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The osmolality of mouse oviductal fluid ranges from about 300 mOsmol/kg in the ampulla 
0–3 h post coitus (h p.c.) to more than 350 mOsmol/kg in the isthmus 34–36 h p.c. Thus, 
it has been surprising to find that development of one-cell and cleavage-stage mouse 
embryos arrests in vitro in media exceeding 300 mOsmol/kg, and they develop best in 
unphysiological, hypotonic media. The glycine concentration in oviductal fluid can, 
however, rescue development in hypertonic media, so physiological conditions in vivo 
and in vitro likely work together to foster embryo well-being. Glycine acts on one-cell and 
cleavage-stage mouse embryos through the glycine-gated chloride channel, GLRA4, and 
uptake via the glycine neurotransmitter transporter, GLYT1. Since these processes lead 
to further signaling in neurons, the presence and function of such signaling in preimplantation 
embryos also should be  investigated. The more we know about the interactions of 
physiological processes and conditions in vivo, the better we would be able to reproduce 
them in vitro. Such improvements in assisted reproductive technology (ART) could improve 
patient outcomes for IVF and potentially help prevent unwanted developmental 
abnormalities in early embryos, which might include undesirable epigenetic DNA and 
histone modifications. These epigenetic modifications may lead to transgenerational adult 
disorders such as metabolic syndrome and related conditions.
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INTRODUCTION

One-cell and cleavage-stage mouse embryos employ several 
biomembrane transport processes to regulate their cellular volumes 
(reviewed in Baltz, 2001 and Van Winkle, 2001). Perhaps most 
surprising of these processes is the neurotransmitter transporter, 
GLYT1, which functions to accumulate glycine as an osmolyte 
in embryos (Steeves et  al., 2003). This transporter has been 
thoroughly characterized in early embryos (Hobbs and Kaye, 
1985; Van Winkle et  al., 1988), and it has been definitively 
identified as GLYT1 (Van Winkle and Campione, 1996). Initially, 
glycine was shown to protect preimplantation embryos from 
the adverse effects of oviductal fluid-like medium, because it 
serves as an intracellular osmolyte to resist cellular shrinkage 
in such hypertonic media (Van Winkle et  al., 1990). Since then, 
organic osmolyte-reversed detrimental effects of hypertonic media 
on preimplantation development have been observed for several 
amino acids beginning at a medium osmolality of about 
300  mOsmol/kg (Baltz, 2001; Van Winkle, 2001).

More recently, the glycine-gated chloride channel, GLRA4, 
was also shown to facilitate development of fertilized mouse 
eggs into blastocysts (Nishizono et  al., 2020). This channel 
appears to catalyze chloride uptake by embryonal cells in the 
presence of glycine. Hence, extracellular glycine appears to 
promote preimplantation mouse embryo development as a 
ligand as well as an intracellular osmolyte. Glycine likely 
increases in importance as an intracellular osmolyte as oviductal 
fluid becomes more hypertonic.

ATTEMPTS TO MEASURE OVIDUCTAL 
FLUID OSMOLALITY MAY HAVE 
EXPOSED GLRA4 ACTIVITY

Because too little fluid is present in the mouse oviduct to 
measure its osmolality with an osmometer (i.e., only picoliters 
of fluid; Borland et  al., 1977), one-cell embryos have been 
used as “osmometers” to attempt to estimate the osmolality 
of oviductal fluid (Collins and Baltz, 1999). It was concluded 
that this fluid has an osmolality of about 290–300  mOsmol/
kg based, in part, on the osmolality at which zygotes did not 
shrink or swell beginning 1.8  min after they were placed in 
media of various osmolalities between 200 and 400  mOsmol/
kg. The same approach for two-cell embryos yielded a similar 
conclusion (Collins and Baltz, 1999; Pogorelova et  al., 2011). 
Not considered, however, were initial changes in zygote and 
embryo volume from when they were in oviductal fluid (e.g., 
Figure  2  in Collins and Baltz, 1999) to when volumes were 
measured in media 1.8  min later (Figure  3  in Collins and 
Baltz, 1999). For these reasons, we  reassessed these interesting 
data to include volume changes in fertilized eggs over their 
first 1.8  min in media of various osmolalities.

When compared to their volumes in oviductal fluid, zygotes 
shrink initially when placed in culture media of 250  mOsmol/
kg or higher (Figure  1). Together, these data might be  taken 
erroneously to mean that the osmolality of oviductal fluid is 
about 275 mOsmol/kg i.e., the osmolality at which zygote volume 

at equilibrium is equal to zygote volume in oviductal fluid. 
However, we attribute the initial volume decrease even in somewhat 
hypotonic conditions to the absence of glycine in the media.

In the absence of glycine, glycine-gated chloride channels 
would close. Consequently, the chloride influx they catalyze 
would cease, and one-cell embryos would shrink until 
compensatory transport processes could occur (e.g., see 
250–280 mOsmol/kg data in Figure 1). Perhaps more importantly, 
when glycine is present in the medium, it protects against one-cell 
embryo shrinkage even in medium of 350  mOsmol/kg (Steeves 
et  al., 2003). Hence, most of the data in Figure  1, and data 
reported elsewhere (Collins and Baltz, 1999; Pogorelova et  al., 
2011), were collected under non-physiological conditions (in 
particular, in the absence of extracellular glycine in the medium).

DIRECT MEASUREMENT OF THE MAJOR 
OSMOLYTES IN OVIDUCTAL FLUIDS

The osmolality of oviductal fluids can be  calculated by adding 
the molar concentrations of its major inorganic osmolytes 
(Borland et al., 1977; Van Winkle et al., 1990). Such calculations 

FIGURE 1 | Volume of mouse zygotes as a function of time after removal 
from oviducts in medium of the indicated osmolality (mOsmol/kg). Data are 
from Collins and Baltz (1999, Figure 3) re-illustrated to show the volumes of 
embryos relative to their initial volume in oviductal fluid (Figure 2; Collins and 
Baltz, 1999). Embryos in each medium either decreased or increased in 
volume at 1.8 min relative to their initial volumes at 0.0 min in oviductal fluid 
(p < 0.05, ANOVA). Subsequently, all zygotes either increased or decreased 
in volume as shown (p < 0.01) except for those in medium of 290 or 
305 mOsmol/kg (no statistically significant change after the initial volume 
decrease). Mean volumes are indicated by each symbol, and the standard 
errors of the mean volumes are within the limits of the symbols (n = 19–26 for 
each mean volume except for the initial volume at t = 0.0 min where n = 153). 
Also indicated is the rescue of zygote volume as well as development owing 
to addition of 1.0 mM glycine to 350 mOsmol/kg medium (see text).
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are likely underestimates, since they include Na+, Cl−, K+, Mg2+, 
and Ca2+ but not organic osmolyte. They also include HCO3

−, 
which is assumed to be  equal to the excess positive charge 
of these positive and negative ions (i.e., 13–25  mM; Borland 
et  al., 1977). These are likely underestimates of the HCO3

− 
concentrations, since the HCO3

− concentration is about 33 mM 
in rabbit oviductal fluid (David et  al., 1981). Nevertheless, the 
calculations reveal the extent to which the fluids are hypertonic.

According to these calculations, the osmolarity of oviductal 
fluid increases from 309 mM in the ampulla at 0–3 h post coitus 
(h p.c.) to 350  mM in the ampulla at 11–13  h p.c. and 368  mM 
in the isthmus at 34–36  h p.c. as development proceeds from 
the one-cell to the two-cell stage (Borland et  al., 1977). Because 
oviductal fluids are biological, these numbers should be  reduced 
by about 15 mM owing to incomplete dissociation of the inorganic 
salts (Baltz, 2001). Nevertheless, one-cell and cleavage-stage mouse 
embryos need to survive and continue to develop in oviductal 
fluid that has an osmolality sometimes exceeding 350 mOsmol/kg.

Moreover, such changes in the composition of reproductive 
tract fluid over time and along the tract should help us better 
to produce physiologically more normal conditions for 
preimplantation mouse embryo development in vitro (Morris 
et  al., 2020). Other attempts, to measure the osmolality of 
mouse oviductal fluid more directly using a microsmometer, 
used samples from the whole oviduct after it was torn open 
at the one-cell stage of development (Fiorenza et  al., 2004). 
The resultant value of 302  ±  4  mOsmol/kg is within the range 
of values calculated above from the ionic composition of 
oviductal fluid, but it does not reflect time or position changes 
in oviductal fluid osmolality as development proceeds. It is 
likely important to use the mouse model, including temporal 
and positional changes in oviductal fluid composition along 
the reproductive tract, to help recreate the in vivo environment 
of human as well as mouse embryos in vitro. Children conceived 
by assisted reproductive technology (ART) using non-physiological 
culture media have increased risk of preterm birth, low and 
high birth weight, birth defects, and metabolic dysfunction 
(See clinical implications below).

THE GLYCINE NEUROTRANSMITTER 
TRANSPORTER, GLYT1, ACCUMULATES 
THE OSMOLYTE, GLYCINE

Glycine in the culture medium completely rescues the ability 
of one-cell embryos to develop to the four-cell stage up to 
an osmolarity of at least 350 mOsmol/kg (Figure 1 and reviewed 
in Baltz and Tartia, 2010). Concomitantly, the ability of GLYT1 
to accumulate glycine in one- and two-cell embryos increases 
linearly from 250 to about 370 mOsmol/kg, and these embryos 
also accumulate glycine in vivo. Moreover, the inhibitor of 
GLYT1, ORG23798, blocks glycine rescue of embryo development 
in medium with osmolality of 310 mOsmol/kg, but the inhibitor 
has no effect on development of one-cell embryos in somewhat 
hypotonic medium (Steeves et al., 2003). Hence, glycine uptake 
by GLYT1 is required for one-cell embryo development to 
the 4–8-cell stage in hypertonic media. Osmolalities sometimes 

in excess of 350  mOsmol/kg are likely present in the oviduct 
during this developmental period (see above).

THE GLYCINE-GATED CHLORIDE 
CHANNEL, GLRA4, FOSTERS CHLORIDE 
INFLUX

When cultured in somewhat hypotonic, glycine-containing medium, 
fertilized mouse eggs are inhibited in their progression to the 
four-cell stage and arrest as morula when cultured with the 
glycine-receptor inhibitors, strychnine and PMBA (Nishizono et al., 
2020). These receptors are glycine-gated chloride channels. GLRA4 
is expressed in fertilized mouse oocytes and early embryos, while 
GLRA1 is expressed in fertilized bovine oocytes, and GLRA2 is 
expressed in human zygotes (Nishizono et  al., 2020). Finally, 
Glra4-knockout slowed preimplantation development of fertilized 
mouse eggs, and the resultant blastocysts had fewer cells. Litter 
sizes were also smaller in Glra4-knockout mice (Nishizono et  al., 
2020). Thus, glycine-stimulated chloride influx likely fosters mouse 
one-cell and cleavage-stage development in vivo. Moreover, glycine-
gated chloride channel activity is needed for preimplantation mouse 
embryo development even when glycine uptake is not needed as 
an osmolyte to counteract hyperosmotic conditions in vitro.

ARE GLYCINE AND CHLORIDE 
TRANSPORT AS OSMOLYTES THEIR 
FULL FUNCTION OR DO THEY ALSO 
PRODUCE SIGNALING?

Amino acid transport is frequently associated with signaling 
by the amino acid or even the transport process itself. For 
example, transport of leucine by system B0,+ in blastocysts 
initiates the mTOR signaling needed for development of 
trophoblast motility and penetration of the uterine epithelium. 
Leucine uptake by other processes in blastocysts does not lead 
to trophoblast motility, so system B0,+ either selectively directs 
leucine to mTOR, or another signaling process is also initiated 
during leucine transport by system B0,+ (reviewed in Van Winkle 
and Ryznar, 2018, 2019a,b). Similarly, threonine transport into 
mammalian embryonic stem cells likely triggers signaling through 
the transport process itself, as well as signaling by intracellular 
threonine and its metabolites (Van Winkle and Ryznar, 2019a,b). 
Since GLYT1 and GLRA4 both function for signaling in neurons 
(Moss and Smart, 2001; Gabernet et  al., 2004; Kopec et  al., 
2010), a similar phenomenon could occur in one-cell and 
cleavage stage embryos. This possibility warrants exploration 
in human as well as mouse embryos.

CLINICAL AND TRANSGENERATIONAL 
IMPLICATIONS

Human ART currently uses culture media that are known not 
to mimic physiological conditions as closely as possible. 
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For example, these media have relatively low osmolalities 
(Baltz and Tartia, 2010), while the mean osmolality of human 
oviductal fluid equals 316.6 mOsmol/kg (SEM = 2.5 mOsmol/kg) 
as measured using an osmometer (Canha-Gouveia et al., 2020). 
Hence, it could become beneficial to create culture conditions 
for oocytes and preimplantation embryos in vitro that more 
nearly reflect conditions in vivo. Such conditions likely differ 
among species, since one-cell rat embryos develop better in 
media of 304 than 246 mOsmol/kg (Yang et al., 2004), whereas 
the reverse is true for the fertilized mouse eggs discussed 
above. The osmolality of oviductal fluid in the cycling rat was 
reported to be  287  ±  1  mOsmol/kg (Waring, 1976), but this 
osmolality has not, to our knowledge, been measured during 
pregnancy. To further complicate work to reproduce in vivo 
conditions in vitro, one-cell and cleavage-stage embryos from 
different strains of mice exhibit different thresholds of 
susceptibility to impaired development by hypertonic media, 
although glycine rescues development in all of the strains that 
have been tested (Suzuki et  al., 1996; Hadi et  al., 2005). 
Nevertheless, human as well as mouse zygotes express a glycine 
neurotransmitter transporter and a glycine-gated chloride channel 
(Baltz and Tartia, 2010; Nishizono et  al., 2020), and these 
transport proteins are likely important to the development of 
early embryos of both species in vivo. Possibly because early 
human embryos develop in vitro in non-physiological conditions, 
children conceived by ART have increased risk of preterm 
birth, low and high birth weight, birth defects, and metabolic 
dysfunction (Feuer and Rinaudo, 2012).

For example, initial meta-analyses showed increased risks 
of cardiovascular disease, higher body fat composition, greater 
fasting blood glucose, and elevated blood pressure in children 
conceived through ART (Hart and Norman, 2013; Guo et  al., 
2017). At birth, these children were more likely to be  preterm, 
smaller, and exhibit birth defects (Chang et  al., 2020). 
Subsequently, such children exhibited increased fasting blood 
glucose, higher insulin levels, and greater HOMA-IR, but lower 
HDL ApoA (Cui et  al., 2020). These unwanted characteristics 
appear to arise in mammals through alterations in development. 
If such changes are the result of epigenetic DNA and histone 
modifications, then the changes could be  transgenerational 
(Ventura-Juncá et  al., 2015; Van Winkle and Ryznar, 2018, 
2019a,b; Choux et  al., 2020). To address the risk of future 
disease for early mouse or human embryos developing in 
hypotonic vs. hypertonic medium plus or minus glycine, a 
two-by-two experiment would be  relatively easy to design. 
Because the in vivo environment is much more complex, 

however, and involves growth factors and other physical and 
chemical conditions (e.g., Kaye, 1997), there are numerous 
dimensions to the media that should be tested in animal models 
of preimplantation embryo development before they are examined 
in humans.

CONCLUSIONS

As calculated above, the osmolality of mouse oviductal fluid 
ranges from about 300  mOsmol/kg in the ampulla 0–3  h p.c. 
to more than 350  mOsmol/kg in the isthmus 34–36  h p.c. In 
contrast, one-cell and cleavage-stage mouse embryos develop 
best in unphysiological, hypotonic media in vitro, and their 
development arrests in media with osmolalities of 300 mOsmol/
kg and above. Since the concentrations of glycine found in 
oviductal fluid rescue development in hypertonic media, 
physiological conditions in vivo and in vitro likely work together 
to foster embryo well-being. Glycine acts on one-cell and 
cleavage-stage mouse embryos through the glycine-gated chloride 
channel, GLRA4, and uptake via the glycine neurotransmitter 
transporter, GLYT1. Moreover, these processes lead to further 
signaling in neurons, so the presence and function of such 
signaling in preimplantation embryos also should be investigated. 
The more we  know about the interactions of physiological 
processes and conditions in vivo, the better we  would be  able 
to reproduce them in vitro. These improvements in ART could 
improve patient outcomes for IVF and potentially help to 
prevent unwanted developmental abnormalities in early embryos, 
which might include undesirable epigenetic DNA and histone 
modifications. Undesirable epigenetic modifications may lead 
to transgenerational adult disorders such as metabolic syndrome 
and related conditions.
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