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Using information theoretic measures, relations between heart rhythm, repolarization
in the tissue of the heart, and the diastolic interval time series are analyzed. These
processes are a fragment of the cardiovascular physiological network. A comparison is
made between the results for 84 (42 women) healthy individuals and 65 (45 women) long
QT syndrome type 1 (LQTS1) patients. Self-entropy, transfer entropy, and joint transfer
entropy are calculated for the three time series and their combinations. The results for
self-entropy indicate the well-known result that regularity of heart rhythm for healthy
individuals is larger than that of QT interval series. The flow of information depends on
the direction with the flow from the heart rhythm to QT dominating. In LQTS1 patients,
however, our results indicate that information flow in the opposite direction may occur—
a new result. The information flow from the heart rhythm to QT dominates, which verifies
the asymmetry seen by Porta et al. in the variable tilt angle experiment. The amount of
new information and self-entropy for LQTS1 patients is smaller than that for healthy
individuals. However, information transfers from RR to QT and from DI to QT are larger
in the case of LQTS1 patients.

Keywords: repolarisation, heart rhythm, information flow, conditional entropy, diastolic interval

INTRODUCTION

Repolarization in the ventricles of the heart is a process allowing the muscle cells of the ventricles to
regain their ability to depolarize again. Repolarization entails movement of the ions, which entered
the cell during the depolarization phase of the cycle, to flow out of the cell. Specific ion channels
(especially several K channels and Na/K exchangers) are responsible for this process. Repolarization
may be perturbed also in the presence of heart diseases, for example, hypertrophic cardiomyopathy,
coronary artery disease, and others (Dispersion of Ventricular Repolarization in Hypertrophic
Cardiomyopathy) (Zareba et al., 1994; Christiansen et al., 1996; Savelieva et al., 1999).

The global or averaged electric potentials that appear on body surface electrodes (the ECG
trace) are a function of the depolarization of the ventricle tissue and then of the repolarization
processes in this tissue. The duration of the QRS complex is a measure of the depolarization
time in the ventricles of the heart. The so-called JT interval lasting from the end of the
QRS complex to the T interval is a measure of the repolarization processes in the ventricles.
Ventricle repolarization interval (QT interval) duration depends importantly on the heart
rate. However, the corrected QT interval (QTc) contains information on the heart rate and
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will not be used below for the analysis of the information flow.
Another ECG interval of interest is the diastolic interval (DI)—
the time between the end of the T segment and the beginning
of the next QRS complex (Imam et al., 2015). During this time
interval, no electrical activity occurs in the ventricles.

The interaction of the heart rate (i.e., heart rhythm as the
RR interval length) and the repolarization time as measured by
the QT interval are a manifestation of a single connection of
the physiological network that moderates the heart cycle. The
main other connections in this network are the humoral activity
and the actions of the autonomic nervous system together with
that of the central nervous system. Several intrinsic and extrinsic
mechanisms may be linked to the interaction between the RR and
QT intervals (Nollo et al., 1992; Padrini et al., 1997).

Our aim is to study the information flow between QT interval,
RR interval, and DI time series (shown in Figure 1) using
conditional entropies (Faes et al., 2015). We do not expect
practical results of our research. Rather, we aim to verify on a
larger group of healthy individuals than that used by Porta et al.
(2017). In addition, we study the effect of the long QT syndrome
type 1 (LQTS1) on the information flow.

Several authors have studied information transfer related to
heart rate variability (represented by time series of RR intervals)
in different contexts (Zheng et al., 2017; Javorka et al., 2018;
de Abreu et al., 2020). Information flow between the QT and
RR intervals was discussed by Porta et al. (2017), interval for
a group of 15 healthy individuals as a function of the angle at
which the tilt table is placed. They found an asymmetry between
the two possible directions of the information flow between the
RR intervals and the QT intervals with the information flow
from the heart rhythm to the repolarization process dominating.
In addition, we study information flow between these time
intervals and the DI. Here, the study group of healthy individuals
is larger than that analyzed by Porta et al. (2017). We are
interested in the asymmetry of the information flow found by
Porta et al. (2017). We also study the effect of age on the
information flow between these variables and the information
flow between the RR as well as the QT intervals and the DIs
(Ozimek et al., 2020).

MATERIALS AND METHODS

RR intervals and the Q and Tend points were extracted using
an algorithm based on Hermans et al. (2017). In the original
version of the algorithm, it was used to determine the length
of intervals in a 12-lead ECG recording. In our case, 3-lead
recordings were available. The algorithm (Hermans et al., 2017)
was used without calculating the root mean square of the signal
for all leads. Each signal from each lead was treated separately,
and QT intervals were determined for it. The lead for which
the percentage of wrongly determined QT intervals for all the
tested records was the lowest was used for the analysis. For all
the individual leads, baseline deviations were subtracted from
the individual ECG leads to correct for baseline wander using
the algorithm in Ning et al. (2014). The filter used for baseline
wander was BEADS (Ning et al., 2014), the filter order was set

to 1, and the filter cut-off frequency was 0.006 cycles/sample
(Ozimek et al., 2020).

The QT interval length indicates the speed at which
repolarization processes in the ventricles occur. The speed of
repolarization processes is a function of the heart rate. Thus,
usually QT is corrected for the length of the RR interval. However,
such a QTc contains information not only on the repolarization
process but also on the heart rate, and so it is not suitable
for studies on information flow between the heart rate and
repolarization. No QT correction for heart rate was done in this
paper (Ozimek et al., 2020).

To detect R waves, the Pan-Tompkins algorithm (Pan and
Tompkins, 1985; Sedghamiz, 2014) was used for every individual
ECG lead. The QRS onset was detected as the maximum or
minimal peak of the second ECG derivative found in the window
that precedes the R wave by 10–30 ms. To detect the position
of the Q wave in the vicinity of ±20 ms around the R peak, the
minimum of the second derivative was searched for.

To determine the T wave maximum and its end for each lead,
the data were smoothed using a second order Savitzky–Golay
filter (Hermans et al., 2017) in a 50 ms window. To find the
T wave, the positions of the R peaks determined earlier were
used. The highest or lowest value (T peak) was searched for
in the range starting 150 ms after an R wave (R peak position
+150 ms) ending at a point corresponding to 70% of the distance
between this wave and the next R peak (R peak position +70% of
the RR interval) of the smoothed signal (Hermans et al., 2017).
After determining the position of the T wave, the end of the
T wave was searched for. In the range from the determined T
peak to a point shifted by a value equal to 30% of the distance
between the surrounding R waves (T peak + 30% of the RR
interval), the slope of the maximum deflection was calculated
using numerical differentiation in the 10 ms window [f′(t) = (f
(t+5)− f (t−5))/10]. A tangent through the point with the
maximum slope was determined. The intersection of this tangent
with the isoelectric line was marked as the end of the T wave (T
end). The isoelectric line was locally determined as the median
of amplitudes occurring from 30 ms before the onset of the QRS
complex (Hermans et al., 2017).

DATA

Two databases from the THEW Project were used to provide
the RR interval, QT interval, and DI series: E-HOL-03-0202-0031

(202 ECGs of healthy individuals) and E-HOL-03-0480-0131 (480
ECGs of the LQTS patients forming 4 subgroups by genotype). In
this paper, we analyze only the LQTS1 patients—this is the most
frequent type of the LQTS.

However, it is well known that automatic algorithms
extracting the QT interval rarely work well. Below, we analyze
only those ECG recordings for which our algorithm worked well.
This was verified for each individual recording. We also limited
the range of age of the subjects studied to 18–50 years, obtaining

1THEW. Available at: http://thew-project.org/Database/E-HOL-03-0202-003.
html
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84 (42 women) ECGs for healthy individuals and 65 (45 women)
cases for the LQTS1 case (Ozimek et al., 2020).

ENTROPY METHODS

The following information theoretical methods were used
(Porta et al., 2017).

The target process contains information at the present time n:

HY = H(Yn).

Using the chain rule for information (Faes et al., 2017b), one can
decompose the target information as:

HY = PY + NY

PY = SY + TX→Y

where PY is given by the mutual information due to the past of
the whole network and the present of the target process, whereas
NY is the new information generated in the target process as a
result of the transition from the past states to the present. The
mutual information PY can be decomposed into self-entropy SY
and transfer entropy (TE; Faes et al., 2017b).

Self-entropy (Porta et al., 2017; Xiong et al., 2017) is a measure
of the part of information that is given by the present of the target
process Y that can be predicted by its own past. Self-entropy
was calculated for each individual time series: RR intervals, QT
intervals, and DIs:

SY =
∑

p(yn|y−n )log
p(yn|y−n )

p(yn)

where the superscript “-" at yn means the past of the target time
series, vertical bars indicate conditional probability, and a bold
character means that a time series was used (vector).

The information transferred from the past of the process X to
the current state of the process Y is measured by the TE (Faes
et al., 2015, 2017b):

TX→Y =
∑

yn,x−n ,y−n ∈�

p(yn, y−n , x−n )log
p(yn|x−n , y−n )

p(yn|y−n )

= H
(
Yn|Y−n

)
−H

(
Yn|X−n , Y−n

)
where H(|) means conditional entropy.

To assess in a simple way the asymmetry in the information
flow from the signal X to the signal Y and in the opposite
direction, we introduced the measure dTE:

dTE(X, Y) = TEX→Y − TEY→X.

Conditional TE was used to assess the effect of the series Z
on information transfer between time series X and Y; X, Y,
Z = RR intervals, QT intervals, and DIs, respectively. Conditional
information transfer (Faes et al., 2017b) in the form:

TX→Y|Z = I
(
Yn;X−n |Y

−
n , Z−n

)
= H

(
Yn|Y−n , Z−n

)

−H
(
Yn|X−n , Y−n , Z−n

)
and the difference of the conditional information flow in both
directions was calculated:

dTE(X, Y|Z) = TEX→Y|Z − TEY→X|Z.

We introduced dTE as a simple way to show the direction of the
flow. Note that this measure in some cases may be misleading as
TE does not always exclusively represent the coupling strength
(Faes et al., 2017b).

To estimate all conditional entropies, we used the model-free
estimator based on binning (Lizier, 2014).

Information transfer decomposition–interaction information
transfer (Faes et al., 2017b) IY

X1,X2
= I(Yn;X−1,n;X

−

2,n|Y
−
n ) shows

information, which is contained in the past of X1 and X2 that can
be used to predict the present state of Y when X1 and X2 are taken
individually. This is a measure of how the interaction of the past
of X1 and X2 is transferred to the target.

IY
X1,X2

= TX1,X2→Y − (TX1→Y + TX2→Y)

When TX1,X2→Y < TX1→Y + TX2→Y then IY
X1,X2

< 0 that
refers to redundant interactions contributing to the transfer
of information. When TX1,X2→Y > TX1→Y + TX2→Y then
IY
X1,X2

> 0 that refers to synergistic interactions contributing to
transfer (Faes et al., 2017b).

We normalized the data to set 0 mean and 1 standard
deviation. All signals were divided into non-overlapping
windows of length 600, and in all windows, we checked if the
signal is mean-stationary. After the division of the signal into
non-overlapping windows, the empirical mode decomposition
was used to separate from signal the four last intrinsic mode
functions (IMFs), to achieve mean-stationarity in a higher
number of windows. The window length was chosen to maximize
the number of windows for which mean-stationarity is present.
We obtained slightly better results for window 400, but then we
had problems with correctly calculating IMFs, so we chose the
second-best result.

Because we analyzed only nighttime parts of the recordings,
the average length was limited to 21,000 intervals. TE and cTE
values for signals were estimated using the non-overlapping
windows. Following Luca Faes in the ITS Toolbox,2 we set the
number of quantization levels to 10, and we used embedding
based on the non-uniform procedure. We checked at the
beginning of our research that this value is optimal because using
higher or lower values can be problematic because of calculations
of conditional probability. The number of lags for each system
was set to 5. During the procedure that updates the conditioning
vectors, the significance test using shift surrogates was used2. The
instantaneous effects were allowed for our analysis (Faes et al.,
2015). As presented in Figure 1, the instantaneous effects go
only from QT to RR.

We present results between healthy individuals and LQTS1
patients using the Kolmogorov–Smirnov test (p < 0.05).

2ITS Toolbox, available on: http://www.lucafaes.net/its.html
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FIGURE 1 | A schematic drawing of the ECG signal with marked RR interval,
QT interval, and DI time series.

FIGURE 2 | Shannon entropy H of the individual processes given by single
time series: RR intervals, QT intervals, and diastolic intervals, respectively. The
Kolmogorov–Smirnov test was used, p-values: H(RR): 0.04348, H(QT):
1.41241E-7, H(DI): 0.0998.

RESULTS

Entropy H(Y) and New Information N(Y)
The Shannon entropy HY calculated for the individual processes
(Figure 2) shows that in all cases, it is larger for healthy
individuals. We obtained statistically significant differences
between healthy individuals and LQTS1 patients for RR interval,
QT interval, and DI series. Figure 3 presents the boxplots of the
new information Ny for all three time series. This corresponds
with the amount of information that is produced at each moment
in time when the past states are known (Faes et al., 2013).
The information produced in all processes is larger for healthy
individuals, but for N(RR) and for N(DI), we did not obtain
statistically significant results.

FIGURE 3 | New information produced in the processes: RR intervals, QT
intervals, and diastolic intervals, respectively. The Kolmogorov–Smirnov test
was used, p-values: 0.3517 [N(RR)], 0.01124 [N(QT)], and 0.11007 [N(DI)].

FIGURE 4 | Self-entropy of the processes: RR intervals, QT intervals, and
diastolic intervals, respectively. p-Values: SE(RR): 0.00394, SE(QT):
4.91195E-10, SE(DI): 0.06205.

Self-Entropy SE
The properties of the self-entropy (Figure 4) for the three types
of time series were as expected: the regularity was larger for the
heart rate than for the repolarization processes, and the properties
of the DIs follow essentially those of heart rate variability. The
larger regularity of cardiac time series for healthy individuals was
reported in works studying the fluctuations in RR time series
(Ivanov et al., 1999, 2001; Faes et al., 2019).

Transfer Entropy
For the majority of healthy individuals, TE from RR to QT was
between 0.1 and 0.4. On average, TE in the direction from QT to
RR was significantly smaller for LQTS1 patients and for healthy
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FIGURE 5 | (A) Transfer entropy from the RR intervals to the QT intervals and in the opposite direction (B) for healthy individuals and for LQTS1 patients. p-Values:
RR->QT: 8.46283E-9, QT->RR: 0.07761.
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FIGURE 6 | (A) Transfer entropy from the diastolic intervals to the QT intervals and in the opposite direction (B) for healthy individuals and for LQTS1 patients.
p-Values: DI->QT: 1.60104E-9, QT->RR: 0.94574.

individuals, most often with TE less than 0.05 (Figures 5A, 5B).
Similarly as Porta et al. (2017), we observed an asymmetry in the
information flow between heart rhythm and the QT time series
for LQTS patients: the parameter dTE = TE (RR→ QT)−
TE (QT → RR) for a majority of the patients was positive. The
results for the information flow between DI and RR are similar,
but TE values of QT → DI flow are higher (Figure 6). However,
rather surprisingly, for LQTS1 patients, we observe higher values
of dTE(RR, QT) than for healthy individuals: this can be seen
in the histogram of dTE(RR, QT) (see Figure 7A below). On
average, the information flow from the repolarization process to
the heart rhythm was much smaller (Figure 8A). The flow itself
was also small: the majority of the TE values were less than 0.05.
The asymmetry was present in our results: the expectation value
of the difference dTE(RR, QT) was larger for the LQTS1 group
and remarkably close to 0 for the healthy group. The results for

DI follow the results for RR intervals (Figures 7B, 8B). We did
not observe statistically significant difference between healthy
individuals and LQTS1 patients in the case of QT → DI flow.

For the LQTS1 patient group, the flow is very asymmetric,
dTE(RR,DI) is larger than zero with a significant dispersion
(Figure 9). Information flow between DI and QT is practically
opposite to the behavior of the flow between DI and heart rhythm.
In all cases, the information flow from the DI series to the heart
rhythm dominates.

Conditional TE
Conditional information transfer provides information on how
the information flow between two variables depends on the
time evolution of a third variable. We present the differences
dTE between the respective conditional entropies calculated in
both directions.
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FIGURE 7 | (A) Probability density of the difference in the transfer entropy
from the RR intervals to the QT intervals and in the opposite direction for
healthy individuals and for LQTS1 patients. (B) Probability density of the
difference in the transfer entropy from the diastolic intervals to the QT intervals
and in the opposite direction for healthy individuals and for LQTS1 patients.
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FIGURE 8 | (A) Boxplot of the difference between TE in both directions for the
heart rhythm (RR intervals) and the repolarization (QT intervals). (B) Boxplot of
the difference between TE in both directions for the diastolic interval series
(diastolic intervals) and the repolarization (QT intervals). p-Values: dTE(RR,QT):
8.57094E-9; dTE(DI,QT): 7.55201E-8.

Figure 10B shows that a strong asymmetry between the flow
from the QT interval and the DI series occurs. The flow from QT
to DI dominates, and the asymmetry is smaller for the LQTS1
group. We obtained a different result for dTE(QT, RR| DI) that
is presented in Figure 10A. The flow from the QT interval to
the heart rhythm (RR intervals) is small. In Figure 10B, it can
be seen that the information flow given the heart rhythm from
the repolarization processes (QT intervals) to the DI for healthy
individuals dominates over the flow in the opposite direction.
On the other hand, for LQTS1 patients, this asymmetry is much
smaller so that the flow from the DIs to the QT time series
given the heart rhythm is much less pronounced. At the same
time (Figure 10A), the conditional information flow from the
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FIGURE 9 | Boxplot difference between TE in both directions for the diastolic
intervals and heart rhythm (RR intervals). p-Value: 2.74318E-6.
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FIGURE 10 | (A) Conditional transfer entropy for the information flow between
repolarization (QT) and heart rhythm (RR intervals) given the diastolic intervals
(DIs) for healthy individuals and for LQTS1 patients. (B) Conditional transfer
entropy for the information flow between repolarization (QT) and the DIs given
the heart rhythm (RR intervals) for healthy individuals and for LQTS1 patients.
p-Values: dTE(QT,RR| DI): 0.52989, dTE(QT,DI| RR): 0.00205.

repolarization processes in the ventricles to the heart rhythm
given the DI series is about the same in both healthy individuals
and LQTS1 patients. The conditional dTE is positive so that the
flow from the repolarization processes (QT intervals) to the heart
rhythm dominates although much less than for the results shown
in Figure 10B.

Conditional transfer entropy difference dTE(RR,DI|
QT) is negative, and the modulus of this difference is
on average larger for healthy individuals than for LQTS1
patients (Figure 11).

Redundancy and Synergy (Faes et al.,
2017b)
Using the theory of interaction information decomposition (Faes
et al., 2017a), one can decompose the information that a vector
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FIGURE 11 | Conditional transfer entropy difference for the information flow
between heart rhythm (RR intervals) and the diastolic intervals given the
repolarization (QT intervals) for healthy individuals and for LQTS1 patients. The
Kolmogorov–Smirnov test was used, p-value = 0.002.

FIGURE 12 | Information interaction for healthy individuals and for LQTS1
patients for three combinations of the variables: RR intervals, QT intervals, and
diastolic intervals. The Kolmogorov–Smirnov test was used, p-values: IQT

RR;DI:

2.105E-13, IDI
RR;QT : < 10−3, IRR

QT;DI: < 10−3.

of values X = {X1, X2} provides about system Y into terms,
which are connected with information contributed individually
by X1, X2 and jointly.

Interaction information for the time series studied here may
be written as:

IQT
RR,DI = TRR,DI→QT −

(
TRR→QT + TDI→QT

)
IDI
RR,QT = TRR,QT→DI −

(
TRR→DI + TQT→DI

)
IRR
QT,DI = TQT,DI→RR − (TQT→RR + TDI→RR).

Figure 12 shows that for IRR
QT,DI and IQT

RR,DI , one can observe
rather redundant interactions, which are stronger for the healthy
individual group for IQT

RR,DI and for the LQTS1 patient group
for IRR

QT,DI . In the case of IDI
RR,QT , one can observe synergetic

interactions. For the average result for IDI
RR,QT in the LQTS1

group, synergy is the lower. There is also a remarkable group of
cases for which we observe redundancy.

DISCUSSION AND CONCLUSION

A part of the cardiovascular physiological network (the relation
between heart rhythm, the DI series, and the uncorrected QT
time series) was analyzed for two groups: healthy individuals
and LQTS1 patients.

For single time series, calculations of new information show
that both for healthy individuals and for LQTS1 patients the
heart rhythm as well as the DI series have similar properties,
and that the main difference between the two groups is seen in
the repolarization process. For the QT intervals, we obtained a
larger new information N(Y) for healthy individuals. This can
be associated with a higher complexity of the process dynamics
(Zanetti et al., 2019).

For self-entropy estimations, we observed that QT regularity
in healthy individuals is larger than that in LQTS1 patients and
heart rate regularity for healthy individuals is on average larger
and more complex than that for LQTS1 patients. This difference
in regularity may result from larger vagal reactivity for LQTS1
patients (Bari et al., 2014) (Cairo et al., 2019). However, removing
the trend using the EMD method may have some influence on
this result. We expect the opposite—greater QT regularity in the
group of LQTS1 patients (Seethala et al., 2015; DeMaria et al.,
2020). Moreover, for a regularity parameter, such as SE, the
sequential order of data is very important in contrast to variability
measures (Pincus and Goldberger, 1994). For LQTS patients
and for healthy individuals, DI regularity shows no statistically
significant differences between groups.

In the case of RR and QT intervals analysis, calculations of
TE confirm well-known results (Porta et al., 2017). We observe
an asymmetry in the information flow between heart rhythm and
the QT time series.

The behavior of the DI series is similar to the behavior
of heart rate variability that is also to be expected. DI is
a function of other factors than the RR interval. The RR
interval is moderated by autonomic regulation depending on
the requirements for body function, whereas DI is more related
to internal processes occurring inside the heart. Hence, the
difference seen in Figure 13, for example. This indicates that both
for healthy individuals and for LQTS1 patients the heart rhythm
as well as the DI series have similar properties, and that the main
difference between the two groups is seen in the repolarization
process. On average, for LQTS1 patients, more information flows
between heart rhythm and the QT time series than it does for
healthy individuals—in both directions. For the LQTS1 group
(except for a small group of outliers), the information from heart
rhythm to QT dominates (dTE > 0). For healthy individuals, the
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FIGURE 13 | (A) Transfer entropy from the RR intervals to the diastolic intervals and in the opposite direction (B) for healthy individuals and for LQTS1 patients.
p-Values: RR->DI: 0.3764, DI->RR: 0.20194.

distribution of dTE(RR,QT) has lower dispersion. The flow from
QT to heart rhythm is a new result, but TE in the direction from
QT to RR is much slower than that from RR to QT.

Conditional TE shows that the flow between the QT interval
and the DI series when RR interval is given is asymmetric. The
flow from QT to DI is much larger than in the opposite direction.
However, the flow between QT and RR time series when DI
is known shows no statistically significant difference between
healthy individuals and LQTS1 patients. For healthy individuals,
the conditional information flow from the DIs to the heart
rhythm dominates—given the repolarization processes. This
effect is larger for healthy individuals than for LQTS1 patients
indicating that the LQTS pathology decreases the adaptability
of the physiological network decreasing the interaction between
the heart rhythm and the DIs. For interaction information
decomposition, we observe in most cases redundant interactions.
For IDI

RR,QT , the combination of RR intervals and QT intervals
gives additional information on the DIs, which is not available
from either time series alone. In this case, synergy is observed.
However, it should also be remembered that histogram-based
methods of estimation of probabilities have the problem of a large
bias (Panzeri et al., 2007; Faes and Porta, 2014). It could affect
the results because it is not compensated while many entropy
terms are summed together. The results for IDI

RR,QT could be
affected the most—TE values from the QT intervals to the DIs
are characterized by many outliers, and joint information transfer
from RR and QT to DI is also high; however, these values can be
inflated by histogram-based estimator.
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