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Beta cells within the pancreatic islets of Langerhans respond to stimulation with
coherent oscillations of membrane potential and intracellular calcium concentration
that presumably drive the pulsatile exocytosis of insulin. Their rhythmic activity is
multimodal, resulting from networked feedback interactions of various oscillatory
subsystems, such as the glycolytic, mitochondrial, and electrical/calcium components.
How these oscillatory modules interact and affect the collective cellular activity, which
is a prerequisite for proper hormone release, is incompletely understood. In the present
work, we combined advanced confocal Ca2+ imaging in fresh mouse pancreas tissue
slices with time series analysis and network science approaches to unveil the glucose-
dependent characteristics of different oscillatory components on both the intra- and
inter-cellular level. Our results reveal an interrelationship between the metabolically
driven low-frequency component and the electrically driven high-frequency component,
with the latter exhibiting the highest bursting rates around the peaks of the slow
component and the lowest around the nadirs. Moreover, the activity, as well as the
average synchronicity of the fast component, considerably increased with increasing
stimulatory glucose concentration, whereas the stimulation level did not affect any
of these parameters in the slow component domain. Remarkably, in both dynamical
components, the average correlation decreased similarly with intercellular distance,
which implies that intercellular communication affects the synchronicity of both types
of oscillations. To explore the intra-islet synchronization patterns in more detail, we
constructed functional connectivity maps. The subsequent comparison of network
characteristics of different oscillatory components showed more locally clustered and
segregated networks of fast oscillatory activity, while the slow oscillations were more
global, resulting in several long-range connections and a more cohesive structure.
Besides the structural differences, we found a relatively weak relationship between the
fast and slow network layer, which suggests that different synchronization mechanisms
shape the collective cellular activity in islets, a finding which has to be kept in mind in
future studies employing different oscillations for constructing networks.

Keywords: islets of Langerhans, beta cell network, calcium oscillations, multimodal activity analysis, confocal
imaging, functional connectivity, multiplex network
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INTRODUCTION

Rhythmicity is a hallmark of many organs within the human
body, a process manifested from molecular reactions to
whole body rhythms. An important example is the oscillatory
nature of insulin secretion (Lang et al., 1979). Insulin is an
anabolic hormone secreted from pancreatic beta cells, mainly
postprandially. Since insulin is secreted in the portal vein, the
liver is the first organ exposed to it, and up to 80% of secreted
insulin is cleared by the liver by the receptor-mediated process
during the first liver passage (Eaton et al., 1983). The amplitude
of insulin release directly defines hepatic insulin clearance as
well as consecutive systemic insulin amount (Meier et al.,
2005). The oscillatory pattern of insulin delivery to the target
tissues is essential for insulin action, ensuring a higher level
of sensitivity of target tissues compared with the same amount
of insulin administered at a constant dose (Matthews et al.,
1983b). In the liver, pulsatile insulin delivery suppresses hepatic
glucose production more effectively (Matveyenko et al., 2012)
and prevents insulin receptor desensitization (Li and Goldbeter,
1992). Fluctuations in hepatic glucose production determine
oscillations in the plasma glucose concentration, representing
a possible feedback mechanism for pancreatic insulin secretion
(Goodner et al., 1982; Pedersen et al., 2005). The changes in
the normal pattern of plasma insulin oscillations are an early
marker of insulin resistance and diabetes mellitus and can be
found in diabetic animal models, such as ob/ob mice (Ravier
et al., 2002) and ZDF rats (Sturis et al., 1994), as well as in
diabetic patients (Lang et al., 1981; Polonsky et al., 1988) and
even their relatives (O’rahilly et al., 1988). Besides disrupted
pulsatility of insulin release, the hepatic extraction of insulin is
impaired in diabetic patients (Sando et al., 1980; Bonora et al.,
1983).

Insulin concentration in vivo oscillates with a period of 5–
15 min (Matthews et al., 1983a; Porksen et al., 1995; Song et al.,
2000) and elevated plasma glucose increases the amplitude but
not the frequency of plasma insulin oscillations (Matthews et al.,
1983a; Juhl et al., 2000). It has been confirmed that oscillations of
plasma insulin can be due to an intrinsically pulsatile release of
insulin from the pancreas (Stagner et al., 1980). The oscillatory
nature of insulin release has also been observed in isolated islets,
further suggesting that oscillatory insulin secretion does not rely
on external or intrapancreatic neural stimulation, but it is an
intrinsic property of pancreatic islets, although several external
factors may modulate it in vivo (Dean and Matthews, 1970; P.
Gilon et al., 1993). However, there are still some open questions
regarding the regulation and synchronization of insulin release
from individual beta cells within an islet and between different
islets that enable the appearance of pulsatile plasma insulin levels
with a period of 5–15 min. Besides these oscillations, slower
ultradian rhythms with a period of about 2 h (Simon et al.,
1987) and circadian rhythms of insulin secretion, have also been
observed (Peschke and Peschke, 1998).

The stimulus-secretion coupling in pancreatic beta cells
involves the entry of glucose into the cell and glucose
metabolism, resulting in increased ATP, which in turn decreases
the open probability of ATP-dependent potassium (KATP)

channels (Nilsson et al., 1996). This brings about membrane
depolarization, the opening of voltage-dependent Ca2+ channels,
and increased cytosolic Ca2+ concentration, which triggers the
beta cell secretory machinery and insulin secretion. In addition
to these so-called triggering pathways, additional metabolic
and neurohormonal pathways exist (Henquin, 2011; Skelin
Klemen et al., 2017). Individual beta cells respond to increased
glucose concentration with oscillations in membrane potential,
Ca2+, and insulin secretion. Mouse beta cells in isolated
islets, in pancreas tissue slices, and in vivo oscillate at three
different temporal scales when exposed to stimulatory glucose
concentration above 6 mM glucose (Santos et al., 1991; Gilon
and Henquin, 1992; Bergsten et al., 1994; Dolenšek et al., 2013;
Stožer et al., 2013; Salem et al., 2019; Jacob et al., 2020). The
slowest Ca2+ oscillations with a frequency of 0.06–0.2 min−1

and duration of 5–15 min lie in a range similar to the plasma
insulin oscillations and are thought to underlie the pulsatility
in plasma insulin. These slow oscillations most probably reflect
metabolic activity and drive the oscillatory ATP production,
which in turn affects the intermittent activity of KATP-channels
(Nilsson et al., 1996; Tornheim, 1997). In pancreatic beta cells,
like in many other living cells, the phosphofructokinase-catalyzed
step is one of the candidates responsible for the oscillatory nature
of the metabolic activity (Westermark and Lansner, 2003) and has
been found crucial for normal insulin secretion (Ristow et al.,
1999). Superimposed on the slow oscillations are the so-called
fast Ca2+ oscillations with a frequency of about 5 min−1 and
a duration of about 2–15 s. It is currently believed that these
oscillations result from Ca2+ feedback on ion channels, and
therefore reflect the bursting pattern of electrical activity. The
frequency and the duration of these oscillations are glucose-
dependent (Meissner, 1976; Santos et al., 1991; Nunemaker
et al., 2006; Scarl et al., 2019; Dolenšek et al., 2020) and are
considered essential for setting the amplitude of the slow plasma
insulin oscillations (Bergsten, 2002; Hellman, 2009; Satin et al.,
2015). Both slow and fast oscillations are well synchronized
between different beta cells of the same islet (Satin et al., 2015;
Skelin Klemen et al., 2017; Bertram et al., 2018). Finally, it
should be noted that there exist even faster Ca2+ oscillations
with a duration of around 100 ms, which are superimposed
on the fast oscillations or bursts and are called spikes. They
correspond to individual action potentials, observed during a
burst of membrane potential depolarization.

To ensure the pulsatile profile of plasma insulin, both
inter- and intra-islet synchronization seem to be essential. How
different islets within the pancreas are coordinated to produce
pulsatile plasma insulin is still not completely understood. Since
plasma glucose fluctuates with a similar period as plasma insulin
(Lang et al., 1979), the glucose feedback to pancreatic islets
could account for the synchronization of the islets (Westerlund
and Bergsten, 2001; Gilon et al., 2002; Pedersen et al., 2005).
Besides classical feedback mechanisms, neural mechanisms
with parasympathetic and sympathetic neurons exhibiting the
opposite effect on islet function (Ahrén, 2000) and signals
from other non-pancreatic tissues, like the intestine (Drucker,
2007), liver (Imai et al., 2008), fat tissue (Morioka et al.,
2007), bones (Lee et al., 2007), and others, seem important

Frontiers in Physiology | www.frontiersin.org 2 March 2021 | Volume 12 | Article 612233

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-612233 March 17, 2021 Time: 16:41 # 3

Zmazek et al. Multimodal Beta Cell Rhythmicity

for normal islet function (Eberhard and Lammert, 2009). On
the other hand, synchronization between individual beta cells
within a single islet is believed to be achieved via gap-junctional
coupling through Connexin36 and through additional means
of intercellular communication (Meda et al., 1979; Moreno
et al., 2005; Eberhard and Lammert, 2009; Benninger et al.,
2011; Almaça et al., 2020). This coupling enables neighboring
beta cells to communicate and, in part, synchronize their
dynamics. The diffusion of intermediate products of glycolysis,
in particular glucose-6-phosphate, is probably responsible for
the coupling of slow oscillations (Tsaneva-Atanasova et al.,
2006), while electrical depolarization with a space constant
in the order of a few beta cell diameters accounts for the
alignment of fast oscillations and explains the experimentally
observed Ca2+ waves (Meissner, 1976; Meissner and Preissler,
1979; Eddlestone et al., 1984; Santos et al., 1991; Aslanidi et al.,
2001; Benninger et al., 2008; Zhang et al., 2008; Skelin Klemen
et al., 2017; Šterk et al., 2021). Furthermore, it was proposed
that the electrical coupling increases with glucose concentrations
(Eddlestone et al., 1984).

Investigating the collective activity of beta cell populations is
gaining attention, primarily because of the increasing amount
of data showing that the pathogenesis of diabetes comprises
disruptions of regulated collective cellular activity and the
consequent disturbance in insulin secretion (Head et al., 2012;
Hodson et al., 2013; Skelin Klemen et al., 2017; Westacott
et al., 2017a; Adams et al., 2020; Akalestou et al., 2020).
However, the pancreatic islets are characterized by multiple facets
of complexity in the cytoarchitecture and cellular dynamics,
as well as with the presence of heterogeneity and biological
variability, which makes the overall function of these highly
interconnected structures difficult to understand. Noteworthy, in
the last few years, combining the complex networks theory with
advanced imaging techniques has proven to be an advantageous
tool for quantifying multicellular dynamics in these micro-
organs (Hodson et al., 2013; Stožer et al., 2013; Johnston
et al., 2016; Gosak et al., 2018; Salem et al., 2019). By these
means, functional networks constructed on the basis of statistical
similarity between simultaneously measured signals of multiple
cells are used to embody intercellular communication patterns.
The methodology was not only found useful for demonstrating
that beta cell networks share many similarities with several
other biological networks, such as small-worldness, modularity,
and a heterogeneous degree distribution (Stožer et al., 2013;
Johnston et al., 2016; Gosak et al., 2018), but also that there
are important relations between beta cell metabolic activity
and the orchestration of collective islet behavior (Gosak et al.,
2015; Johnston et al., 2016). Moreover, it turned out that beta
cell networks are rather segregated, which is most probably
linked to cellular variability and the existence of sub-populations
(Markovič et al., 2015; Dwulet et al., 2019; Dolenšek et al., 2020;
Nasteska et al., 2020). The beta cell connectivity architectures
were also found to be very heterogeneous with a small fraction
of very well connected cells, i.e., hub cells, which are believed
to substantially affect the collective cellular activity (Johnston
et al., 2016; Lei et al., 2018; Loppini and Chiodo, 2019; Salem
et al., 2019; Nasteska et al., 2020), even though the precise

mechanisms are still incompletely understood (Satin et al.,
2020). Therefore, how various intercellular coupling mechanisms
and the interplay between electrical and metabolic activity in
populations of heterogeneous cells shape the complex spatio-
temporal dynamics in islets and how these functions are impaired
in diabetes is a matter of ongoing research. One of the main
limitations in the field of complex network approaches to
understanding beta cell synchronization is that different groups
employ different types of Ca2+ oscillations as the basis for
constructing functional networks.

In the present study, we, therefore, aim to further explore
the multimodal nature of oscillatory activity in pancreatic beta
cells that is governed by interactions of various physiological
regulatory systems. We distinguish between the metabolically
driven low-frequency component of Ca2+ oscillations (order
of minutes) and the high-frequency component, which is
governed by the membrane electrical activity (order of seconds).
We focus particularly on the relationship between both
oscillatory components and to what extent their collective
rhythmicity is coordinated on the multicellular level. For
this purpose, we combine time series analysis with network-
theoretical approaches to examine glucose-stimulated oscillatory
Ca2+ dynamics measured in beta cells from acute mouse
pancreas tissue slices.

MATERIALS AND METHODS

Ethics Statement
The study was carried out in strict accordance with all
national and European recommendations related to work with
experimental animals, and all efforts were made to minimize
the suffering of animals. The protocol was approved by the
Administration of the Republic of Slovenia for Food Safety,
Veterinary Sector and Plant Protection (permit number: 34401-
35-2018/2).

Tissue Slice Preparation
Pancreas tissue slices were prepared from adult NMRI male
mice kept in individually ventilated cages (Allentown, PA,
United States) on a 12 light/12 dark cycle, as described previously
(Speier and Rupnik, 2003; Stožer et al., 2013). In brief, after
sacrificing the animals by a high concentration of CO2, the
abdomen was exposed via laparotomy and low-melting-point
1.9% agarose (Lonza Rockland Inc., Rockland, ME, United States)
in extracellular solution (ECS, consisting of (in mM) 125 NaCl,
26 NaHCO3, 6 glucose, 6 lactic acid, 3 myo-inositol, 2.5 KCl, 2
Na-pyruvate, 2 CaCl2, 1.25 NaH2PO4, 1 MgCl2, 0.5 ascorbic acid
continuously bubbled with a gas mixture containing 95 % O2
and 5 % CO2 at barometric pressure to ensure oxygenation and a
pH of 7.4) at 40◦C was retrogradely injected into the pancreatic
ductal tree via the proximal common bile duct clamped at the
papilla of Vater. Subsequently, following immediate cooling with
ice-cold ECS and extraction, small blocks of tissue (0.1–0.2 cm3

in size) were cut and embedded in agarose at 40◦C. The tissue
was cut at 0.05 mm s−1 and 70 Hz into 140 µm-thick slices (VT
1000 S vibratome, Leica, Nussloch, Germany), and the obtained
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slices collected in HEPES-buffered saline at room temperature
(HBS, consisting of (in mM) 150 NaCl, 10 HEPES, 6 glucose, 5
KCl, 2 CaCl2, 1 MgCl2; titrated to pH = 7.4 using 1 M NaOH)
until incubation in the dye-loading solution. All chemicals were
obtained from Sigma-Aldrich (St. Louis, MO, United States)
unless indicated.

Dye Loading and Ca2+ Imaging
Slices were incubated in the dye-loading solution [6.87 µM
Calbryte 520AM (Calbryte, AAT Bioquest, CA, United States),
0.03% Pluronic F-127 (w/v), and 0.12% dimethylsulfoxide (v/v)
dissolved in HBS] at RT for 50 min. Following the staining
protocol, the slices were transferred into HBS containing 6 mM
glucose and stored for up to 8 h until Ca2+ imaging. For
Ca2+ imaging, individual tissue slices were transferred to the
perfusion system delivering carbogenated ECS with varying
glucose concentrations, according to the stimulation protocol,
and kept at 37◦C. The protocol consisted of initial exposure
to the non-stimulatory 6 mM glucose, followed by either 8 or
12 mM glucose for 45 min, and washout with 6 mM glucose. The
Ca2+ imaging was performed on a Leica TCS SP5 AOBS Tandem
II upright confocal system (20x HCX APO L water immersion
objective, NA 1.0) and a Leica TCS SP5 DMI6000 CS inverted
confocal system (20X HC PL APO water/oil immersion objective,
NA 0.7). The acquisition was set to 10 Hz at 512 × 512 pixels
to make the precise quantification of Ca2+ oscillations feasible.
The dye was excited by argon 488 nm laser line and emitted
fluorescence was detected by Leica HyD hybrid detector in the
range of 500–700 nm (all from Leica Microsystems, Germany), as
described previously (Stožer et al., 2013). Additionally, a higher
resolution (1,024 × 1,024 pixels) image was acquired. Beta cells
identification was done by selecting regions of interest (ROIs)
off-line using microscope software or third-party software. ROIs
were selected based on cell morphology using a higher resolution
image or alternatively, based on maximal projection image from
time series and cell activity observed by replaying the time-
lapse videos. Time-series data were corrected for photobleaching,
employing a combination of linear and single exponential fit, and
signals were expressed as (F–F0)/F0 ratios, where F0 is the initial
fluorescence intensity, and F is the fluorescence signal recorded
at an individual time point during the experiment.

Processing of Recorded Ca2+ Traces
The recorded time series of Ca2+ signals were first corrected for
photobleaching of the dye employing a combination of linear and
single exponential fit as described previously (Stožer et al., 2013).
A Butterworth filter of the 5th order was then used to extract the
fast and slow dynamical component from the recorded signals.
To attain the low-frequency, i.e., slow, component, we applied the
band-pass filter with 1× 10−3 and 5× 10−3 Hz for the lower and
upper cutoff frequency, respectively. For the high-frequency, i.e.,
fast, component, we used 4× 10−2 and 4× 10−1 Hz for the lower
and upper cutoff frequency, respectively.

For further analyses, we discretized both dynamical
components. The fast component was binarized so that the
values from the onset to the end of individual oscillations were
1, and values between the oscillations were 0. The binarized

signals were then used to characterize the fast oscillatory activity,
i.e., to calculate the average frequency, the average duration
of oscillations, and the relative active time. The latter defines
the fraction of time that the cells spend in an active state with
increased intracellular Ca2+. Moreover, each oscillation of the
slow component, i.e., the interval between two local maxima, was
discretized to 12 segments, representing the phase intervals of the
pseudo-sinusoidal wave function. More specifically, the time of
the j-th local minimum and j-th local maximum of the i-th cell is
denoted by tmin

i,j and tmax
i,j , respectively. We divided the ascending

part of the slow component [tmin
i,j , tmax

i,j ] into six equidistant
intervals and assigned values 1, 2, . . . , 6 (corresponding to
the phase intervals

[
0, π

6
]
,
[

π
6 , π

3
]
, . . . ,

[ 5π
6 , π

]
. Similarly,

we divided the descending part of the slow component
[tmax

i,j , tmin
i,j+1] into 6 equidistant intervals and assigned

values 7, 8, . . . , 12 (corresponding to the phase intervals[
π, 7π

6
]
,
[ 7π

6 , 4π
3
]
. . .
[ 11π

6 , 2π
]
). See Figures 1C–E for

further insight.

Functional Network Analysis
Based on the extracted fast and slow dynamics of individual
cells, we construct the corresponding fast and slow functional
network layers. Nodes represent individual beta cells, and their
positions correspond to physical locations of cells in tissue
slices. Edges between node pairs are created on the basis of the
temporal similarity of Ca2+ dynamics, given with the correlation
coefficient between the i-th and j-th cell, Ri,j, computed as:

Ri,j =

∑T
t=0[fi (t)− fi][fj (t)− fj]

std(fi (t))std(fj (t))
,

where fi(t) and fj(t) represent the slow or fast traces of the i-
th and j-th cell. By computing Ri,j among all node pairs, we
create the correlation matrix, R, with the ij-th element being
the correlation coefficient Ri,j. To enable a direct comparison
between different networks, we used variable thresholds to extract
the binary adjacency matrix, so that the average node degree in
each network was k = 8. Conventional tools from the complex
network theory were then used to quantify functional beta
cell networks (Boccaletti et al., 2006), as described previously
(Gosak et al., 2018). In brief, the relative degree distribution
was calculated to explore the connectivity of cells in different
network layers. For the evaluation of the network’s functional
segregation, we computed the average clustering coefficient
and modularity, which reflect the level of clique-like structures
within interconnected cell assemblies and the extent of division
into smaller subpopulations, respectively. To characterize the
level of functional integration, we computed the relative largest
component, which quantifies the fraction of cells in the islet
that are either directly or indirectly connected. In addition, we
calculated the average physical length of functional connections.

Statistical Analysis
Statistical analyses were performed using the statistics package
in SigmaPlot 11 (Systat, Software Inc., IL, United States). We
compared groups by using the t-test or the Mann–Whitney
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test (for non-normally distributed data). All significances are
expressed as exact values and the number of islets included in
analyses indicated accordingly. All significances are expressed as
exact p values (p) and the number of islets included in analyses
is indicated accordingly. We estimated effect sizes by calculating
the values of Cohen’s d (d) by dividing the difference in sample
means by the pooled standard deviation, according to the original
definition (Cohen, 2013). Our judgements about effect sizes are in
accordance with a recent classification (Sawilowsky, 2009).

RESULTS

We studied the effect of stimulation with two glucose
concentrations: a physiological concentration that is commonly
observed in vivo, i.e., 8 mM, and a supraphysiological
concentration, i.e., 12 mM. First, we focused on the temporal
aspect of the glucose-evoked oscillatory Ca2+ activity measuring
the classical physiological measures, whereas in the second part
of our analyses, we examined the synchronicity and collective
activity of beta cell populations utilizing correlation analysis and
network-based approaches. Particular emphasis was devoted to
the interrelationship between the slow and the fast oscillatory
component in both approaches.

Assessing the Multimodal Oscillatory
Intracellular Ca2+ Activity in Pancreatic
Beta Cells
In acute mouse pancreas tissue slice, islets of Langerhans
are recognized under the stereomicroscope as white spots
(Figure 1A) and therefore easily distinguished from the
surrounding exocrine tissue. In an individual tissue slice up to
five or six islets could be found, but only one of these islets
per slice was used for calcium imaging. This islet was selected
based on the size, successful loading with calcium dye and
preserved architecture of the islet. A representative confocal
image of an islet used for calcium imaging is shown on Figure 1B.
Pancreatic beta cell Ca2+ response to glucose stimulation was
recorded by means of multicellular confocal imaging in acute
tissue slices as described in Materials and methods. The cells
responded to stimulation with a delay in the onset of Ca2+

activity (TS), and they reached a state of sustained activity after
a slightly longer time interval (TP, Figures 1C,D). The latter is
termed the plateau phase and is characterized by repetitive well-
aligned fast oscillations lasting a few seconds (MacDonald and
Rorsman, 2006; Stožer et al., 2013, 2019). Most importantly, as
it can be inferred from the recorded Ca2+ traces (gray lines
in Figures 1C,D), this fast oscillatory activity is superimposed
on a low-frequency oscillatory component. Using proper band-
pass filters, we could extract individual dynamical components
from the raw signals (see blue lines in Figures 1C,D for the
slow and the fast component, respectively). At first glance,
it can be observed that there was an order of magnitude
difference in the frequency of both components and that the
low-frequency component correlated with the behavior of the
high-frequency oscillations, which will be addressed in more
detail in continuation. To explore the relationship between both

oscillatory components, we defined individual phases of slow
oscillations, as illustrated in Figure 1E. This way, the activity
of fast oscillations could be studied in the context of the slow
component phases, as presented in Figure 1F.

Ca2+ activity of four exemplary cells from different islets is
presented in Figures 2A,B for stimulation with 8 mM glucose
and in Figures 2C,D for stimulation with 12 mM glucose. In
panels below (Figures 2E–H), the corresponding polar density
plots displaying the average relative density of fast oscillations as a
function of the phase of the slow component are shown. Each plot
includes the behavior of all cells and all slow oscillations in the
given islet. It can be noticed that in both glucose concentrations,
the relationship between the fast and slow oscillatory part can be
either well-defined (see Figures 2A,E,C,G) or pronounced only
weakly (see Figures 2B,F,D,H). However, irrespective of how
apparent the correlation between both oscillatory components
was, a very similar phase-dependency of the fast oscillations was
attained. Namely, in all four cases, the highest density of fast
oscillations was detected around the maxima and the lowest
around the minima of slow oscillations. To provide a general
insight into this behavior and investigate how it depends on
the glucose concentration, we plot in Figures 2I,K, the average
phase relationship pooled from all islets for a given glucose
concentration. Evidently, a rather strong phase-dependency was
observed in 8 mM glucose, whereas the correlation between the
fast Ca2+ activity and the phase of the slow oscillations was,
on average, only weakly pronounced in 12 mM glucose. To
elaborate on this issue further, we show in Figure 2J the minimal
value in the phase plots for each islet. This number reflects
to what extent the frequency of fast oscillations is modulated
by the slow oscillatory component. It can be observed that in
8 mm glucose, there was a very broad spectrum of oscillatory
phenotypes, whereas, under 12 mM glucose in the majority of the
islets, the relationship between the fast and slow oscillations was
rather weak, as reflected by significantly higher values of the Ffmin
parameter in 12 mM glucose and by a large effect size (p = 0.047,
d = 1.05).

Next, we quantified the Ca2+ signaling parameters, separately
for each glucose concentration. In both glucose concentrations
the frequency of slow oscillations was around 0.2 min−1

(Figure 2L) and was not affected by the stimulation level
(the difference was insignificant and the effect size very small,
p = 0.782, d = 0.14). In contrast, the frequency of fast oscillations
depended significantly and with a very large effect size (p = 0.002,
d = 1.80) on the stimulation level and was, on average, 4.8 and
8.4 min−1 in 8 and 12 mM glucose, respectively (Figure 2M).
The durations of individual oscillations tended to be higher under
12 mM glucose, but due to rather high levels of variability,
the difference did not reach statistical significance despite a
medium effect size (Figure 2P). However, the relative active
time, a metric being affected by both frequency and duration,
was almost twofold higher under higher stimulatory conditions
(Figure 2Q). This difference was significant and characterized
by a huge effect size (p < 0.001, d = 2.89). Apparently, only
the activity of the fast oscillatory component is modulated by
stimulatory glucose levels. Finally, we characterized the beta cell
responses to stimulation by calculating the average time lag until
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FIGURE 1 | Inferring dynamical components of beta cell calcium activity. Panel (A) shows an acute pancreas tissue slice under the stereomicroscope with islets of
Langerhans indicated by arrowheads. In panel (B), a representative confocal image with well stained cells in the islet of Langerhans using calcium dye Calbryte
520AM is presented. The blue circle indicates a beta cell. In panels (C,D), a raw recorded trace from an exemplary cell is shown in gray after stimulation with 8 mM
glucose. Blue lines in panels (C,D) signify the extracted slow and fast component signals, respectively. The gray shaded areas denote the plateau phase of sustained
activity, TS and TP specify the activation delay and the onset of sustained activity, respectively. Panel (E) visualizes the ascending and descending phases of two
succeeding slow component oscillations and the corresponding activity of fast oscillations. Black dots on the curve denote local extremes, and the colored
background indicates the corresponding ascending and descending phases. In panels (F,G), polar plots show the activity of fast oscillations with respect to the
phase of the slow component oscillations featured in panel (E).

the cells in a given islet responded to stimulation, TS, and the
average time required for the cells to reach the phase of sustained
activity, i.e., the plateau phase, TP. Both of these parameters
were significantly higher under lower stimulation levels and the
effect sizes were very large (p = 0.012, d = 1.38; p = 0.014, and
d = 1.36). In 8 mM, values of TS and TP were approximately
5 and 8 min, whereas in 12 mM glucose, they shortened on
average almost twofold (Figures 2N,O). These results are in
good agreement with our previous reports (Dolenšek et al., 2020;
Podobnik et al., 2020).

It should be noted that the beta cell activity is well
synchronized between different cells in the same islet, particularly
in the phase of sustained activity. We have therefore used
the islet averages to statistically evaluate the differences in
cellular signaling parameters. However, to gain a more detailed
insight and to additionally assess the intra- and inter-islet
variability, we present in Supplementary Figures 1–7 separate
data for all islets and the results that are based on pooling
data from individual cells. The results reveal that in the
domain of fast oscillatory activity the intra-islet variability
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FIGURE 2 | Quantifying oscillatory intracellular Ca2+ activity in pancreatic beta cells. Dynamics of two different oscillatory phenotypes of pancreatic beta cells
stimulated with 8 mM glucose (A,B) and 12 mM glucose (C,D). Blue and red lines in panels (A–D) show average calcium signals of all beta cells in a given islet
(before filtering). Panels (E–H) feature the corresponding relative phase-dependent activity of fast oscillations, i.e., relative density of fast oscillations at different
phases of the slow oscillatory component. Islets presented in panels (A,C) exhibit well-pronounced slow oscillations, and the frequency of fast oscillations depends
profoundly on the phase of the slow component. In contrast, the islet in presented panels (B,D) exhibits rather weakly pronounced slow oscillations and a very subtle
slow-phase-dependency of fast oscillations. Panels (I,K) show the relative phase-dependent activity of fast oscillations obtained from pooled data of all beta cells
and all islets for 8 and 12 mM glucose concentrations, respectively (927 traces from 9 islets for 8 mM glc and 743 traces and 8 islets for 12 mM glc), irrespective of
their response phenotype. In panel (J), the lowest value of slow-phase-dependent relative density of fast oscillations, Ffmin, is shown separately for each islet and
both glucose concentrations. Cohen’s d value is 1.05. Islets 2 and 8 for 8 mM and 1 and 4 for 12 mM correspond to data from panels (E–H). Panels (L–R) feature
the calcium signaling parameters: frequency of slow oscillations Fs (L), frequency of fast oscillations Fs (M), time required for the cells to respond to stimulation TS
(N), time required for the cells to reach the phase of sustained activity, i.e., the plateau phase, TP (O), duration of individual oscillations (P), and the average active
time (R). Cohen’s d values are 0.14 (L), 1.80 (M), 1.38 (N), 1.36 (O), 0.76 (P), and 2.89 (Q). Black dots denote average values in individual islets, error bars reflect
the standard deviation, and the column height displays the average value over all islets.

is clearly lower than inter-islet variability for both glucose
concentrations. For the frequency of slow oscillations, for the
relationship between the fast and the slow component, and

for the time required for the cells to reach the plateau phase,
no such obvious conclusions can be drawn. Most importantly,
irrespective of the signaling parameter, single-cell-based analyses
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corroborate the main findings that are based on islet averages,
but due to very large sample sizes with a much higher
statistical significance.

Synchronicity and Network Analysis of
Multiple Oscillatory Rhythms in Beta Cell
Collectives
To capture the collective temporal activity patterns of beta cell
populations, we show in Figure 3 raster plots of binarized
fast Ca2+ activity and color-coded values of the phases of the
slow oscillatory component, for two exemplary islets stimulated
with different glucose concentrations. In the domain of fast
oscillations, following either of the stimuli, beta cells exhibited
a biphasic response (Pedersen et al., 2019; Stožer et al., 2019;
Jaffredo et al., 2021). In the first activation phase, the cells
were progressively recruited, and Ca2+ waves of different sizes
were noticed. In the subsequent plateau phase, the islet activity
was characterized by dominating global Ca2+ waves and rather
regular oscillations. Moreover, under physiological stimulation
levels, the transition period to the plateau phase was considerably
shorter than under supraphysiological stimulation (see also
parameter TP in Figure 2O). The collective intercellular activity
is also visualized in Supplementary Videos 1, 2, showing
animations of binarized spatiotemporal Ca2+ dynamics in
representative islets. Evidently, the fast oscillatory activity was
well-coordinated and spread across the islets in the form of
rather well organized and directed Ca2+ waves. In the domain
of slow oscillations, synchronized spatiotemporal dynamics
was observed as well (see lower panels in Figure 3 and
Supplementary Videos 3, 4), which, however, is qualitatively
different from the fast Ca2+ waves. In general, the slow oscillatory
events were more global and encompassed the whole islet,
but the oscillations were phase-shifted. Most importantly, these
shifts changed with time, and there seemed to be a tendency
of nearby cells being less phase-shifted than remote ones,
although distant cells were found to be in the same phases as

well. In continuation, we explore these complex and coherent
spatiotemporal patterns in more detail.

To characterize the level of synchrony in the slow and fast
temporal scales of Ca2+ dynamics in islets, we computed the
average correlation coefficient for all possible pairs of cells
within individual islets, separately for each oscillatory component
and for both glucose concentrations. On the scale of slow
oscillations, the difference in average synchronicity at different
stimulation levels was not significant and the effect size was
small (p = 0.529, d = 0.31) (Figure 4A). On the contrary, higher
glucose concentrations evoked more synchronized responses of
the fast component (Figure 4B), which corroborates our previous
findings (Markovič et al., 2015; Gosak et al., 2018; Dolenšek
et al., 2020). The difference was statistically significant and the
effect size large (p = 0.048, d = 1.05). On average, the correlation
of the fast oscillatory activity was higher when compared
to the slow component. For both dynamical components,
the average correlation between cell pairs is a monotonically
decreasing function of the intercellular distance, irrespective of
the stimulatory glucose concentration (Figures 4C,D). In other
words, the correlation in Ca2+ activity between nearby cells was
roughly twice as high as between remote ones, for both the fast
and the slow component. However, for the fast component, this
result is expected, because well-defined propagating Ca2+ waves
serve as the main synchronizing mechanism (Aslanidi et al., 2001;
Benninger et al., 2008; Santos et al., 1991; Šterk et al., 2021). For
that reason, the average correlation also decreases slower with
increasing distance under 12 mM than under 8 mM glucose,
since supraphysiological levels of stimulation evoke mainly global
waves, which give rise to higher correlations also at higher
intercellular distances. In contrast, under physiological glucose
levels, there is also a certain fraction of localized Ca2+ waves,
which do not facilitate global synchronicity (Stožer et al., 2019).
Notably, a similar trend was observed for the slow oscillatory
component as well, except that the average level of intercellular
synchrony was lower. This result does not only corroborate
previous observations of slow activity being often coordinated

FIGURE 3 | Visualization of collective fast and slow beta cell activity. Raster plots of binarized fast Ca2+ oscillations (upper row) and the corresponding color-coded
phases of the slow oscillatory activity (lower row) in typical islets stimulated with 8 mM (A) and 12 mM (B) glucose. The blue and red lines superimposed on the
raster plots denote the temporal evolution of the average relative active time, as specified by the scale on the right-hand side of the graph.
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FIGURE 4 | Intercellular synchronicity of slow and fast oscillatory beta cell activity. The average correlation coefficient between the slow (A) and fast (B) oscillatory
components for both glucose concentrations. Black dots denote average values of individual islets, error bars reflect the standard deviation, and the column height
displays the average over all islets in the given group. Cohen’s d values are 0.31 and 1.05 for average correlation of slow and fast component, respectively. In panels
(C,D), the average correlation as a function of the Euclidean distance between cell pairs is shown for 8 mM (C) and 12 mM (D) glucose, separately for each
dynamical component. The heights of the columns represent the average over all cell pairs in all islets belonging to a certain spatial interval.

among nearby cells (see Figure 3 and Supplementary Videos
3, 4), but also implies that intercellular communication has an
important role by orchestrating the collective activity of the slow
oscillatory behavior as well.

To further characterize the collective beta cell activity
of both dynamical components, we constructed functional
connectivity profiles for both glucose concentrations. Both types
of Ca2+ traces from all cells were statistically compared in a
pairwise manner to build correlation matrices (Figures 5A–
D). Functional networks are shown in Figures 5E–H and were
obtained by adjusting the connectivity thresholds, so the average
connectivity was k = 8 in all beta cell networks. The node
degree distributions are presented in Figures 5I,J and were
found to be rather heterogeneous and similar for both dynamical
components and stimulation levels. Moreover, a weak correlation
was identified between the node degrees in networks extracted
from fast and slow oscillatory activity. The tendency of better-
connected cells harboring more functional connections in both
networks was more pronounced under 12 mM than under 8 mM
glucose. A comparison of network characteristics showed that the

average lengths of functional connections are more than twofold
higher in the slow component network layer (Figures 5M,N).
This difference was significant and the effect size huge (p < 0.001,
d = 2.82 for 8 mM and p = 0.002, d = 1.86 for 12 mM glucose).
In both glucose concentrations, the fast component network
layer exhibited higher clustering levels in comparison to the slow
component network (Figures 5O,P; p = 0.092, d = 0.85 for 8 mM
and p < 0.001, d = 2.20 for 12 mM glucose). Moreover, the
network architecture of the fast component was found to be less
cohesive (lower relative largest component, Figures 5Q,R), but
only under physiological stimulation levels, where the difference
compared with the slow component was significant with a large
effect size (p = 0.053, d = 0.98). Under supraphysiological glucose
levels the difference was not significant and characterized by a
medium effect size (p = 0.479, d = 0.36). This can be attributed
to the fact that high stimulatory conditions evoke high fractions
of global waves in the domain of fast activity, which results
in very integrated functional connectivity patterns (Markovič
et al., 2015; Gosak et al., 2018). Modularity, another network
fragmentation metric, also suggested lower levels of integration
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FIGURE 5 | Multiplex network representation and analysis of functional beta cell connectivity maps. Matrix plots of pairwise correlation coefficients in a typical islet
stimulated with 8 mM (A,B) or 12 mM (C,D) glucose, separately for the slow (A,C) and fast (B,D) oscillatory components. The corresponding functional beta cell
network representation is shown in panels (E–H) for islets stimulated with 8 mM (E,F) and 12 mM (G,H) glucose. Nodes signify positions of beta cells within an islet,
and connections stand for functional associations between the slow (E,G) and fast (F,H) oscillatory components. Panels (I,J) display the degree distributions for all
islets stimulated with 8 mM (I) and 12 mM (J) glucose, separately for the slow and fast components. Note that the average degree of functional networks in all islets
was set to k = 8. The correlation between node degrees in the fast- and slow component derived networks is featured in panels (K,L) for 8 and 12 mM glucose
stimulation, respectively. Only nodes with k > 0 were considered. The gray dotted lines represent a linear fit (R2 was 0.15 for low and 0.31 for high stimulatory
conditions, p < 0.001). Panels (M–T) feature the average pooled data of network parameters for all islets under the given stimulatory glucose concentration,
separately for both oscillatory components: physical length of functional connections (M,N), average clustering coefficient (O,P), global efficiency (R,Q), modularity
(S,T). Cohen’s d values: 2.82 (M), 1.86 (N), 0.85 (O), 2.20 (P), 0.98 (Q), 0.36 (R), 0.79 (S), and 0.70 (T).

in the fast component network layer (Figures 5S,T) (p = 0.111,
d = 0.79 for 8 mM and p = 0.192, d = 0.70 for 12 mM
glucose). A higher dispersion of data in this case can probably
be attributed to morphological heterogeneity of islets and the
resulting inhomogeneous distribution of beta cells in tissue slices.

We wish to suggest that the observed discrepancies in
the functional network structures reflect the differences in
the spatiotemporal dynamics of intercellular Ca2+ waves that
coordinate both types of oscillations among different cells. The
fast oscillatory activity is being coordinated mostly by gap
junction–mediated electrical coupling, resulting in propagating
Ca2+ waves, which were not always global and encompassed
sometimes only a part of the beta cell syncytium. This led
to more locally clustered and segregated network structures.
While the slow oscillatory component is influenced by gap

junctional communication as well, the slow waves were mostly
global and occurred over a broader temporal scale. This
brought about more long-range connections and more cohesive
functional connectivity patterns. However, a systematic analysis
and comparison of the nature Ca2+ waves coordinating both
types of oscillations, as well as the exploration of the underlying
mechanisms, is beyond the scope of this article. Finally, it
should be noted that in our study we have used variable
thresholds to construct functional networks in order to be able
to compare the connectivity patterns from different dynamical
components, which differ in the degree of correlations between
Ca2+ signals. We have used an average degree k = 8 to mimic
realistic beta cell network architectures (Zhang et al., 2008)
and to obtain adequately dens networks suitable for analyses.
However, within reasonable limits the conclusions do not depend
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on this rather arbitrary choice of the average degree (see
Supplementary Figure 8).

DISCUSSION

In the present work, we demonstrated that the pancreatic beta
cells in mouse tissue slices express a bimodal oscillatory activity
of the intracellular Ca2+ concentration. Such bimodality of the
oscillatory activity was previously described for other stimulus-
secretion cascade parameters: the metabolic profile of a beta cell
follows the slow oscillatory pattern, and the membrane potential
follows the fast temporal pattern (Dean and Matthews, 1968;
Santos et al., 1991; Gilon and Henquin, 1992; Liu et al., 1998;
Bergsten, 2002; Gilon et al., 2002; Tengholm and Gylfe, 2009;
Satin et al., 2015; Skelin Klemen et al., 2017; Bertram et al., 2018).
Focusing on the intracellular Ca2+ concentration as a surrogate
for both metabolic and electrical beta-cell activity, experimental
and mathematical modeling studies provided evidence for
the Ca2+ oscillations resembling the slow metabolic, the fast
membrane potential oscillations, or combination of the two.
Some studies suggested that our understanding of the two
dynamical components might be an experimental artifact. More
specifically, it has been suggested that cultivation of isolated
islets triggers a phenotype transformation from cells that display
fast or compound oscillations to cells with a prevailing slow
temporal pattern, likely attributed to the degradation of key
membrane proteins by enzymes during the isolation protocol or
the conditions used for cultivation of isolated islets (Gilon et al.,
1994; Rupnik, 2009). In this study, we employed the acute tissue
slice preparation that entirely omits any enzymes during tissue
isolation and overnight culture, while preserving both homo-
and heterotypic cell-to-cell contacts (Dolenšek et al., 2015).
We demonstrated in all preparations and for both stimulatory
concentrations of glucose that the beta cells simultaneously
display both the slow and the fast Ca2+ oscillations. The slow
pattern was also detected in basal 6 mM glucose (Figure 3).
Together with the glucose-insensitivity of slow oscillations
(Figure 2), the above findings present valuable experimental
confirmation for similar findings in isolated cells and islets (Gilon
et al., 2002; Beauvois et al., 2006; Satin et al., 2015; Bertram
et al., 2018; Rorsman and Ashcroft, 2018) and verification for
beta-cell models that predict these features (Pedersen et al.,
2005; Pedersen, 2009; Merrins et al., 2010; McKenna et al., 2016;
Bertram et al., 2018).

In contrast with the slow oscillations, the fast oscillations were
modulated by both physiological (8 mM) and supraphysiological
(12 mM) stimulation. Both the frequency and the phase
duration of the fast component increased with increasing
glucose concentration (Figure 2), corroborating earlier studies
on isolated islets (Santos et al., 1991; P. Gilon et al., 1993;
Antunes et al., 2000; Nunemaker et al., 2006), in acute tissue
slices (Markovič et al., 2015; Dolenšek et al., 2020), and
of mathematical modeling (Nunemaker et al., 2006; Stamper
and Wang, 2019). To study the interplay of the two, we
correlated the two frequency domains from the same beta
cells (Figure 2). Especially for the physiological concentration

(8 mM) and a portion of islets exposed to 12 mM glucose,
the slow activity strongly influenced the fast component.
More specifically, there was a phase-dependency between both
dynamical components, with the highest bursting activity
around the maxima and the lowest around the minima of
slow oscillations (Figures 2A,C,E,G). The correlation was
weaker in other islets in which the fast component seemed
less influenced by the slow oscillations (Figures 2B,F,D,H).
Increasing stimulation to the supraphysiological levels (12 mM)
decreased the overall correlation (Figure 2K), pushing more
islets to a more continuous bursting pattern. As in our previous
work and studies by others, supraphysiological concentrations
were typically used (>11.1 mM), this might explain why the
modulation of the fast component was largely overlooked
previously. Importantly, our finding that in higher glucose,
the fast oscillations also continue during the minima of
slow oscillations with almost unaltered frequency implies that
increasing glucose increases insulin release through an extension
of beta cell activity to otherwise silent or less active periods, but
probably at the cost of attenuating the pulsatility of insulin release
(Matthews et al., 1983a; Juhl et al., 2000, 2001).

The rhythmogenesis of the oscillatory activity in beta cells
has been a controversial topic for decades and has attracted
the attention of experimentalists as well from theoretical and
computational scientists (Bergsten, 2002; Gilon et al., 2002;
Satin et al., 2015; Bertram et al., 2018; Zavala et al., 2019;
Grubelnik et al., 2020). For the fast component, it has been
proposed that the mechanism involves feedback of Ca2+ ions
on ion channels. A rise in the intracellular Ca2+ concentration
activates the calcium-dependent K (KCa) channels, causing
hyperpolarization and closure of the voltage-dependent Ca2+

channels. The latter decreases Ca2+ influx triggering a decrease
in the Ca2+ concentration that ultimately removes the inhibitory
drive of the KCa channels, and the cycle can repeat (Nunemaker
et al., 2006; Satin et al., 2015). There is no clear consensus
on the origin of the beta cell activity’s slow component. These
were reported to be in phase with the slow oscillations of the
insulin secreted in vitro and in vivo (Bergsten, 2002; Gilon
et al., 2002; Bertram et al., 2018), and are thought to reflect
the oscillations in metabolism; therefore, the terms slow and
metabolic oscillations are often used interchangeably (Satin et al.,
2015). Different studies demonstrated that both the slow and
the fast pulses of insulin correlate well with the respective
time domains of the Ca2+ oscillation dynamics in beta cells.
Insulin secretion perfectly matches the slow Ca2+ oscillations
in isolated islets from mice (Bergsten et al., 1994; Gilon et al.,
2002) and humans (Hellman, 2009). Although cultured isolated
islets generally exhibit slow oscillations, in a few isolated islets
that exhibited frequencies similar to the fast component observed
in our preparation (approx. 6 oscillations/minute), the insulin
dynamics also perfectly matched these faster Ca2+ dynamics
(Bergsten, 1995; Barbosa et al., 1998), suggesting that the insulin
dynamics can follow Ca2+ dynamics even in the faster domain.
There is also no clear consensus on whether the oscillatory
pattern of the Ca2+ drives the slow component (Ca2+-driven
metabolic oscillations) or vice versa (metabolism-driven Ca2+

oscillations) (Watts et al., 2014). Experimental data to date
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provided evidence for either scenario. On the one hand, the
oscillations in Ca2+ were shown to be a prerequisite for the
metabolic component (Gilon et al., 2002; Kennedy et al., 2002;
Bertram et al., 2007). On the other hand, perturbing the metabolic
oscillations with the a-ketoisocaproic acid (KIC), which enters
metabolism at the citric acid cycle, bypassing glycolysis and
clamping metabolism levels to a steady-state, affected (albeit
inconsistently) the Ca2+ oscillations (Bertram et al., 2018). While
some studies reported KIC-induced slow oscillations (Martin
et al., 1995), others failed to reproduce the KIC effect (Lenzen
et al., 2000; Dahlgren et al., 2005). In this study, we found a
clear glucose-dependence of fast Ca2+ oscillations with respect
to time required for their initiation, their frequency, and the
active time. In contrast, the slow oscillations did not show
any glucose-dependence, at least in the investigated range of
concentrations, and they also existed in the absence of the fast
component (in 6 mM glucose). Moreover, the frequency of the
fast component depended on the phase of the slow component.
These facts, taken together, imply that the mechanism driving
the slow activity of intracellular Ca2+ concentration is distinct
from the one responsible for the fast component, that the slow
component influences the fast, but that the presence of fast
oscillations and their characteristics do not influence the slow
oscillations. More specifically, the slow oscillations cause shifts
in the frequency of the fast oscillations, but the average value of
these fast oscillations is set by a glucose-dependent mechanism,
distinct from the one responsible for slow oscillations. This
corroborates the recent developments in computational models
of beta cell activity, suggesting that the slow oscillations may
originate from intrinsic mechanisms, in addition to Ca2+ effects
on the enzymes involved in beta cell metabolism (McKenna
et al., 2016; Bertram et al., 2018; Fazli et al., 2020). We wish
to point out that our method of measuring changes in Ca2+

does not enable assessments of absolute changes in amplitudes
and thus we cannot completely exclude the possibility that the
amplitude of the slow oscillations may be glucose-dependent.
We also never observed fast oscillations without any underlying
slow oscillations, but this does not mean that such a pattern of
activity does not exist.

Proper pulsatile secretory responses require the beta cells to
work in synchrony, which is ensured by gap junctions, other
modes of intercellular communication, and by paracrine signals
(Bavamian et al., 2007; Benninger et al., 2011, 2014; Bosco
et al., 2011; Head et al., 2012; Skelin Klemen et al., 2017;
Benninger and Hodson, 2018; Almaça et al., 2020; Lammert and
Thorn, 2020). The former is the main synchronizing mechanism
of the fast oscillatory domain by facilitating the propagation
of depolarization and Ca2+ waves across the islets. Collective
behavior of fast oscillations is receiving much more attention
from the scientific community, especially because inherent beta
cell heterogeneity and the existence of subpopulations lead
to complex spatio-temporal activity patterns, characterized by
heterogeneous and non-stationary intercellular waves, which
are also accessible to experimental and modeling approaches
(Hraha et al., 2014; Cappon and Pedersen, 2016; Gosak et al.,
2017; Westacott et al., 2017b; Šterk et al., 2021). These
waves are typically initiated from subregions with elevated

excitability (Benninger et al., 2014) and with increasing glucose
concentration, they become more global (Stožer et al., 2019),
which results in more integrated functional network structures, as
we have also observed in the present study (Figure 5). In contrast,
the characteristics of slow collective activity and the underlying
mechanisms are much less known. Our results clearly indicate
that the slow oscillations are not only rather well aligned across
the islets, but also that nearby cells are better synchronized than
remote ones (see Figures 3, 4). More specifically, our results
imply two conclusions: first, in the slow oscillations domain, not
all cells in the islet are simultaneously in the same phases. Second,
there must be some synchronizing mechanism that promotes
the coordination of slow oscillations among neighboring cells.
This might be the diffusion of glucose-6-phosphate or some
other metabolic intermediate (Tsaneva-Atanasova et al., 2006;
Loppini et al., 2015) or the indirect influence of the feedback
of well-aligned fast component oscillations. Theoretically, it has
been suggested that gap junction-mediated electrical coupling,
diffusion of glycolytic intermediates, or a combination of both
can contribute to the synchronization of slow oscillations
(Pedersen et al., 2005). However, to what extent different
means of intercellular communication shape the complex spatio-
temporal activity in islets, remains to be elucidated. Moreover,
we argue that the first point about the different phases of the slow
component might refer to the multifaceted heterogeneity of beta
cells, which results in the existence of subpopulations with similar
cellular signaling characteristics (Dwulet et al., 2019; Stožer et al.,
2019; Da Silva Xavier and Rutter, 2020; Rutter et al., 2020).
This would also explain the relatively high abundance of long-
range connections in the network extracted from the dynamical
slow component (see Figures 4E,G), which link different
subpopulations with similar metabolic profiles. In contrast, in the
fast component network, connections interconnect particularly
cells within the same subgroup, whereas long-range connections
are manifested mostly only by specific hub cells (Markovič
et al., 2015; Johnston et al., 2016; Gosak et al., 2018). From a
functional point of view, the slow component seems to set the
pace for all cells within an islet and ensure that cells in different
regions are all active during the same periods, whereas the fast
component probably fine-tunes the number of cells that are
recruited during an active period, as well as their level of activity.
Nevertheless, further studies will be necessary for elucidating the
precise mechanisms that govern the intercellular synchronicity
of different dynamical components in beta cells, for instance
by systematically comparing the characteristics of intercellular
Ca2+ waves synchronizing the fast and slow oscillations. We will
also have to define the roles that beta cells play across networks
extracted from different temporal domains, find out whether
these roles are stable and dependent on long-term processes,
such as differentiation, or more flexible and dependent on local
cues, and explore how they contribute to normal and pathological
endocrine function.

To conclude, insulin secretion, as well as other metabolic
and hormonal rhythms, are ubiquitous and vital for maintaining
normal physiological functions. These rhythms result from the
interplay between several feedback systems and occur at multiple
timescales and levels of organization (Corkey and Shirihai, 2012;
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Bertram et al., 2018). The recently emerging fields of network
physiology and network medicine show great potential to address
such issues and to provide new insights into how global behavior
at the organism level can arise out of micro-mechanisms on
the cellular and tissue level (Bashan et al., 2012; Ivanov et al.,
2016). Metabolic systems make excellent candidates for being
studied by these novel interdisciplinary approaches (Zavala
et al., 2019; Corkey and Deeney, 2020; Martinez et al., 2020).
Understanding how the multimodal activity of beta cells acts in
synchrony and integrates to the organ level, how heterologous
interactions with other islet cells affect the pancreatic output,
how the complementary action of other hormones contributes
to the dynamic crosstalk between metabolic organs, and how
all these pathways are impaired in diabetes, are some of the
main questions in islet and in specific metabolic diseases research
(Rorsman and Ashcroft, 2018; Rutter et al., 2020). We firmly
believe that addressing these issues will require new perspectives
and integrative frameworks based on tools developed in the field
of network science and computational physiology, which will
support and complement experimental endeavors.
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