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Multimorbidity, the presence of two or more diseases in a patient, is maybe the greatest

health challenge for the aging populations of many high-income countries. One of the

main drivers of multimorbidity is diabetes mellitus (DM) due to its large number of risk

factors and complications. Yet, we currently have very limited understanding of how

to quantify multimorbidity beyond a simple counting of diseases and thereby inform

prevention and intervention strategies tailored to the needs of elderly DM patients.

Here, we conceptualize multimorbidity as typical temporal progression patterns of

multiple diseases, so-called trajectories, and develop a framework to perform a matched

and sex-specific comparison between DM and non-diabetic patients. We find that

these disease trajectories can be organized into a multi-level hierarchy in which DM

patients progress from relatively healthy states with low mortality to high-mortality

states characterized by cardiovascular diseases, chronic lower respiratory diseases,

renal failure, and different combinations thereof. The same disease trajectories can be

observed in non-diabetic patients, however, we find that DM patients typically progress

at much higher rates along their trajectories. Comparing male and female DM patients,

we find a general tendency that females progress faster toward high multimorbidity states

than males, in particular along trajectories that involve obesity. Males, on the other hand,

appear to progress faster in trajectories that combine heart diseases with cerebrovascular

diseases. Our results show that prevention and efficient management of DM are key

to achieve a compression of morbidity into higher patient ages. Multidisciplinary efforts

involving clinicians as well as experts in machine learning and data visualization are

needed to better understand the identified disease trajectories and thereby contribute

to solving the current multimorbidity crisis in healthcare.

Keywords: comorbidity networks, disease trajectories, population aging, diabetesmellitus, machine learning, data

visualization, multimorbidity

1. INTRODUCTION

Multimorbidity might well be one of the defining challenges for healthcare systems of high-income
countries in the twenty-first century (Pearson-Stuttard et al., 2019). Fueled by an aging population,
the percentage of people with two or more health conditions is steadily increasing which in turn
drives morbidity andmortality (Soh et al., 2020;Whitty et al., 2020). One of the drivers of the rise of
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multimorbidity is diabetes mellitus (DM) due to its large
number of physical and mental risk factors and complications
(Chiang et al., 2020). For instance, heart disease and stroke are
well-established complications of diabetes whereas overweight,
hypertension, or tobacco use are known risk factors for diabetes
(Xu et al., 2018). These complications and risk factors might
interact with each other in ways that have yet to be understood.
Consequently, we currently have limited knowledge of how
multimorbidity develops in type 2 DM (T2D) patients over their
life course.

One of the reasons for this knowledge gap is that it is
not at all clear how to define multimorbidity (Nicholson
et al., 2019). Conventionally, multimorbidity is often defined
as the occurrence of two or more health conditions in a
patient. However, prognosis and treatment of a patient depend
on which diseases actually do co-occur (Steinhaeuser and
Chawla, 2009; Chmiel et al., 2014). Recent research showed
that patients describe disease progression patterns in the form
of typical sequences of diseases over their life course; so-
called disease trajectories (Jensen et al., 2014; Kannan et al.,
2016; Giannoula et al., 2018; Haug et al., 2020). For instance,
using electronic health records a typical trajectory toward T2D
has been identified in which patients acquire hyperlipidemia,
hypertension, impaired fasting glucose and finally DM, in that
order (Oh et al., 2016). This and related research shows that
multimorbidity is better understood in terms of typical disease
trajectories, rather than a simple count of diagnoses.

The emerging field of network medicine (Barabàsi et al., 2011)
has greatly helped our understanding of how such trajectories
might look like based on EHR or medical claims data (Jensen
et al., 2012). A number of works sought to identify pairs
or groups of diseases with a statistical tendency to co-occur
(Hidalgo et al., 2009; Park et al., 2009; Chmiel et al., 2014;
Fotouhi et al., 2018). In brief, at younger age patients typically
acquire fewer and physiologically closely related disorders (e.g.,
mental disorders that co-occur with substance abuse). The
situation changes drastically for elderly patients with multi-
factorial chronic disorders, including DM, that serve as risk
factors for other diseases across the entire diagnostic spectrum
(Chmiel et al., 2014). The existence of such disease networks is
a direct consequence of the complex networks of physiological
processes that underlie most diseases (Menche et al., 2015). For
instance, the OMIM database currently lists around 30 genetic
locations that are believed to have a causative impact on DM
(Hamosh et al., 2005). Most of these genes are involved in other
diseases as well, meaning thatmultimorbidity arises due to shared
pathophysiological processes of the cooccurring diseases (Klimek
et al., 2016). To factor such findings into improved medical
strategies for early prognosis and treatment of patients, we have
yet to understand how these trajectories vary between patients
having a certain disease or not. That is, is a certain trajectory
specific for patients that will acquire, say, DM later in their life
or not?

The interrelatedness of many different diseases across the
entire spectrum hints at an interconnectedness of the organ
systems underlying the individual diseases. The emerging field
of network physiology seeks to improve our understanding

of how organ systems affect and interact with each other
(Bashan et al., 2012; Bartsch et al., 2015). Physiological systems
have non-stationary, intermittent, scale-invariant, and nonlinear
behaviors. Therefore, their output dynamics transiently change
in time with different physiologic states and under pathologic
conditions (Ivanov et al., 2016). The dynamics of these
complex systems are further complicated by various coupling
and feedback interactions among different subsystems, which
are not fully understood (Ivanov et al., 2016). Also in DM
complex interactions of different organ systems could lead to
specific comorbidities.

Here, we identify disease trajectories that are specific for DM
patients over their entire life course using a hierarchical temporal
clustering procedure. A cluster is given by a set of diseases that
all patients in that cluster must have been diagnosed with so far,
and another set that none of the patients has been diagnosed with
so far. When patients acquire yet another disease, they might
“move” to a new cluster, which can be described by transition
probabilities between individual clusters. This induces a network
structure in which the disease clusters can be represented as
nodes and links indicating how likely a patient is to progress
from one cluster to the next. Walks on this network that end at
a specific cluster therefore encode the temporal information of
all typical disease trajectories of patients with a corresponding
set of diseases. By utilizing a hierarchical clustering algorithm
(Chavent et al., 2007), we can further investigate these trajectories
on multiple resolution levels.

By performing a matched comparison of the disease
trajectories of DM patients with non-diabetic patients, we can
identify those trajectories that are specific for DM. Due to the
high number and hierarchical organization of disease clusters and
their associated transition network, it is a considerable challenge
to enable an exploration of these results for non-technical
experts. We, therefore, also developed an interactive network
visualization solution that allows, e.g., clinical practitioners,
to perform controlled comparisons of DM and non-DM
trajectories. We conclude this work by showing that our
analysis and visualization system indeed recovers meaningful
diabetic disease trajectories, from early risk factors to late-stage
complications and show how our work can be used to generate
new hypotheses on sex-specific differences of these trajectories.

2. DATA AND METHODS

2.1. Study Population
Our study is based on a medical claims dataset covering approx.
45,000,000 hospital stays of about 9,000,000 Austrians over the
time period from 1997 to 2014 (Haug et al., 2020). For each stay
we consider patient age (5 year groups), sex and pseudo-ID, the
main and side diagnoses associated with the stay, its date and type
of discharge (e.g., normal release, transfer, or death). Diagnoses
are provided as three digit ICD-10 codes. For the analysis we use
1,074 codes ranging from A00 to N99 and group them into 131
disease blocks as defined by the WHO.

The DM patient cohort consists of the 250,498 patients who
(i) did not receive a diagnosis with ICD-10 code from A00–N99
between 1997 and 2002, (ii) and who did receive a diagnosis
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with ICD-10 code from E10 to E14 (DM) during the observation
period from 2003 to 2014. The mean age of the patients at the
beginning of the observation period is 60 y; 53% of the patients
are male. Each cohort patient is matched with 2 non-diabetic
control patients of the same age, sex, and region of origin, who
(i) did not receive a diagnosis with ICD-10 code from A00 to N99
between 1997 and 2002, and (ii) who did not receive a diagnosis
with ICD-10 code fromE10 to E14 during the observation period.

2.2. Clustering
The health state of each patient at the end of each half-year
within the observation period is represented by a binary row
vector v = (v1, v2, . . . , vM) of length M = 131, where each
dimension corresponds to one of the 131 ICD-10 code blocks
considered (see Supplementary Material). For 1 ≤ d ≤ M,
we have vd = 1 if the patient has received a diagnosis from
diagnosis block d until the end of that half-year and 0 else.
The vectors representing the health states of each patient at
the end of each half-year are then clustered using a divisive
clustering algorithm called DIVCLUS-T, which was introduced
in Chavent et al. (2007). The same clustering method has been
used in Haug et al. (2020). This method defines a cluster by
means of a set of inclusion and exclusion criteria (presence or
absence of certain diagnoses) that all patients in the cluster have
to fulfill. Each clustering step therefore divides an existing cluster
by introducing an additional inclusion or exclusion criterion in a
way that minimizes intra-cluster variance (Chavent et al., 2007).
We use the elbowmethod to identify the optimal size of the set of
disease clusters and hierarchically group these clusters into eleven
so-called macro-clusters. The result is a multi-level hierarchy
of a few macro-clusters (defined by distinct inclusion and
exclusion criteria), eachmacro-cluster can further be divided into
more fine-grained clusters using additional inclusion/exclusion
criteria. More details on the clustering can be found in the
Supplementary Material.

Note that the clustering is performed on the cohort of
DM patients; control patients are subsequently assigned to the
obtained clusters according to their diagnoses.

2.3. Matched Disease Trajectory
Comparison
Disease trajectories of patients are described by sequences of
clusters and transitions between them (Haug et al., 2020). If a
patient of sex s and age group a is assigned to cluster j in one
half-year period and to cluster k in the next half-year, we say
the patient steps from j to k. For each sex and age group this
gives rise to the cluster transition rate qs,a,k,j (Haug et al., 2020),
which is the probability that a patient in cluster k with age a and
sex s steps to cluster j in each half-year. We compute the tensor
qs,a,k,j for two different patient populations. First, the tensor

qDM describes disease trajectories for DM patients. Second, the
tensor qC describes disease trajectories for their matched control
group. The element-wise tensor difference, RDs,a,k,j = qDM

s,a,k,j
−

qC
s,a,k,j

, gives the risk difference between disease trajectories of

diabetic and non-diabetic patients. The absolute risk difference
RD measures whether DM patients are more (RD > 0) or

less (RD < 0) likely to progress from one multimorbid health
state (disease cluster) to the next compared to their non-diabetic
controls. By taking the average of RD over all age groups a and/or
sex s, we compute age- and/or sex-independent risk differences.
To measure differences between disease trajectories of male and
female DM patients, we consider sex risk difference SRDa,k,j =

qDM
males,a,k,j

− qDM
females,a,k,j

, which we again average over all age

groups to obtain an age-independent sex risk difference.

2.4. Visualization Strategy
As a means to intuitively explore the results of our analysis, we
have built an interactive exploration tool where users can perform
controlled trajectory comparisons by themselves. The tool shows
the composition of clusters and allows one to filter trajectory
data by sex and age groups, to specify thresholds for transition
probabilities and to re-arrange the network layout. Two groups
of patients (specified by DM or non-DM and male, female, or
both) can be compared with each other and the results can be
downloaded for further analysis. A detailed description is given
in section 3.6.

3. RESULTS

3.1. Baseline Characteristics
We identify 250,498 DM patients in our study population and
500, 996 in the matched control group. Of the study population,
116, 758 (47%) are female. The median age of the population at
the beginning of the observation period is 67 (54–77) for females
and 58 (48–67) for males; values in brackets give the range from
lower to upper quartiles. The median number of diagnoses per
patient is 8 (5–12) for females and 8 (4–11) for males in the DM
group, whereas in the control group we find 3 (1–7) for females
and 3 (1–6) for males.

3.2. Multi-Level Clusters for Multimorbid
Health States
We identify 128 disease clusters that can be grouped into
11 macro-clusters. Each cluster and macro-cluster is described
by a set of diagnoses that all patients in that cluster must
have (inclusion criteria) and diagnoses that none of the
patients have (exclusion criteria). For the 11 macro-clusters
these conditions are reported in Supplementary Tables 1–11.
Each of these macro-clusters contains a variable number of
clusters listed with their inclusion and exclusion criteria in
Supplementary Tables 12–139.

To give an overview of these results, we give a list of
all macro-clusters with diagnoses that appear at least once as
inclusion criteria in a sub-cluster of that macro-cluster inTable 1.
The macro-clusters are labeled with short names and roughly
correspond to the inclusion criteria of the most populated cluster
in each macro-cluster. The clusters are hierarchically ordered in a
way such that macro-clusters with a higher ID tend to have more
inclusion criteria, i.e., the patients in that cluster typically have
more diagnoses.

In brief, we first find a macro-cluster of miscellaneous
diseases, cluster 0. We then have a series of macro-clusters
characterized by metabolic disorders, disorders of lens,
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TABLE 1 | For each macro cluster, the table lists the diagnosis blocks which appear as most frequent inclusion criteria in at least one cluster belonging to that macro

cluster, along with a descriptive short name and mean patient age.

ID Short name Age Inclusion criteria

0 Misc 61y Other diseases of upper respiratory tract; Intestinal infectious diseases; Disorders of

choroid and retina; Other diseases of urinary system; Organic, including

symptomatic, mental disorders; Mental and behavioral disorders due to psychoactive

substance use; Arthropathies; Dorsopathies; Soft tissue disorders

1 Metabolic disorders 63 y Diseases of liver; Diseases of arteries, arterioles and capillaries; Arthropathies;

Ischaemic heart diseases; Metabolic disorders; Dorsopathies

2 Disorders of lens 74 y Glaucoma; Disorders of choroid and retina; Disorders of vitreous body and globe;

Arthropathies; Disorders of lens

3 Cerebrovascular diseases 75 y Cerebrovascular diseases; Episodic and paroxysmal disorders; Diseases of arteries,

arterioles and capillaries; Disorders of lens; Other degenerative diseases of the

nervous system

4 Malignant neoplasms 73 y Neoplasms of uncertain or unknown behavior; Other diseases of urinary system;

Malignant neoplasms; Disorders of lens; Chronic lower respiratory diseases

5 Obesity and other hyperalimentation 62 y Episodic and paroxysmal disorders; Mental and behavioral disorders due to

psychoactive substance use; Obesity and other hyperalimentation; Diseases of liver;

Noninflammatory disorders of female genital tract; Ischaemic heart diseases;

Arthropathies; Metabolic disorders; Dorsopathies

6 Diseases of oesophagos, stomach and duodenum 68 y Cerebrovascular diseases; Other diseases of intestines; Mental and behavioral

disorders due to psychoactive substance use; Diseases of esophagus, stomach and

duodenum; Diseases of liver; Malignant neoplasms; Dorsopathies; Disorders of

gallbladder, biliary tract and pancreas; Hernia

7 Other form of heart disease 76 y Other diseases of intestines; Organic, including symptomatic, mental disorders;

Malignant neoplasms; Other degenerative diseases of the nervous system; Ischaemic

heart diseases; Disorders of lens; Metabolic disorders; Obesity and other

hyperalimentation; Other forms of heart disease

8 Other form of heart disease + Chronic lower respiratory dis. 75 y Dorsopathies; Influenza and pneumonia; Other diseases of the respiratory system;

Obesity and other hyperalimentation; Chronic lower respiratory diseases; Other forms

of heart disease

9 Other form of heart disease + Cerebrovascular diseases 80 y Cerebrovascular diseases; Episodic and paroxysmal disorders; Organic, including

symptomatic, mental disorders; Other degenerative diseases of the nervous system;

Diseases of arteries, arterioles and capillaries; Other diseases of urinary system;

Ischaemic heart diseases; Disorders of lens; Dorsopathies; Other forms of heart

disease

10 Other form of heart disease + Renal failure 80 y Osteopathies and chondropathies; Renal failure; Other forms of heart disease;

Aplastic and other anaemias; Organic, including symptomatic, mental disorders;

Diseases of arteries, arterioles and capillaries; Other diseases of urinary system;

Other disorders of the skin and subcutaneous tissue; Disorders of lens; Chronic lower

respiratory diseases

cerebrovascular diseases, malignant neoplasms, obesity, diseases
of esophagus, and heart diseases, respectively. Finally, we have
three macro-clusters in heart diseases combined with chronic
lower respiratory diseases, cerebrovascular diseases, and renal
failure, respectively.

3.3. Disease Trajectories
Results for the transition rates between the 128 identified clusters
are shown in Figure 1 as a heat map, aggregated over age, and
sex. First, we note the by construction upper-triangular shape of
the matrix indicating that patients always step to a cluster with
a higher ID than their current one. Second, we can clearly see
the macro-clusters as blocks along the diagonal with comparably
high transition rates. This means that most steps (health state
transitions) take place within the same macro-cluster and steps
from one macro-cluster to another occur more seldomly.

In Figure 2, we show the network of disease trajectories
for DM patients, filtered to links with a minimum weight

(transition rate) of 0.007. Node size gives the number of
patients in the cluster, color describes the in-hospital mortality
in the cluster. Again, we note the hierarchical order of macro-
clusters. In general, there is a clear trend that the higher
the cluster ID, the higher the mortality. Highest mortality is
found in the macro-cluster for patients with heart diseases
and renal failure, where the patients also acquired respiratory
or cerebrovascular diseases before stepping into that macro-
cluster. An exception to this general trend is the macro-cluster
of malignant neoplasms, where mortality is particularly high in
cluster 51 (see Supplementary Table 63) when cancer combines
with aplastic anemia.

The general pattern of disease trajectories in DM patients
can be described as follows. Patients start their journey in the
macro-cluster “Misc” which is defined by exclusion criteria for
neoplasms, obesity, metabolic disorders, disorders of lens, heart
diseases, cerebrovascular diseases and diseases of the esophagus,
stomach and duodenum. Loosely speaking, patients are at their
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FIGURE 1 | Heatmap of cluster transition rates aggregated over age and sex. The transition matrix is of triangular shape, meaning that there is a by construction

hierarchical order of how patients progress in their multimorbid health states. The multi-level hierarchy is clearly discernible by the triangular blocks with increased

transition rates along the diagonal, the macro-clusters.

“healthiest” in this cluster. For instance, the disease cluster
0 consists solely of exclusion criteria and has no inclusion
criteria (Supplementary Table 12). Next, they often acquire
either metabolic disorders or disorders of the lens. These
diseases are typically followed by neoplasms, cerebrovascular
diseases, or diseases of oseophagus, stomach, and duodenum.
The subsequent stage is the acquisition of heart diseases,
particularly if diseases from the obesity cluster are also present.
From the combination of diabetes with heart diseases we see the
development of highlymultimorbid patient states with additional
diagnoses of, e.g., stroke (cluster 105, Supplementary Table 117),
chronic lower respiratory diseases coupled with pneumonia
(cluster 99, Supplementary Table 111) or renal failure (cluster
113, Supplementary Table 125).

The dynamics within the individual macro-clusters is typically

of the following form. Patients “start out” in a cluster that has the

same inclusion criteria as the corresponding macro-cluster, e.g.,

cluster 111 (Supplementary Table 123) that contains patients
with heart diseases and renal failure. With a transition rate of
0.0074 patients step into cluster 118 (Supplementary Table 130)
where they are additionally diagnosed with diseases of the

arteries and disorders of the skin and subcutaneous tissue.
Other patients of cluster 111 acquire organic mental diseases
(such as dementia) and other degenerative diseases of the
nervous system and step with a transition rate of 0.005 to
cluster 122 (Supplementary Table 134). In summary, we see
that all patients in a macro-cluster share a certain set of
diabetic comorbidities and then branch into different additional
comorbidities within the same macro-cluster. Occasionally we
observe similar trajectories within different macro-clusters. For
instance, cluster 110 (Supplementary Table 122) has the same
inclusion criteria as cluster 122, with cerebrovascular diseases
instead of renal failure.

3.4. Comparing Trajectories of DM Patients
With Their Non-diabetic Controls
A graphical summary of the results of a matched trajectory
comparison between diabetes patients and their non-
diabetic controls is shown in Figure 3. We show cluster
and macro-clusters as in Figure 2, however, here link
weights represent the absolute risk difference RD of the
corresponding cluster transition. In principle, we show
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FIGURE 2 | Trajectories of DM patients. The macro-clusters are shown as green squares containing a variable number of disease clusters. Cluster size is proportional

to the number of patients in that cluster; color gives mortality (the more intense the red, the higher the mortality). We show links for transitions between macro-clusters

or between clusters of the same macro-cluster with a weight (transition rate) of at least 0.007. DM patients typically start in the “Misc” cluster and progress via

metabolic disorders and eye diseases toward heart diseases that combine with respiratory and cerebrovascular diseases, as well as renal failure.

transitions that are more frequent for DM patients as blue
and those more frequent for non-DM patients in red.
However, the network is clearly dominated by blue links
indicating that DM patients have higher rates for almost
all cluster transitions compared to non-diabetic controls.
This means that diabetes patients progress faster along their
disease trajectories.

We observe particularly large differences for macro-clusters
that include heart diseases, i.e., that have a cluster ID of 7 or

higher. For instance, patients with heart diseases in cluster 7 step
at rate 0.016 to cluster 10 (heart diseases and renal failure) if
they have DM, whereas the rate for the controls is 0.0084. From
cluster 8 (heart diseases and chronic lower respiratory diseases)
DM patients step at rate 0.020 to cluster 10; non-diabetes patients
at rate 0.012. Similarly, from macro-cluster 9 (heart diseases
and cerebrovascular diseases) DM patients have a rate of 0.016
for transitions to cluster 10; for non-DM patients the rate
is 0.0097.
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FIGURE 3 | Controlled trajectory comparison of DM patients with their non-diabetic controls. We show the unfiltered disease trajectory network with weights giving

the difference in cluster transition rates, RD. The more intense the blue (red), the more (less) frequent is the corresponding cluster transition in DM patients compared

to non-DM patients. Almost all cluster transitions are overrepresented in DM patients, meaning that diabetes patients overall progress within shorter time-periods

toward highly multimorbid health states. This is particularly the case for macro-clusters with heart diseases.

Considering the dynamics within macro-clusters,
there are clearly discernible clusters with concentrated
DM trajectories.

These can be seen in Figure 3 as clusters with many
incoming and/or outgoing links with a high RD (blue color).
This includes cluster 94 (Supplementary Table 106), which
contains ischaemic heart diseases, other forms of heart diseases

and diseases of arteries, and “attracts” patients from its
surrounding clusters much stronger if they have DM. There
is an abundance of DM trajectories leaving from cluster 58
(Supplementary Table 70, obesity and metabolic disorders) and
leading to clusters that also contain ischaemic heart diseases (59,
Supplementary Table 71) or episodic and paroxysmal disorders
(62, Supplementary Table 74).
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3.5. Comparing Trajectories of Male and
Female DM Patients
Figure 4 compares the trajectories of male and female DM
trajectories. The cluster layout is again taken from Figure 2;
link weights now indicate the sex risk difference SRD for the
individual cluster transitions. Transitions that are dominated
by male DM patients (SRD > 0) are shown in blue, female
dominated ones in red (SRD < 0). Overall, we see that there
is a clear tendency for most transitions between macro-clusters
to be slightly overrepresented in female DM trajectories. One
exception to this general trend are malignant neoplasms, which
have a stronger in-flow of male DM trajectories. For reference,
we show the trajectory network for the sex risk differences
computed in the control group, instead of the DM group,
in Supplementary Figure 1. There we see the same general
tendency of more female inter-macro-cluster transitions but
more male transitions toward malignant neoplasms. This means
that these sex-specific features of the macro-cluster transitions
are not specific to the DM population and rather describe general
sex differences in the population.

On the level of individual clusters, we observe a couple of
substantial sex risk differences between male and female DM
patients that cannot be observed in the non-diabetic control.
For male DM patients this includes trajectories toward cluster
95 (Supplementary Table 107) with ischaemic heart diseases,
other heart diseases and diseases of the intestines and trajectories
originating from cluster 118 (Supplementary Table 130, diseases
of the heart, arteries, skin, and renal failure). There are also
male-dominated DM trajectories that combine heart diseases,
cerebrovascular diseases, diseases of the arteries and dorsopathies
(toward cluster 107, Supplementary Table 119), which cannot be
observed in non-diabetic controls.

Females trajectories are particularly over-represented for DM
patients in the obesity macro-cluster. These trajectories involve
cluster 60 (Supplementary Table 72) where obesity occurs with
arthropathies and eventually combines with dorsopathies toward
cluster 65 (Supplementary Table 77).

3.6. Visual Exploration of Results
In order to provide medical practitioners with an intuitive way to
gain insights into our analysis results, we developed the Disease
Net Viewer1, an online interactive visualization tool. The viewer
gives users an overview of the cluster distributions within the
hierarchy (see Figure 2), as well as the option to explore details,
e.g., on in- or exclusion criteria, and the possibility to compare
disease trajectories as shown in Figures 3, 4.

To convey the cluster hierarchy and disease trajectories, our
tool displays clusters and their interrelations within a hierarchical
node-link diagram. Clusters are represented as nodes that inform
users about the cluster size (i.e., the number of patients within
a cluster) and the cluster mortality. The cluster size is thereby
represented in the node size. Cluster mortality is represented
in the node color, by a gradient between white (low mortality)
and red (high mortality). The detailed values can be accessed
in a tooltip on mouse-over. Macro-clusters describing a set of

1https://csh.ac.at/vis/diseasenet_viewer/

clusters that share common inclusion and exclusion criteria, are
represented by compound nodes that encompass all associated
cluster nodes. The mean age of patients within a macro-cluster
can be accessed on mouse-over.

The probability of a patient transitioning from one
(macro-)cluster to another, is conveyed by the link between
a pair of cluster nodes. The link’s thickness and color-intensity
thereby informs a user about the transition probability. The
actual probability value can be accessed via tooltip. The
minimum probability threshold for links to be included in the
visualization can be adjusted by the user.

For a clean overview of clusters and their interrelations, we
position macro clusters in an elliptical layout that highlights
the flow of patients between clusters. We thereby place macro
cluster 0 (lowest mortality) in the top left corner and macro
cluster 10 (highest mortality) in the bottom right corner. Low-
level clusters are placed in sequential order on a rectangular
grid within their encompassing compound nodes. To further
facilitate the exploration of the disease network topology, the
selection of a cluster node visually highlights all its down-stream
neighbor clusters.

Detailed information on cluster conditions, i.e., their inclusion
and exclusion criteria, is provided in the cluster and macro
cluster tables (see Figure 5), providing the criterion (diagnose)
description and the ICD-10 range. The tables and the node-link
representation are linked to support more efficient exploration
of the underlying data: browsing the table highlights the cluster
node that corresponds to the currently selected table row.
Selecting a node in the network, filters the table content to
display the matching cluster criteria. The table content can also
be searched, e.g., to find specific clusters that include or exclude
certain ICD-10 codes.

Finally, the Disease Net Viewer enables users to compare
trajectory probabilities between two different data (sub)sets; for
instance between male and female DM patients, different age
groups, or the DM cohort and the control group. The difference
in probabilities is thereby visually highlighted in each transition
link’s color: a negative difference is indicated by a color gradient
from white toward red; and a positive difference by a color
gradient toward blue. The exact difference can again be accessed
in the link’s tooltip.

4. DISCUSSION

While the challenge of multimorbidity in an aging population
has long been recognized in medical research, it is not clear yet
how we can properly quantify multimorbid health states beyond
a simple counting of the number of diseases. Consequently, we
currently have limited understanding on how multimorbidity
in DM patients differs from the general population in terms of
disease trajectories and how they lead to highly multimorbid
health states and high mortality. This requires not only an
adequate formal framework to quantify multimorbidity in
patients, but also a way to compare different patient populations.

To fill this current knowledge gap, we built on a recently
developed framework to quantify disease trajectories in patients
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FIGURE 4 | Controlled trajectory comparison of male and female DM patients. Here, link weights are given by the age-averaged sex risk difference SRD. Blue (red)

links indicate that the corresponding cluster transition is more (less) frequently observed in trajectories of male DM patients compared to female DM patients. We see

that certain cluster transitions in the highly multimorbid macro-cluster 10 is dominated by male DM patients, whereas some trajectories in the obesity macro-cluster

are dominated by female patients.

(Haug et al., 2020). The main idea here is that diseases do not
appear randomly and independent in patients, but in specific
temporal patterns that can be identified using a hierarchical
clustering approach. This procedure leads to disease clusters that
can easily be interpreted by non-technical experts in terms of
inclusion and exclusion criteria for certain diseases. Moreover,
the hierarchical ordering of clusters encodes the disease history

of patients within a cluster to some extent, as there are logical
constraints on which cluster transitions are possible (e.g., it is
not possible to step from a cluster where a certain disease is an
inclusion criterion to another cluster where the same disease is
an exclusion criterion).

Here, we extended this disease trajectory framework in a
way that allows for matched comparisons of the trajectories of
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FIGURE 5 | The Disease Net Viewer side bar hosts the data selection (and comparison) panel (Top), the macro cluster table (Middle), and the cluster table

(Bottom). The data selection panel controls, which data (sub)set is displayed in the network view’s node link representation: average, sex specific average, age

groups, DM cohort/control group, male/female. The cluster tables display inclusion and exclusion diagnose criteria for cluster memberships.
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different patient populations. In particular, we considered DM
patients and compared them to a cohort of matched non-diabetic
controls. Furthermore, we compared the trajectories of male
and female DM patients. To identify those sex differences that
are specific for DM patients, we compared these results to sex
differences in the matched control group.

We showed that the trajectories of DM patients can be
organized in a multi-level hierarchy of macro-clusters and more
fine-grained disease clusters. Thereby DM patients start their
trajectories in a cluster with no or very few inclusion criteria
for diseases at an age of around 61 y. As they age, they
progress from early diabetic complications and comorbidities
(metabolic disorders, eye disorders) to more multimorbid health
states characterized by cardiovascular diseases in combination
with cerebrovascular diseases, respiratory diseases, and/or
renal failure.

By comparing the trajectories of DM patients to those of their
non-diabetic controls, we find that DM patients show in general
substantially higher rates at which they transition between
clusters. This means that the progression from relatively healthy
clusters of lowmortality to highly multimorbid clusters with high
mortality occurs at a much faster pace in DM patients compared
to their non-diabetic controls. In this sense, DM accelerates
the unhealthy aging process substantially. This acceleration is
particularly strong for trajectories that involve heart diseases.
This finding clearly suggests that DM (or its absence) plays an
important role in the so-called compression of morbidity, i.e.,
the hypothesis that healthy aging can be achieved by compressing
the burden of lifetime illness into a shorter period of time before
death (Fries, 1980). We find that patients without DM might
“end up” in the same highly multimorbid high-mortality disease
clusters as DM patients, but they move toward these clusters at
a much slower rate. In this sense, (cardiovascular) morbidity of
non-diabetic patients is compressed toward higher ages.

The complex and highly multimorbid disease trajectories
(spanning health conditions across the entire diagnostic
spectrum) we identified in this work strongly suggest that DM
with its precursors and complications arises due to cascading
failures in the network of interconnected and interacting organ
systems that make up the human organism (Ivanov and
Bartsch, 2014). The topological structure of these networks of
organ system is yet to be understood in particular from a
mathematical and modeling point of view (Ivanov et al., 2016).
Our novel statistical approach for matched cohort comparisons
of disease trajectories might further the network physiology
agenda by enabling the generation of new hypotheses regarding
how such networks might differ from each other in different
patient cohorts.

In particular, our novel framework also allowed us to compare
the trajectories of male and female DM patients which can
now be interpreted in terms of how the observed differences
might be related to physiological differences. We find a tendency
that females have overall higher cluster transition rates than
males. Given the higher life expectancy of females compared
to males, this finding is maybe surprising. However, recent
research repeatedly showed that diabetes is a stronger risk factor
for a number of complications in females compared to males.

Females with DM had a higher mortality rate for cardiovascular
diseases, coronary heart disease and stroke compared to male
DM patients (Wang et al., 2019), even though studies claim
that estrogen has a protective effect against DM (Tramunt et al.,
2020). However, the general population of DM patients is over
60 years old and therefore already underwent menopause. The
decrease of estrogen in postmenopausal women is known to
increase the risk of impaired glucose tolerance, obesity and
insulin resistance (Tramunt et al., 2020). That could be the
reason why female DM patients show a faster progression along
their trajectories in particular for disease clusters that involve
obesity in combination with arthropathies and/or dorsopathies.
Two key factors of developing diabetes and progression to its
complications are overweight and obesity. Studies reported that
women had a higher average BMI than men when first diagnosed
with diabetes (Logue et al., 2011; Paul et al., 2012). Therefore,
women might have more complications and diseases related
to obesity. However, also social factors could play a role. For
instance, a US study revealed that women were less likely to
adhere to antidiabetic medication compared to men (Kirkman
et al., 2015). Further it has been demonstrated that women with
diabetes still receive less guideline-recommended care than men,
even in the most developed countries (Peters and Woodward,
2018).

The investigation of multimorbidity and its associated
trajectories also requires the development of novel tools to
visualize and communicate its properties. In the scope of
this work, we thus developed an interactive online viewer
for illustrating cluster compositions and trajectories in an
intuitive way for non-technical audiences, available under
the address https://csh.ac.at/vis/diseasenet_viewer/. The visual
interface currently is limited to representing the results of our
analysis. In the future, however, it might be interesting to increase
the tool’s capabilities, in order to also support data scientists
and medical professionals alike already during the data analysis
process. To this end, the extension of our tool to support
interactive clustering and statistical evaluation of the raw patient
data will be of interest. Furthermore, at the moment our tool is
only capable to compare DMpatients with the general population
though it is straight-forward to extend the analysis to focus on
cohorts defined by other diagnoses (combinations) than DM and
compare those with the general population.

With the use of medical claims data come a number
of limitations concerning our study. Diagnoses might be
misclassified or underrepresented particularly if they are not
relevant for billing purposes. As diagnoses are only available
for hospital care, also health problems that are typically
treated in outpatient settings will likely be underreported in
the data. Further, our study does not include information on
socio-economic (education, family history, migration status,
socio-economic status, etc.) and clinical parameters (BMI,
HbA1c, etc.). Information on diagnoses made before the
start of the observation period are also not reported in
the data.

In conclusion, we have presented a novel methodological
framework to perform matched comparisons between
different patient populations in terms of their disease
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trajectories. We find that early prevention and treatment
of DM is a key factor to enable healthy aging by
compressing cardiovascular diseases, respiratory diseases,
cerebrovascular diseases, renal failure, and a combination
thereof toward higher ages. Further interdisciplinary
efforts that bring clinical knowledge together with
machine learning and high-dimensional data visualization
are necessary to better understand how to treat an
aging population.
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