18 C22_14 Project_42 Hto Hematocrit Percentage of total blood. %

19 C22_14 Project_42 MCV Mean corpuscular volume Erythrocyte volume. fL

20 C22_14 Project_42 MCH Mean corpuscular hemoglobin Erythrocyte hemoglobin amount. Pg

21 C22_14 Project_42 MCHC Mean corpuscular hemoglobin concentration Erythrocyte hemoglobin
concentration.

g/dL

22 C22_14 Project_42 RDW Red cell distribution width Erythrocyte distribution
amplitude.

%

23 C22_14 Project_42 Plat Platelets Cell fragments involved in
coagulation.

103/mm3

24 C22_14 Project_42 MPV Mean platelet volume Platelet volume. fL

Blood
chemistry

25 C22_14 Project_42 Alb Albumin Hepatic protein in blood
responsible for oncotic pressure.

g/dL

26 C22_14 Project_42 TGlyc Triglycerides Group of lipids, glycerol ester
with three fatty acids, for
transport.

mg/dL

27 C22_14 Project_42 Chol Total cholesterol Total cholesterol amount
regardless of the fraction.

mg/dL

28 C22_14 Project_42 HDL High density lipoprotein cholesterol Lipoprotein carrier from cells to
lipid depots.

mg/dL

29 C22_14 Project_42 LDL Low density lipoprotein cholesterol Lipoprotein carrier from lipid
depots to cells.

mg/dL

(Continued)
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TABLE 1 | Continued

Category ID database Name Variable Description Units

30 C22_14 Project_42 Gluc Glucose Carbohydrate, main cellular energy
substrate.

mg/dL

31 C22_14 Project_42 Urea Urea Aminoacidic degradation end product. mg/dL

32 C22_14 Project_42 Uric Uric Acid Purine degradation final metabolite for
excretion.

mg/dL

33 C22_14 Project_42 Creat Creatinine Creatine muscle waste product with
constant excretion rate.

mg/dL

34 C22_14 Project_42 HbA1c Glycated hemoglobin A1c fraction of glycated hemoglobin. %

Molecular
biology

35 C22_14 Project_42 CRP C reactive protein Acute phase pentraxin, unspecific
biomarker of inflammation.

mg/dL

36 C22_14 Project_42 Ins Insulin Single hypoglycemic hormone
produced by beta cells.

pg/ml

Blood
chemistry

37 Project 42 Cl Serum chlorine Serum electrolyte concentrations are
the net result of intake, excretion, and
shifts between intra- and extracellular
fluids.

mEq/L

38 Project 42 K Serum potassium Serum electrolyte concentrations are
the net result of intake, excretion, and
shifts between intra- and extracellular
fluids.

mEq/L

39 Project 42 Na Serum sodium Serum electrolyte concentrations are
the net result of intake, excretion, and
shifts between intra- and extracellular
fluids.

mEq/L

40 Project 42 Bl_T Total bilirrubin Hemoglobin degradation product. mg/dL

41 Project 42 Bl_D Direct bilirrubin Unconjugated bilirubin is formed by the
breakdown of hemoglobin in the red
blood cells.

mg/dL

42 Project 42 Bl_I Indirect bilirrubin Conjugated bilirrubin is produced in the
liver for excretion.

mg/dL

43 Project 42 AST Aspartate aminotransferase Hepatic enzyme released in liver injury. U/L

44 Project 42 Ca Serum calcium Serum electrolyte concentrations are
the net result of intake, excretion, and
shifts between intra- and extracellular
fluids.

mEq/L

45 Project 42 P Serum phosphorus Serum electrolyte concentrations are
the net result of intake, excretion, and
shifts between intra- and extracellular
fluids.

mEq/L

Anthropometric
measures

46 Project 42 Tric Tricipital skinfold Skinfold thickness measured for the
estimation of body fat by measurement
of subcutaneous adipose tissue.

mm

47 Project 42 Bici Bibipital skinfold Skinfold thickness measured for the
estimation of body fat by measurement
of subcutaneous adipose tissue.

mm

48 Project 42 SupI Suprailiac skinfold Skinfold thickness measured for the
estimation of body fat by measurement
of subcutaneous adipose tissue.

mm

49 Project 42 SubE Subescapular skinfold Skinfold thickness measured for the
estimation of body fat by measurement
of subcutaneous adipose tissue.

mm

50 Project 42 Arm Arm diameter Anthropometric measurement
employed for assessment of
cardiovascular risk for identification of
central obesity.

cm

51 Project 42 Hip Hip circumference Anthropometric measurement
employed for nutritional status
evaluation.

cm

(Continued)
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TABLE 1 | Continued

Category ID database Name Variable Description Units

Vital signs 52 Project 42 AxilarT Axilar temperature Arm-pit temperature measured using a
mercury thermometer that reflects body
core temperature near the axillary
artery.

◦C

53 Project 42 EarT Auricular temperature Tympanic temperature reflects body
core temperature as it shares arterial
blood supply from carotid artery.

◦C

54 Project 42 WristT Wrist temperature Peripheral temperature measured at the
wrist.

◦C

Hematic
biometry

55 Project 42 Segm Segmented neutrophils 103/mm3

Anthropometric
measures

56 C22_14 neck Neck circumference Neck circumference is a screening
measure for identifying overweight and
obesity, it reflects upper-body fat
distribution and central obesity.

cm

Bioimpedance 57 C22_14 SF Superficial fat Low risk adiposity in subcutaneous
tissues.

kg

58 C22_14 Rest Resting metabolic rate Energy expenditure at rest. kcal/day

59 C22_14 Lean Lean mass Estimated amount of lean mass weight
through bioimpedance.

kg

60 C22_14 ECW Extracellular water Amount of water in the extracellular
compartment.

ml

61 C22_14 ICW Intracellular water Amount of water in the intracellular
compartment.

ml

62 C22_14 Hidr Hydration Dynamic equilibrium between intake
and discharge of human water.

ρ

63 C22_14 R Resistance Body opposition to current flow, related to tissue hydration.

64 C22_14 Z Impedance Body impedance, is related to total body water and cellular mass.

65 C22_14 PA Phase angle Direct measurement of cell integrity and
the distribution of water within and
outside the cell membrane.

◦

Blood
chemistry

66 C22_14 Non_HDL Non HDL cholesterol Total cholesterol amount that is not
HDL.

mg/dL

67 C22_14 Phos Phospholipids Serum phospholipids reflect the cellular
membrane composition.

mg/dL

68 C22_14 apoB apolipoprotein B Major lipid transport protein in VLDL,
IDL and LDL.

mg/dL

69 C22_14 apoA apolipoprotein A Major lipid transport protein in HDL. mg/dL

Spirometry 70 C22_14 NO Nitric oxide exhaled fraction Biomarker for the diagnosis, follow-up
and as a guide to therapy in patients
with asthma.

ppb

71 C22_14 CO Carbon monoxide exhaled fraction Biomarker of pathophysiological states,
including smoking status, and
inflammatory diseases of the lungs.

ppm

72 C22_14 COHb Carboxyhemoglobin Hemoglobin irreversibly bound to CO %

73 C22_14 FVC Forced vital capacity Maximum amount of air expelled from
the lungs after a maximum inhalation.

L

74 C22_14 FEV1 Forced expiratory volume 1st second Volume of air expelled in the first
second after a forced inhalation.

L

75 C22_14 Coadj Carbon monoxide diffusion altitude adjusted Ability of the lungs to transfer gas from
inhaled air to the red blood cells in
pulmonary capillaries.

ml/min/mmHg

76 C22_14 AV Alveolar volume Alveolar volume. L

77 C22_14 kCO Carbon monoxide diffusion constant Index of the efficiency of alveolar
transfer of carbon monoxide.

DLco/V

78 C22_14 TLC Total lung capacity Volume of air within the lungs. L

79 C22_14 RV Residual volume Volume of air remaining after forceful
expiration.

L

(Continued)
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TABLE 1 | Continued

Category ID database Name Variable Description Units

Molecular
biology

80 C22_14 C-pep C peptide Inert peptide produced in endogenous
insulin maturation, equimolar to insulin.

pg/ml

81 C22_14 Ghre Ghrelin Incretin. pg/ml

82 C22_14 GIP GIP Incretin. pg/ml

83 C22_14 GLP1 GLP-1 Incretin. pg/ml

84 C22_14 Glcgn Glucagon Hyperglycemic hormone produced by
alpha cells.

pg/ml

85 C22_14 Lept Leptin Adipokine. pg/ml

86 C22_14 PAI1 Plasminogen activator inhibitor-1 Endothelial anti-fibrinolytic protein. pg/ml

87 C22_14 Resistin Resistin Adipokine. pg/ml

88 C22_14 Visfatin Visfatin Adipokine. pg/ml

89 C22_14 GST Glutation S transferase RedOx enzyme plasmatic activity. nmol/mg prot/min

90 C22_14 Argi Arginase Activity of arginase, indirect regulator of
NO production.

mmol/mg prot/min

91 C22_14 MPO Myeloperoxidase Neutrophil enzyme in the phagosome. U/ml

92 C22_14 MDA Malondialdehyde Oxidative stress end product. µm

93 C22_14 ICAM ICAM1 Endothelial activation biomarker. ng/ml

94 C22_14 VCAM VCAM-1 Endothelial activation biomarker. ng/ml

95 C22_14 Endo ENDOTHELIN-1 Endothelial activation biomarker. pg/ml

96 C22_14 oxLDL Oxidized LDL LDL with changes attributable to
oxidative stress.

ng/ml

97 C22_14 PON1 Paraoxonase 1 Hydrolytic enzyme that metabolizes
organophosphates and protects LDL
against oxidation.

nmol p-nitrophenol/mg prot/min

98 C22_14 CC16 cc16 Clara cell protein 16. ng/ml

99 C22_14 Car-G Carbonyl groups Biomarker of late damage to protein,
60% attributable to MDA reaction.

nmol osazonas/mg prot

100 C22_14 LHOO Lipoperoxide Oxidative stress lipid damage biomarker nMol/ml

of the methods employed for this dataset is available in
Barajas-Martínez et al. (2020).

Data Processing
Databases were constructed manually in excel and validated at
random as quality control.

All the physiological variables obeyed asymmetric and
leptokurtic distributions, such that the median value (Me) was
considered to be the best measure of the distribution center, and
the range (difference between maximum (Max) and (Min)) to
be the best representation of the dispersion. For each variable
from the data we obtained the normalized value xi applying the
following normalization to the original data Vi :

xi =
(

Vi −Me
Max−Min

)
Outliers and implausible data were screened using the ROUT
method where Q = 1%. Given the leptokurtic distributions,
both databases presented various outlying values. However, most
of these outliers were within expected ranges of biological
variability. In the C22_14 database no outliers were discarded. In
the Project_42 database, 3 values each were discarded for waist
circumference, systolic blood pressure, and glucose, 2 values for
hip and 1 value each for creatinine, arm and wrist temperature.

Network Construction
All physiological variables were tested for normality using the
Shapiro-Wilk test and they were screened as well for extreme
values. Since the data sets were not normally distributed and
presented outlying values within ranges of biological variability,
the Spearman rank correlation ρ (Batushansky et al., 2016)
was selected as a measure of correlation (Figures 1, 2). The
Spearman rank correlation is a nonparametric measure of the
statistical dependence between the rank values of the variables
considering monotonic relationship (not necessarily linear) and
is not affected by the normalization. For each pair of physiological
variables, Xand Y , rank (rkX , rkY , respectively) and standard
deviation (σrkX , σrkY ) were evaluated, and the Spearman rank
correlation was calculated as the ratio between covariance (coν)
and deviations:

ρ =
coν

(
rkX, rkY

)
σrkXσrkY

To test if the Spearman rank correlation is significantly different
from zero, a Student’s t-distribution with (n-2) degrees of
freedom was employed. Significant correlations were established
below a threshold value of p < 0.001, indicating that the relation
does not support the null hypothesis that the independent
and dependent variables are unrelated. The Spearman rank
correlation coefficient ρ was squared in order to obtain only
positive values (Figure 3). An adjacency matrix was constructed
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TABLE 2 | Description of derived variables.

ID Name Variable Description Units Formula References

101 MAP Mean arterial pressure Area under the pressure/time
curve, divided by the cardiac
cycle time.

mmHg
SBP + 2DBP

3
DeMers and Wachs,
2020

102 BMI Body mass index Anthropometric index of
adiposity.

kg/m2 Wt

(Ht)2
Jabłonowska-Lietz
et al., 2017

103 BFp Body fat percentage Proportion of fat to the
weight.

%
BF
Wt
∗ 100 Freedman et al., 2012

104 FFMp Lean mass proportion Proportion of lean mass to the
weight.

%
FFMp

Wt
∗ 100 Welch et al., 2016

105 BFI Body fat index Proportion of fat to the height. %
Hip

(Ht)3
− 18 Jabłonowska-Lietz

et al., 2017

106 LMI Lean mass index Proportion of lean mass
to height.

kg/m2
(

FFM
Ht3

)
Welch et al., 2016

107 SMMp Skeletal muscle mass
proportion

Proportion of muscle to the
weight.

%
SMM
Wt
∗ 100 Fukuoka et al., 2019

108 TBWp Total body water proportion Estimated percentage water in
the body to the weight.

%
TBW
Wt
∗ 100 Chumlea et al., 2001

109 ECWp Extracellular water proportion Percentage of water in the
extracellular compartment to the
total body water.

%
ECW
TBW

∗ 100 Silva et al., 2008

110 ICWp Intracellular water proportion Percentage of water in the
intracellular compartment to the
total body water.

%
ICW
TBW

∗ 100 Silva et al., 2008

111 Neup Neutrophils proportion Percentage of innate immunity
white blood cell respect to Leuk.

%
Neu
Leuk

∗ 100 Riley and Rupert, 2015

112 Lymp Lymphocytes proportion Percentage of adaptative
immunity white blood cell respect
to Leuk.

%
Lympho

Leuk
∗ 100 Riley and Rupert, 2015

113 Monop Monocytes proportion Percentage of innate immunity
macrophage precursor to Leuk.

%
Mono
Leuk

∗ 100 Riley and Rupert, 2015

114 Eosp Eosinophils proportion Percentage of allergic and
parasitic response blood cell to
Leuk.

%
Eos
Leuk

∗ 100 Riley and Rupert, 2015

115 Basop Basophiles Percentage of least common type
of granulocyte respect to Leuk.

%
Baso
Leuk

∗ 100 Riley and Rupert, 2015

116 Cast1 castelli1 An index of cardiovascular risk
based on cholesterol.

mg/dL
mg/dL

Col
HDL

Vargas et al., 2014

(Continued)
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TABLE 2 | Continued

ID Name Variable Description Units Formula References

117 Cast2 castelli2 An index of cardiovascular risk
based on LDL.

mg/dL
mg/dL

LDL
HDL

Vargas et al., 2014

118 HOMA-IR Homeostatic model
assessment

Fasting insulin resistance index. mmol/L *mIU/L
Gluc ∗ Ins

22.5
Matthews et al., 1985

119 HOMA-β Homeostatic model
assessment

Evaluate the functioning
capacity of the beta cells of
pancreas

mIU/L
mmol/L

20 ∗ Ins
Gluc− 3.5

Matthews et al., 1985

120 BUN Blood ureic nitrogen Equivalent to urea. mg/dL
Urea
2.14

Arihan et al., 2018

121 FVCp Predicted vaule of forced vital
capacity

Total amount of air exhaled.
Evaluates Lung function during
spirometry.

% TCPI+ RVE+ RVE Physiopedia, 2020

122 FEV1p Predicted vaule of forced
expiratory volume 1st second

Volume of air expelled in the
first second after a forced
inhalation.

% 0.84 ∗ FVC− 0.23 Gólczewski et al., 2012

123 rel FEV1/FVC ratio Is the amount of air exhaled in
the first second divided by all of
the air exhaled during a
maximal exhalation. It is
considered a bronchial
obstruction marker.

%
FEV1
FVC

Gólczewski et al., 2012

124 COdlp Carbon monoxide diffusion
altitude adjusted

Measure of the conductance of
gas transfer from inspired gas
to the red blood cells.

mmol/ (min kPa) COdl measured ∗ (1.0 + 0.0035 (PaO2 - 120)) McCormack, 2020

125 ALVp Predicted value of alveolar
volume

Alveolar volume. %
[

FICH4
FACH4

]
∗ [ Vinsp−( Vd ins+VD anat ) ] Prediletto et al., 2007

126 kCOp Predicted value of carbon
monoxide diffusion constant

Index of the efficiency of
alveolar transfer of carbon
monoxide.

%
DA
LV

Vermesi et al., 2018

127 TCPp Predicted value of total lung
capacity

Proportion of predicted volume
of air within the lungs.

% Functional Residual Capacity + Inspiratory Capacity Vaz Fragoso et al.,
2017

128 RVp Predicted value of residual
volume

Proportion of predicted volume
of air remaining after forceful
expiration.

% TCP – Inspiratory vital capacity Vaz Fragoso et al.,
2017
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FIGURE 1 | Adjacency matrix for the C22_14 database. Spearman correlation values were squared to obtain only positive values. The strength of each link is shown
in the heatmap as a heat gradient. Numerical ID and short name are presented next to rows and below columns. The shared physiological variables between both
databases are encased within the black rectangle in the upper left side of the heatmap.
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FIGURE 2 | Adjacency matrix for the Project_42 database. Spearman correlation values were squared to obtain only positive values. The strength of each link is
shown in the heatmap as a heat gradient. Numerical ID and short name are presented next to rows and below columns. The shared physiological variables between
both databases are encased within the black rectangle in the upper left side of the heatmap.

with matrix elements corresponding the ρ coefficients between
each pair of physiological components such that the resulting
network was weighted (Figure 3). Data-set normality testing,

linear regression and chi-squared tests for trends were realized
with Prism 8.1.2(277), GraphPad Software, La Jolla, CA,
United States, www.graphpad.com. For the network construction
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FIGURE 3 | Network construction workflow. The range and distribution of values recorded in the raw database as Tukey box-plots are shown in (A). Variables are
normalized, resulting in the box-plots shown in (B). The resulting Spearman ρ correlation matrix, with squared values to represent correlation between variables
regardless of sign, is shown as an adjacency matrix heatmap in (C) with a hierarchical dendrogram on the left. After choosing a p-value threshold to discard
insignificant links, a network can be constructed as illustrated in (D). Network structures can be enriched with several features, e.g., clusters (shadowed areas) and
strength of the spearman correlation (width of the links).
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RStudio, an R language programming suite and igraph package
were employed (Csárdi et al., 2016; R Core Team, 2020; RStudio
Team, 2020). A glossary of terms used in this paper is given in
Table 3.

Nodes within a network can be ranked according to several
centrality definitions that fall into two main groups, radial
measures and medial measures. These centrality values allow
for a direct comparison of either the influence of nodes (radial
measure) or gatekeeping (medial measure) within the network
(Borgatti and Everett, 2006). Eigencentrality corresponds to the
value of the first eigenvector of the graph adjacency matrix and
was interpreted as a measure of influence within the undirected
networks. Inferring causality exclusively from centrality within
networks requires caution, although eigencentrality has been
found to be the best centrality measurement for this purpose,
especially for small networks with less than 30 nodes (Dablander
and Hinne, 2019). Furthermore, eigencentrality is resilient to
incomplete sampling of the underlying network (Costenbader
and Valente, 2003). For radial measures eigenvectors were
selected for the undirected networks and hubscores for
the directed networks, whereas for medial measures flow
betweenness was used. Flow betweenness was used as a
measurement of intermediation within the network. These values
were obtained using the SNA package (Butts, 2019). Univariate
conditionally uniform graph tests (CUG test), more in particular
the cug.test function from the SNA package, were employed in
order to test whether the eigencentrality and flow betweenness
values obtained would be seen in a random graph with the
same number of vertices, edges or dyads. Assortativity of these
centralities, i.e., the tendency of nodes with similar centrality
to link together, was calculated. NetSwan package was used
for studying network robustness, resilience, and vulnerability.
Differences were assessed with a paired Friedman’s test using
Dunn’s post hoc test. Topological properties were assessed as
follows: density, reciprocity and characteristic path length of
the networks were calculated using the igraph package. For
the calculation of the weighted transitivity and the clustering
coefficient in directed and undirected weighted networks the
DirectedClustering package was employed (Clemente and Grassi,
2018). CUG tests were also performed for network density,
efficiency, transitivity and characteristic path length. The small
world index and smallworldness as calculated by qgraph, were
used as a summary metric of the network topology (Watts
and Strogatz, 1998). Scale-free fitting index was calculated to
show fit to scale-invariant distribution using WGCNA package
(Langfelder and Horvath, 2008).

In order to generate a common layout to both networks
the edge lists of both networks were merged. The resulting
network contained all 100 nodes from both datasets with
their corresponding edges. This network was outlined with
Fruchterman-Reingold force-directed layout (Fruchterman and
Reingold, 1991). As a result of this procedure, the relative position
of each of the shared nodes between the different networks was
the same. This allowed an easy side-by-side contrast between
networks. When clusters were collapsed into nodes, they were
placed in the location of the node with greatest strength in each
cluster to retain the general arrangement of the network.

Cluster Detection
Determining whether a natural division of nodes is present in a
network entails practical and useful insight of the studied system
that is not accessible in reductionist approaches. A cluster is
a set of nodes with many edges inside and few edges outside
the cluster. This condition must also meet the requisite of
surpassing what would be expected in an equivalent network
where links are placed at random (Newman, 2006). This is tested
through positive values of modularity in a network. Clusters can
be detected by using a suitable algorithm, that groups vertices
within a graph that are more densely connected to one another
than to other vertices (Figure 3; Csárdi et al., 2016). There are
several alternative algorithms for discovering communities of
vertices within graphs. In the present contribution, 2 clustering
algorithms were employed that are included in the igraph
package, Louvain and MAP (Blondel et al., 2008; Rosvall
and Bergstrom, 2008). The results were compared using the
igraph::compare function for the calculation of the Rand Index
(Rand, 1971) and variation of information (Meilă, 2007). The
results of this unsupervised clustering were then examined
against current literature to find the functional systems that best
described the nodes.

Construction of clusters based on unsupervised classifiers
Communities may also be found through walks, simulated
annealing, or greedy algorithms, that are supposed to converge
iteratively to the best result. 2 clustering algorithms were
employed that are included in the igraph package, Louvain,
a greedy algorithm, and MAP, a method based on walks and
information theory (Blondel et al., 2008; Rosvall and Bergstrom,
2008). The Louvain algorithm optimizes modularity, the ratio
between density of links inside the community, compared to the
links between communities. To do so, at first, each node is a
community of its own. With each step, nodes are re-assigned
to communities in a local greedy way. Each node is placed
in the community where modularity is increased most. When
all nodes are assigned, each community follows the same
merging and relocating procedure until modularity cannot be
further optimized (Blondel et al., 2008). In contrast, InfoMap
clustering tries to minimize the description length of a random
walker’s movements on a network (Rosvall and Bergstrom, 2008).
To increase the detail of the generated clusters, each cluster
subgraph was clustered as an independent network, generating
subclusters. Additionally, force-directed layouts such as a Linear
logarithmic layout (Linlog) and a Fruchterman-Reingold layout
may complement the representation of the community structure
of a network (Noack, 2009).

RESULTS

Network Topology Changes With
Significance Threshold
The reliability of the present approach was tested by checking
whether data normalization or a variation in the p-value
threshold resulted in substantial changes in the network topology
or in the centrality of individual variables (Figures 4, 5).
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Spearman correlation matrices resulted to be very similar and
largely independent form of data treatment. This is an indication
of the robustness of the correlations between variables. As
intuitively expected, without a threshold, the result is a fully
connected network. However, by lowering the p-value required
to indicate a significative relationship between two variables, the
topology of the network changed abruptly, until reaching a value
p < 0.05 (Figures 4A,C, 5A,C). For constructing physiological
networks, connectivity is a desirable feature, since little can
be said of isolated nodes. On the other hand, also a deletion
of redundant links is needed because correlations arise from
collinearity of the variables. The best compromise between these
needs was p < 0.001. This was remarkable because the density
of the network continued to decrease exponentially whereas the
strength of the nodes did not decrease at the same rate. This
indicated that lowering the p-value of the network removed
preferentially the weakest links. As a result, the efficiency of
the network increased, and the connectedness only decreased
slightly until p < 0.001, where connectedness and efficiency
began to decrease (Figures 4A, 5A). Characteristic path length
(L) increased with the p-value threshold (Figures 4B, 5B).
At p < 0.001 some relatively stable value of transitivity and
clustering coefficient was obtained (Figures 4B, 5B). Moreover,
although transitivity and characteristic path length remained
similar, small world index increased steadily (Figures 4E, 5E).
This indicated that the underlying topology of the network is
not a product of the threshold but is actually a phenomenon of
high significance. The R2 value for fitting a scale-free network
was above 90% until p < 10−6, when it decreased abruptly
(Figure 4F). Regarding centrality measurements, eigenvectors
were stable across all the range of p-values, making it a centrality
measure robust to any data processing. On the other hand,
betweenness centralities were dependent on walks, paths or flows
that, being macro-scale properties, relied on the overall structure
of the network. As such, flow betweenness was more variable.
The best Freeman centralization for the flow betweenness
was also reached at p < 0.001. Despite the similarity of the
correlation matrices of raw and normalized data, modularity was
visibly improved by normalization procedures. This indicated an
increase in intra-cluster correlations and decrease of inter-cluster
correlations. It was concluded that data normalization provided
the best results to find community structures in these networks.

Network Comparison
At the selected significance threshold of p < 0.001, C22_14
database resulted in a correlation matrix with 523 links, while
Project_42 had 368 links. Overall, links in C22_14 database were
stronger, but this difference was small (mean difference 8 ± 1.4,
p < 0.0001). In contrast, node strength (weighted degree, the
sum of links weight) was greater in Project_42 (mean difference
131± 46, p < 0.001). However, strength of both nodes and edges
were highly correlated in the 36 nodes and 80 links that both
networks had in common (Spearman’s rho = 0.69, p < 0.0001 for
nodes and Spearman’s rho = 0.5, p < 0.0001 for edges).

To test whether node centrality measures were similar
between networks the values obtained in the full networks
and in the shared network were compared, built from the

common subset of variables studied in both databases. For full
networks eigencentrality values were similar for both datasets
(Spearman’s rho = 0.74, p < 0.0001) while flow betweenness
was dependent on the specific network (Spearman’s rho = 0.03,
p = 0.8, see Figures 6A,B). Similar to the comparison of
the full networks, when comparing networks comprising only
shared nodes large correlations were found for eigencentrality
(Spearman’s rho = 0.77, p < 0.0001) while there was no
correlation for flow betweenness (Spearman’s rho = 0.22, p = 0.2,
see Figures 6C,D). These shared networks with the same number
of nodes were directly comparable. The Quadratic Assignment
Procedure (QAP) test showed a significant correlation which
was not observed in networks with shuffled rows and columns
(Figure 6E). Clusterings obtained with the Louvain method
were compared with igraph::compare for the Rand Index
(0.74) and variation of information (1.5), without differences
using the Wilcoxon paired ranked test (T = 174, W = −6,
p = 0.9414) and significant spearman correlation (r = 0.49, C.I.
[0.18, 0.71], p = 0.002, pairs = 36). Therefore, both networks
had consistent clusters as well as high correlation. This is in
spite that the correlation between networks was only moderate
(gcor = 69%). Nonetheless, this correlation was greater than
expected from permuted networks by QAP test, indicating
that this similitude was not a product of chance (Figure 6E).
Differences between networks may be expected by the decrease
in transitivity that we have observed with age and/or disease
(Barajas-Martínez et al., 2020).

Physiological Clusters
Several community detection algorithms for networks were
tested and evaluated through their modularity scores. Seven
clusters were identified within the network (Figures 7, 8).
The first cluster included anthropometric, bioimpedance and
spirometry variables related with body size. This cluster has
most of the nodes with high eigencentrality in the network.
Most of these nodes with high influence belong to bioimpedance
and spirometry variables. Three subclusters are identifiable
here. First, bioimpedance and anthropometric variables, along
with four biomarkers, uric acid, CRP, PON-1 and HDL. The
second subcluster comprises spirometry variables, while the
third includes blood biomarkers like hematocrit, erythrocytes,
platelets, albumin, urea and creatinine. In contrast, only few
nodes in this cluster have high flow betweenness. Platelets,
erythrocytes and CRP numbers were prominent in this regard.
The second cluster includes elements of endocrine regulation
such as the hormones of the adipoinsular axis and endothelial
activation biomarkers. Eigencentrality values in this cluster are
low, with insulin as the most influential node. This cluster has
two nodes with high flow betweenness, insulin and arginase
activity. Only one bioimpedance parameter is included here,
the impedance value (Z). A third cluster, comprising lipidic
biomarkers as well as club cell protein 16 (CC16), is present
and exhibits a very low eigencentrality overall. The fourth
cluster includes white blood cells and the two glycemic variables,
glucose and HbA1c. This cluster has many high flow betweenness
nodes. Eosinophils, lymphocytes and leukocytes were important
intermediaries in the network. The fifth cluster involves the four
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FIGURE 4 | Dependence of topology on the p-value threshold for the C22_14 database. For all panels, shadowed areas show the windows employed for examining
the networks, from p < 0.05 to p < 0.0001. Our selected threshold, p < 0.001, is shown as a vertical dotted line. Relationship of connectedness and efficiency of
the network is shown in (A). Topology indicators such as characteristic path length (L), global Barrat’s weighted transitivity (T) and clustering coefficient (CC) are
shown in (B). A comparison between density (number of connections) and strength (sum of weights of links for each node) is presented in (C). Modularity quantified
by 2 different clustering strategies, Louvain clustering and InfoMAP, increases as a function of the p-value threshold (D). Small-world index increase with p-value
threshold (E). Node’s degree frequency distribution fitting to a scale-free model is shown in (F).
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FIGURE 5 | Dependence of topology on the p-value threshold for the Project 42 database. For all panels, shadowed area shows the window we employed for
examining networks, from p < 0.05 to p < 0.0001. Our selected threshold, p < 0.001, is shown as a vertical dotted line. Relationship of connectedness and
efficiency of the network is shown in (A). Topology indicators such as characteristic path length (L), global Barrat’s weighted transitivity (T) and clustering coefficient
(CC) are shown in (B). The decrease of networks number of connections (density) is contrasted against the sum of the links weight for each node (strength) is
presented in (C). Modularity increase with p-value threshold is presented in through 2 clustering strategies, Louvain clustering and InfoMAP (D). Small-world index
increase with p-value threshold is presented in (E). Node’s degree frequency distribution fitting to a scale-free model is shown in (F).

red cell indices. From these, MCHC has a high flow betweenness.
A sixth cluster around carbon monoxide is present. As this node
is mostly peripheral in the network, glucagon and GST had

high flow betweenness by linking these variables to the main
component. For the Project_42 database network there was one
main difference related to the variable set that was employed
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FIGURE 6 | Matching between centrality measures in networks. Centrality measures, eigencentrality and flow betweenness, correlation between C22_14 and
Project 42 full networks are shown in (A) and (B) respectively. After extracting the subgraph of the matching 36 shared physiological variables in both datasets the
comparison was repeated in (C) and (D). Linear regression (continuous curves) with 95% confidence intervals (dashed curves) are shown together with the values of
all physiological variables (dots). The color of the dot indicates the specific variable. The density of the distribution of Montecarlo draws for correlation between
networks in Quadratic Assignment Procedure test (QAP test) is presented in (E). The dashed line indicates the correlation values between C22_14 and Project_42
shared networks.

(Figure 8). The cluster encompassing the red cells indices cluster
is merged with the immune cells cluster. Figures and tables
for each cluster described here are provided in supplementary
material (Supplementary Figures 1–11).

Next, to highlight inter-cluster connections, that reflect the
coordination between different systems within the organism,
nodes inside the same cluster were contracted into a single
node (Figure 9). For both networks, the body size cluster (C1)
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FIGURE 7 | Physiological network for C22_14 database. The physiological network constructed from the correlation matrix once the p-value discards connections
without statistical significance. Clusters are presented as shadowed areas. Links within the same cluster are black while links between clusters are red. Node
centrality is represented as size for the eigencentrality and color for the flow betweenness. Edge width represents the weight of the Spearman correlation. Nodes are
labeled according to Table 1 numerical ID.

and the visceral adiposity cluster (C6) were the most closely
interrelated. For the C22_14 network, the endocrine regulation
cluster (C2) is closely related to the visceral adiposity cluster (C6),
the red blood cells indices (C3) and the lipids cluster (C5). For
Project_42 network, the immune cells cluster (C4) and C5 are
densely connected with C1 and C6. Novel interactions between
physiological systems were found. For instance, the connections
between C2 and C3 in C22_14 network represent correlations
with a single red cell index, the mean corpuscular hemoglobin

concentration (MCHC). Salient inter-cluster connections present
in both networks were diastolic blood pressure (DBP) relation
to insulin and body weight, and HbA1c correlation with total
lymphocytes and red cell distribution width (RDW). Nodes that
had a high number of inter-cluster connections were waist,
body fat, DBP, weight, HDL and triglycerides (Figure 9). This
suggests that these physiological variables are located at the
crossroads between the physiological modules. This observation
is reinforced by the position of waist circumference, body fat,
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FIGURE 8 | Physiological network for Project 42 database. The physiological network constructed from the correlation matrix once the p-value discards connections
without statistical significance. Clusters are presented as shadowed areas. Links within the same cluster are black while links between clusters are red. Node
centrality is represented as size for the eigencentrality and color for the flow betweenness. Edge width represents the weight of the Spearman correlation. Nodes are
labeled according to Table 1 numerical ID.

weight, and HDL for C22_14 and insulin for Project_42 in
the spaces between topological clusters in the Linlog Layout
(Supplementary Figures 12, 13).

Physiological network characteristics
The correlation matrix of the 81 unique variables studied
from C22_14 database has 523 correlations (of the possible
3240 = 80∗81/2) with p < 0.001, resulting in a network density
of 16% (Table 4 and Figure 1). The correlation matrix of

Project_42 database has 55 unique variables studied has 368
correlations (of the possible 1485 = 54∗55/2) with p < 0.001
(Table 5 and Figure 2), resulting in a network density of
25% (Table 4 and Figure 1). Only myeloperoxidase (MPO)
was found to be disconnected from the main component of
the network for the C22_14 network, and serum phosphorus
for the Project_42 network. With a threshold p < 0.01 this
variable is correlated with Club cell protein 16 (CC16) and
malondialdehyde (MDA). The physiological networks had an
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FIGURE 9 | Cluster interactions network for Project 42 (A) and C22_14 (B). Interactions between clusters are presented as a multigraph, where more than one link
between two given nodes are possible. All nodes within a cluster are contracted into a single node whereas all individual links remain displayed. This new node is
placed in the position of the node with greatest strength in the original network. The shadow of the original cluster remains in place for comparison with the
physiological networks presented previously. The edge betweenness – the number of shortest paths that pass through a link- is presented with the color of the link,
while the width represents the strength of the Spearman correlation. The new nodes centrality and flow betweenness are presented by node size and color,
respectively.

efficiency of 84% and 75%, greater than would be expected from
a random network of the same size. Despite the low density of
the network, it has a high transitivity of 72% and 52%, larger
than would be expected in a random network with the same size,
density, or number of dyads (Supplementary Figures 14, 15).
Characteristic path length of 3 and 2, respectively, was higher
than a random network with the same size, density, or number
of dyads (Supplementary Figures 14, 15). Network architecture
was evaluated for small world and scale invariance properties
(Tables 4, 5). The physiological network has a small world index
of 3.2, and 2 with a smallworldness of 1.9 and 1.2. Scale-free
fitting index, employed as a scale invariance measurement, shows
both networks approach this fitting (Tables 4, 5). As expected
for a network with these topological properties, eigencentrality
has a high assortativity, while flow betweenness has a low
assortativity (Table 4). In turn, this assortativity, while making
the network very robust against random errors, results in large
susceptibility to directed attacks, particularly cascading attacks
(Figures 10A,B). The elevated modularity of the physiological
network results in susceptibility to betweenness-directed attacks
but implies robustness to degree-directed attacks (10A and 10B).
It can also be observed that the physiological network follows

a scale-free distribution (Figures 10C,D). Taken altogether, the
physiological network has a complex structure that satisfies the
biological requirements of robustness and adaptability.

DISCUSSION

Physiological networks are an area of increasing interest for
the study of biological systems. These networks relate inferred
interactions between systems that may be constructed from
co-occurrence of observations. This co-occurrence may be
observed in time, as in networks constructed from time series
for dynamical understanding of physiology (Liu et al., 2015),
within populations through point measurements as is the case
of our networks (Barajas-Martínez et al., 2020), but also between
individuals as shared characteristics to generate phenotypic
clusters (Mihaicuta et al., 2017). While most networks in
biomedical sciences are constructed of nodes and links of the
same nature, our network is closer to classical physiological
interactions between systems. In human physiology, hormones
(and other regulatory systems) exert effects over a wide array
of variables regulated variables -blood pressure, electrolytes,
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TABLE 3 | Glossary. A brief description for quick reference of network’s specialized terms.

Glossary Symbol Definition R_package::function References

Graph G = (V, E) A network, composed of a set of nodes (V) and links (E).

Adjacency matrix A An array of rows and columns that contains the connections of the network

Subgraph S ⊆ V A subset of nodes and their links
contained in the original network

igraph::induced.subgraph

Vertex V A node

Edge E A link

Centrality C A measure that describes a node’s overall role in the network Borgatti and
Everett, 2006.

Degree Number of links that a node has sna::degree Freeman, 1978.

Strength The sum of the weights of the links
attached to a node

igraph::strength Barrat et al. (2004).

Flow F A measure that describes the strength of the links in a path between nodes

Radial measures Those centralities that are based on pair-wise connections Borgatti and
Everett, 2006.

Eigencentrality v = λ−1Av This centrality of each node is
proportional to the sum of the
centralities of those nodes to which it is
connected.

sna::evcent Katz (1953).

Hub score Eigen-centrality from A*t(A) Eigencentrality of the matrix that takes
into account only out-going links

igraph::hub_score Kleinberg and
Tardos (1998)

Medial measures Those centralities that are based on the number of walks that pass through a node Borgatti and
Everett, 2006.

Flow betweenness The amount of flow mediated by a
given node. This illustrates the
gate-keeping role of a node i.e. the
potential to disconnect the network.

sna::flowbet Koschützki et al.
(2005).

Cluster, community A set of nodes with many links between themselves and few nodes to the outside of the
community (the rest of the network).

Blondel et al.,
2008.

Clique A subgraph where all nodes are fully connected between themselves. Eppstein and
Strash, 2011

Largest clique The clique(s) with the largest size
possible contained in the network

igraph::largest.cliques Eppstein and
Strash, 2011

Louvain, cluster An algorithm for finding communities
that works through modularity
optimization.

igraph::cluster_louvain Blondel et al.,
2008.

Spinglass, cluster An algorithm for finding communities
based on simulated annealing and a
spin-glass model.

igraph::spinglass.
community

Reichardt and
Bornholdt (2006)

Topology The structural characteristics of the network

Size The number of nodes in the network

Density The ratio of links that are present in a
network to all the possible edges it
could contain.

igraph::graph.density Wasserman and
Faust (1994).

Reciprocity The ratio of bidirectional links in a
directed graph.

igraph::reciprocity

Characteristic path length L The average of all the shortest paths
between each pair of nodes in the
network

igraph::average.path.length West (1996).

Transitivity, local Transitivity and clustering coefficient are
two slightly different ways of counting
triangles in a network. Both can be
local, when only one node and their
neighbors are considered, or global,
when the whole network is considered.
It represents the ratio of all the triangles
present to all the possible triangles in
the network.

igraph::transitivity Barrat et al. (2004)

Transitivity, global T igraph::transitivity Barrat et al. (2004)

Clustering coefficient, local DirectedClustering::ClustF Fagiolo (2007)
Onnela et al. (2005)

Clustering coefficient, global CC DirectedClustering::ClustF Fagiolo (2007)
Onnela et al. (2005)

(Continued)
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TABLE 3 | Continued

Glossary symbol Definition R_package::function References

Small world index SWI A measure that describes the relation
between CC and L in a network against
what would be expected in a random
network.

qgraph::smallworldIndex Watts and Strogatz
(1998).

Scale-free fitting index SFFI R2 A measure of how well a network
complies with an scale-free fitting linear
regression.

WGCNA::
scaleFreeFitIndex

Langfelder and
Horvath, 2008.

TABLE 4 | Network topology summary for C22_14 database.

Size Edges Density Efficiency Connectedness

81 533 0.16 0.84 0.98

L T CC SWI Smallworldness

2.7 0.72 0.64 3.2 1.9

Eigencentrality
centralization

Eigencentrality
assortativity

Flow
betweenness
centralization

Flow
betweenness
assortativity

Scale-free fitting
index

0.05 0.57 0.07 0.10 0.91

TABLE 5 | Network topology summary for Project_42 database.

Size Edges Density Efficiency Connectedness

55 368 0.25 0.75 0.96

L T CC SWI Smallworldness

1.9 0.52 0.53 2.0 1.3

Eigencentrality
centralization

Eigencentrality
assortativity

Flow
betweenness
centralization

Flow
betweenness
assortativity

Scale-free fitting
index

0.09 0.23 0.06 −0.10 0.98

protein expression, cellular responses etc., in response to
internal needs and to external perturbations. These interactions
are very different from usual network approach where only
genes, proteins or metabolites are considered, or in the case
of neurosciences where different channels of FMRI or EEG
are used to construct functional networks. Here we propose
a general framework for approaching multivariate datasets
of physiological nature that are commonly analyzed through
conventional approaches.

Networks are information-rich representations where
meaningful characteristics are present in the network topology,
layout, clustering, node centrality and edge characteristics.
This provides a rich context for interpretation of physiological
data. We show that there are robust interactions (links)
between physiological variables (nodes), that are preserved
between datasets and have very high significances, even for
relatively small samples. The analysis of these networks results
in similar clustering even when networks are constructed
from different datasets. These clusters are not a product of
random chance, but are rather built from related variables with
underlying mechanisms related to specific functions. Clustering

approaches have been used before in the literature, where
at least two strategies have been well described. Nodes may
be conglomerated through force-directed layouts to generate
topological clusters, and through modularity optimization
algorithms (Noack, 2009). For an adequate analysis and
successful rendering of functional clusters network filtering
is critical (Mihaicuta et al., 2017). Here we use the p-value,
a widely validated strategy to sort significant correlations
between variables, to filter the physiological network. Through
a modularity optimization algorithm, we clustered physiological
variables into functional groups.

Cluster 1
The variables within this cluster are related to the size of
the organism (Supplementary Figures 1, 2). One of the main
drivers of body size differences in humans is sexual dimorphism.
Males tend to have larger bodies than females with immediate
mechanical consequences. For instance, body compartments are
larger, including thoracic dimensions, and all the spirometry
measurements where anatomic size is important (FVC, FEV1,
COadj, AV, kCO, TLC, RV). A larger body also increases some

Frontiers in Physiology | www.frontiersin.org 22 January 2021 | Volume 11 | Article 612598

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-612598 December 31, 2020 Time: 16:46 # 23

Barajas-Martínez et al. Physiological Network From Biomarkers

FIGURE 10 | Topological characteristics of the networks. Analysis of network strengths and weaknesses is presented in (A) and (B) showing the difference between
connectivity decrease in random failure (purple inverted triangles) against three different attacks, cascading (green upward triangles), betweenness (black circles) and
degree (pink squares). Encased in each figure is the Tukey’s box and whiskers presentation of the data, with the Friedman’s test with Dunn’s post hoc test
significance between groups. ** indicates p < 0.01, *** p < 0.0001. Node degree frequency distribution fitting to a scale-free model is shown in (C) and (D) for
networks constructed with p-value thresholds of 0.001. Panel (A) and (C) for C22_14 and (B) and (D) for Project_42.

anthropometric characteristics (neck, height, and weight), and
bioimpedance measurements (skeletal muscle mass, lean body
mass, total body water and intracellular water). Furthermore,
a relation between pulmonary function and bioimpedance
measurements is present only for lean mass measurements but
not for body fat measurements (Park et al., 2012). Sex association
with size has also a hormonal context that results in differences
in complete cell count and chemistry (HDL, hemoglobin,
hematocrit, albumin, and platelets). For the Project_42 database
bilirubin measurements are also present in this cluster, as they are
product of degradation of the hemoglobin. Finally, a large lean
mass also implies an increased number of metabolites associated
with protein and aminoacid replacement (urea, uric acid, and
creatinine). These parameters are subject to a hormonal context
as they are altered with chronic abuse of androgenic hormones
(Navidinia and Ebadi, 2017).

Cluster 2
This cluster contains nodes related to endocrine regulation. The
adipoinsular axis comprehends incretins (Ghrelin, GIP, GLP-1),

that signal the food bolus composition, and adipokines, that
signal storage state of the adipose tissue (leptin, resistin,
visfatin), to tailor the homeostatic response of the pancreatic
islet (Kieffer and Habener, 2000). Embedded in this modulation
environment, pancreatic beta cells secrete the only hormone
that lowers glucose in hyperglycemia (insulin, equimolarly
with c peptide), and pancreatic alpha cells secrete a contra-
regulatory hormone in hypoglycemia (glucagon). Visceral fat
accumulation induces a pro-inflammatory state, resulting in
endothelial activation (PAI-1, ICAM-1, VCAM-1, endothelin-1)
which allows for circulating immune cells diapedesis (passage
from the blood to the tissues) where arrival perpetuates the
pro-inflammatory state and produces insulin resistance (Meigs
et al., 2004). These closely related functional interactions result
in a dense endocrine regulation cluster for the C22_14 network
(Supplementary Figure 3).

Cluster 3
Erythrocyte characteristics are summarized in clinical settings
through red cell indices. Of these, the red cell blood

Frontiers in Physiology | www.frontiersin.org 23 January 2021 | Volume 11 | Article 612598

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-612598 December 31, 2020 Time: 16:46 # 24

Barajas-Martínez et al. Physiological Network From Biomarkers

distribution width (RDW) is one of the most recent indices
(Salvagno et al., 2015). Mean corpuscular volume (MCV), mean
corpuscular hemoglobin concentration (MCHC) and mean
corpuscular hemoglobin (MCH) represent average values of
volume and hemoglobin content, whereas RDW is a variability-
based metric (Sarma, 1990). Together these four parameters
allow for classification of anemic disease and provide clinical
orientation and are found clustered in the C22_14 network
(Supplementary Figure 4).

Cluster 4
White blood cells (leukocytes) are the cellular component of
the immune system that flows through the blood. These cell
types are orchestrated in several immune responses but have
been more or less well categorized in specialized functions
and are clustered in the C22_14 network (Supplementary
Figure 5). For instance, neutrophils and monocytes are part
of the innate immune response. An “always ready” system for
immediate deterrence of infectious pathogens. On the other
hand, lymphocytes, eosinophils and basophils participate in
the adaptative immune response. A tailored cellular response
to effectively resolve infectious processes that have overcome
responses of the innate immune system. For the Project_42
network, Cluster 3 physiological variables are included in this
cluster, along with platelets and mean platelet volume (MPV),
comprising al cellular components in the blood (Supplementary
Figure 6). These physiological parameters have been related
to cardiovascular risk, placing them in the context of a wider
set of interactions beyond infection response (Hansen et al.,
1990; Madjid and Fatemi, 2013). Nitric oxide in exhaled
breath is present in this cluster and relates to eosinophils, as
expected since eosinophils are a major source of NO in asthma
(MacPherson et al., 2001).

Cluster 5
Lipids present in blood, and their associated carrier proteins, are
classical biomarkers of cardiovascular risk and were clustered
in both networks (Supplementary Figures 7, 8). Triglycerides
and total cholesterol were first identified. Later, cholesterol
was separated into fractions according to weight, unveiling a
transport system composed of lipoproteins that carry lipids from
their storage depots to the cells, VLDL, IDL, and LDL, and
lipoproteins that carry lipids from the cells into the storage
depots, HDL (Ito and Ito, 2020). In epidemiological studies
HDL levels have shown to be protective against cardiovascular
disease, while LDL levels represent a risk factor. ApoA and ApoB,
the protein envelopes that carry the lipids in these fractions,
showed better predictive results. However, upon increasing
knowledge of the physiopathology of vascular disease new
biomarkers have been assessed such as lipoperoxidation products,
serum phospholipids and oxidized LDL (Ngoc-Anh, 2009). As
Project_42 has less lipidic variables this cluster comprises only
LDL, HDL and cholesterol.

Cluster 6
Visceral adiposity is the main driver of metabolic disease. It has
been measured through several proxies including body weight
and waist circumference either as individual measurements or

as composed indices (BMI, height/waist ratio), and by indirect
measurement using bioimpedance (total body fat, visceral fat,
fat free mass, body fat, superficial body fat). These variables
are clustered in both networks (Supplementary Figures 9, 10).
Over time, excess of visceral adipose tissue triggers a low-grade
chronic pro-inflammatory state, as revealed by high sensitivity
but low specificity C reactive protein, an acute phase pentraxin
produced in the liver (Pettersson-Pablo et al., 2019). Increased
visceral adiposity is also related to high blood pressure (systolic
and diastolic blood pressure) through several mechanisms even
in young adulthood (Takeoka et al., 2016). The variables in this
cluster share the property of being very stable over time. Body
fat deposits, resting blood pressure and glucose levels are rather
stable variables that vary only over very long periods of time. For
Project_42 anthropometric measurements, such as hip and arm
circumference, as well as all skinfolds of plicometry, are located
in this cluster (Supplementary Figure 10).

Cluster 7
Carbon monoxide cluster. There is a final cluster that comprises
the relation between exhaled carbon monoxide (CO) and
hemoglobin irreversibly bound to CO in blood (COHb) (Wald
et al., 1981). As none of the participants in the C22_14
dataset were smokers this cluster is relatively well isolated
from the network (Supplementary Figure 11). Nonetheless,
breath profiles including CO and NO have been proposed for
monitorization of whole body states (Maiti et al., 2019).

The inter-cluster correlations manifest the integration
between these different functional systems within the organism,
as well as some physiological variables placed as intermediaries
in the network between clusters (Figure 9). As force-directed
algorithms may work as energy-models (Noack, 2009), location
of the nodes within the layout is also informative of the role
nodes may have in the functional cluster, either deep inside
or in the periphery (Supplementary Figures 12, 13). The
robust agreement between the present network approach
and medical knowledge invites us to extend network
analysis to physiological phenomena. It has been suggested
previously that topology characteristics of a network have
functional implications that are not observable by reductionist
approaches (Ivanov and Bartsch, 2014). A network framework
for physiological understanding may facilitate immediate
comprehension of distant interactions and emergent properties
of living systems.

Living systems are neither completely random nor fully
ordered. This property has been noted at multiple levels of
observation. For example, from a time-series perspective, the
analysis of continuous heart rate data reveals that balance
between robustness and adaptability of the cardiovascular system
is an important biomarker of health (Rivera et al., 2018). For
networks, this is the essence of a complex topology, such as small
world or scale-free, since they feature patterns of connection
between their elements that are neither purely regular nor purely
random. In Figure 10 we show that both networks have a scale-
free topology (with some degree of both random and orderly
structure). In summary, the complex behavior of living systems
in time series appears to be reflected also in network physiology.
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The limitation of our study is the small size of our datasets,
nevertheless our methodology combines parameters that are
not usually related to build a physiological network. Moreover,
the physiological network constructed is robust and similar
for both datasets.

CONCLUSION

Textbooks on basic physiology present homeostatic regulation
of cardiovascular, respiratory, metabolic and other subsystems
as if they were independent mechanisms coordinating the
dynamics of closely related variables in order to create a stable
local environment that can be studied from the perspective of
separate medical disciplines (Ganong, 1969; Hall, 2011). This
is of course a coarse approximation because it is implicit that
the different subsystems must interact in order to assure a
system-wide homeostatic state, remaining outside the scope of
the reductionist approach to physiology. Systems biology, on
the other hand, suggests that systemic homeostasis “emerges”
from an underlying network and interactions between variables
that span the whole system (Goldstein, 2019). Figures 7–9
show 6 distinct clusters, where the intra-cluster interactions
between related variables may well represent the textbook
examples of local subsystem homeostasis, whereas the inter-
cluster interactions between very distinct variables most probably
convey new and unexplored information of how homeostasis
is established at the system level in the optimal conditions of
youth and health, and how the loss of homeostasis arises with
aging and/or disease.
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