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There is an increasingly widespread use of biomarkers in network physiology to
evaluate an organism’s physiological state. A recent study showed that albumin
variability increases before death in chronic hemodialysis patients. We hypothesized
that a multivariate statistical approach would better allow us to capture signals of
impending physiological collapse/death. We proposed a Moving Multivariate Distance
(MMD), based on the Mahalanobis distance, to quantify the variability of the multivariate
biomarker profile as a whole from one visit to the next. Biomarker profiles from a visit
were used as the reference to calculate MMD at the subsequent visit. We selected
16 biomarkers (of which 11 are measured every 2 weeks) from blood samples of 763
chronic kidney disease patients hemodialyzed at the CHUS hospital in Quebec, who
visited the hospital regularly (∼every 2 weeks) to perform routine blood tests. MMD
tended to increase markedly preceding death, indicating an increasing intraindividual
multivariate variability presaging a critical transition. In survival analysis, the hazard ratio
between the 97.5th percentile and the 2.5th percentile of MMD reached as high as
21.1 [95% CI: 14.3, 31.2], showing that higher variability indicates substantially higher
mortality risk. Multivariate approaches to early warning signs of critical transitions hold
substantial clinical promise to identify early signs of critical transitions, such as risk
of death in hemodialysis patients; future work should also explore whether the MMD
approach works in other complex systems (i.e., ecosystems, economies), and should
compare it to other multivariate approaches to quantify system variability.

Keywords: network physiology, critical transition, early warning sign, multivariate statistical approaches,
variability, early intervention
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INTRODUCTION

Recent research on physiology increasingly shows that
physiological systems do not operate independently. The
coordination among different organs and systems maintains
body homeodynamics; similarly, the proper functioning of each
organ and system requires a healthy organism (Kennedy et al.,
2014; Cheikhi et al., 2019; Franceschi et al., 2019). This is the
purpose of network physiology, an emerging research field
dedicated to the study of coordination among diverse systems
at the organism level and dynamical transition of physiological
states (Ivanov et al., 2016). Such coordination is critical; however,
the dynamic complexity is challenging to untangle (Bashan et al.,
2012). One approach to network physiology is to consider the
organism as a single network of molecules (Cohen et al., 2012).
While the structure of this network is far from being elucidated
and many nodes are still unidentified, it may nonetheless be
possible to infer much about the network via sampling of small
subsets of nodes (i.e., molecules), due to the emergent properties
of the network as a whole that lend coherence to its state and
dynamics (Cohen, 2016; Cohen et al., 2021). This approach can
be linked to a more general area of complex systems theory
that has recently gained substantial attention: critical transitions
(Dakos et al., 2008, 2012; Scheffer et al., 2009; Bashan et al.,
2012; Ghalati et al., 2019). In complex systems, system dynamics
such as a change in variability may provide early warning
signs (EWSs) of impending state changes known as critical
transitions (e.g., ecological collapse, financial crises, and shifts in
climate regime). Only a few studies have explicitly applied this
framework to health and disease (Gijzel et al., 2017; Ghalati et al.,
2019; Nakazato et al., 2020), though many studies have reported
higher variation in various biomarkers preceding the onset of
adverse outcomes in subjects with chronic diseases (Holzel,
1987; Ma et al., 2012; Mendez et al., 2013; Myers et al., 2018;
Woo et al., 2018), including Chronic Kidney Disease (CKD;
Yang et al., 2007; Flythe et al., 2013; Selvarajah et al., 2014; Corte
et al., 2015; Nakazato et al., 2017). Increased variance is indeed
one of the main characteristics of resilience loss (Gijzel et al.,
2017). Additionally, most studies of critical transitions evaluate
univariate indices. A network physiology perspective implies
coordination across systems in timing and dynamics, suggesting
that a multivariate approach would allow better assessment of
the coordinated physiological shifts.

One of the challenges in using clinical biomarker-based
models of critical transitions in physiology is that detection
of EWSs requires detailed time series in order to detect
features such as increases in variance, autocorrelation, loss of
resilience, etc. Chronic kidney disease (CKD) represents an
excellent opportunity to circumvent this challenge: patients on
hemodialysis are generally treated three times per week, with
blood work conducted approximately every 2 weeks depending
on local protocols. The health consequences of repeatedly missing
visits can be severe, and treatment can continue for years or even
decades. Accordingly, electronic medical records can provide
time series with bi-weekly values for fixed biomarker panels
spanning many years, with relatively few missing data for the core
blood panels, and with little to no bias in terms of health state

(i.e., the same markers are measured at the same time regardless
of the presence or absence of other health problems). This is in
contrast to cohort study data collected explicitly for research in
humans, which rarely provide a dense enough time series, and
to most other types of clinical data, where there are problems
with the regularity of measurement, variation in the biomarkers
measured, and a bias toward measurement only when health
problems are suspected (i.e., sicker individuals).

Given the growing aging population, age-related chronic
diseases like CKD are increasingly becoming a burden
(O’Callaghan et al., 2011; Hill et al., 2016; Webster et al.,
2017; Luyckx et al., 2018), and thus a prominent research
topic. CKD does not solely consist of kidney dysfunction, but
also leads to various systemic complications: cardiovascular
disease and stroke, anemia, etc (Thomas et al., 2008; Webster
et al., 2017). Usually, CKD-related complications, rather than
CKD itself, lead to death (Muntner et al., 2002; Go et al., 2004;
Nordio et al., 2012; Hill et al., 2016). Moreover, diabetes and
hypertension, along with glomerulonephritis, are known to be
the primary causes of CKD (Webster et al., 2017), stressing
the importance of holistic approaches to age-related diseases
(Kennedy et al., 2014). If EWSs were successfully assessed, early
diagnosis and treatment adjustments could be performed in a
timelier manner. In particular, patients with end-stage kidney
disease (ESKD, the last stage of CKD) are often hospitalized,
suffering substantial health comorbidities as individuals and
representing an important burden on the health care system
(Nordio et al., 2012; Webster et al., 2017; Luyckx et al., 2018).
Hospitalizations and death may often represent what we term
here “physiological collapse,” a critical transition in which the
homeostatic/homeodynamic mechanisms are pushed outside the
bounds they can properly respond to and thus require external
intervention to maintain life. Early detection of impending
physiological collapse events could provide the potential for less
burdensome, less costly, and more effective interventions. For
example, an algorithm to detect EWSs of physiological collapse
could be built directly into electronic medical records systems,
providing an alert when appropriate. Many dynamic signals of
EWSs have been identified in critical transition literature more
broadly: increased variability, decreased resilience, increased
autocorrelations, increased cross-correlations, and critical
slowing down. However, the accuracy and sensitivity of the
establishment of such signals are still challenging (Scheffer et al.,
2012), and medical applications are not well developed.

Here, we focus on one EWS indicator: the increase in
variability of a complex system, which is often linked to loss of
resilience (Scheffer et al., 2012). Increase in variability reflects
the longer time that the system with low resilience takes
to recover from perturbations and return to an equilibrium
state, a phenomenon named critical slowing down and which
causes higher fluctuations (Scheffer et al., 2012; Kéfi et al.,
2014). However, change in variability is still being studied
one biomarker at a time (Ma et al., 2012; Flythe et al.,
2013; Mendez et al., 2013; Nakazato et al., 2017; Woo et al.,
2018), even though a multivariate signal would likely be more
powerful. Within organisms, biomarkers are integrated into a
complex physiological system in which levels of one depends
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on the levels of many other biomarkers; hence no single
marker can truly reflect the underlying physiological state
(Cohen et al., 2012; Cohen, 2016). Moreover, biomarkers can
be sensitive to population composition, a problem that can
be partially circumvented by integrating the interdependence
of biomarkers into the equation (Cohen et al., 2017). More
broadly, approaches to measure EWSs for critical transitions
are generally univariate even though the systems in question
(ecosystems, economies, etc.) are generally high-dimensional
and interconnected. Multivariate EWSs are thus an important
untapped field, and would link critical transition theory to
network physiology, where synchronization across physiological
systems is a major subject of interest. We have previously
demonstrated the utility of statistical distance in measuring
multivariate physiological dysregulation (PD) and predicting
mortality, either at the organism level (Cohen et al., 2013,
2014, 2015; Milot et al., 2014) or in specific systems (Li et al.,
2015). However, the previous work, based on Mahalanobis
Distance (Mahalanobis, 1936), had only considered the deviation
of biomarkers from an average population norm. Here,
we hypothesized that intraindividual changes in biomarker
variability could be captured with the same approach, but by
calculating the distance of an individual’s multivariate position
from that of the previous visit, instead of the distance from the
population mean (Figure 1 and Supplementary Figure 1).We
defined this measure as Moving Multivariate Distance (MMD)
and tested it in a population of 763 patients with CKD under
long-term hemodialysis. We hypothesized that intraindividual
variability in biomarkers, as measured by MMD, would increase
before a critical transition (in this case, death).

MATERIALS AND METHODS

Dataset
Our study population consisted of 2565 patients who underwent
hemodialysis from 1997 to 2017 at the Centre Hospitalier
Universitaire de Sherbrooke (CHUS) in Quebec, Canada. Data
were extracted from the CIRESSS platform, which aggregates all
electronic hospital data for clinical and administrative purposes.
Because the CHUS hospital system is the only tertiary hospital
in the region, these data can be considered a nearly exhaustive
representation of hemodialysis patients in the Eastern Townships
region of Quebec (population∼325K) for the period in question.
From the 2565 patients, we excluded 1694 who were no longer
treated by in-center hemodialysis at 6 months (potentially
indicating death, recovery within 6 months and thus acute
rather than chronic kidney failure, or transition to another renal
replacement modality or to conservative care), and 58 patients
with irregular hemodialysis visits and/or an acute or unspecified
kidney failure diagnosis, leaving us with 813 patients having CKD
and on long-term hemodialysis. For all the patients, we excluded
the first 6 months on hemodialysis since dialysis initiation has
been reported to represent a critical transition in itself (Broers
et al., 2015), but for 26 patients, we were left with less than three
blood sampling visits and thus excluded them. We also excluded
24 patients with incomplete biomarker data, yielding a total of

763 patients for analyses (Table 1). We define these 763 long-
term hemodialysis patients as the “Full” dataset in the study, in
contrast to the “Individuals 65+” dataset, those aged 65 years
or more at their last data collection, from the 763 hemodialysis
patients. However, some patients were lost to follow-up or had
missing data (either they moved or stopped blood work due
to palliative care) in the period just preceding their death. We
expected that physiological signals would be strongest just prior
to death, and thus created additional data subsets excluding
individuals who did not have a visit within the last 30, 60, 90,
183, or 365 days preceding the date of death (loss to follow up,
Supplementary Table 1). We also created a subset of “Kidney
transplant” patients. As opposed to all censored patients which
contain patients who were censored for unknown reasons or due
to the end of the study period, which may happen not long before
their death, this subset strictly contains patients censored by a
kidney transplant. It was generated by selecting patients who had
no hemodialysis visit and did not die in the 2 years following their
kidney transplant. All trend plots only considered the last 5 years’
biomarker profiles for each patient (i.e., preceding death, kidney
transplant, or loss to follow-up).

Biomarker Selection
Patients under dialysis treatment have regular blood sampling,
generally every 2 weeks; however, not all biomarkers are
measured with the same frequency. We thus generated three
blood schedule-based biomarker sets according to intervals at
which they were available (Table 2). Therefore, the “Two weeks”
biomarker set only includes the biomarkers that are tested every 2
weeks. The “One month” biomarker set includes the biomarkers
that are tested every 2 weeks or every month. The “Four months”
biomarker set includes all the biomarkers that we consider.
Because the frequency of blood sampling was not perfect in our
dataset, we considered all visits that occurred within 12 to 16 days
as a two-week interval, 25 to 35 days as a one-month interval,
and 100 to 140 days as a four-month interval. We excluded the
following biomarkers because they were irregularly measured
or had many missing values in our dataset: uric acid, ionized
calcium, carbon dioxide, iron-binding capacity, iron, ferritin,
iron saturation, transferrin, urea, glycated hemoglobin, partial
carbon dioxide pressure, partial oxygen pressure, pH, intact
parathyroid hormone, and thyroid-stimulating hormone.

According to the physiological features of the biomarkers, we
also classified them into three physiological systems (Table 2).
Creatinine is commonly used to report estimated glomerular
filtration rate (eGFR), which is the most important indicator for
estimating general kidney function in clinical practice (Webster
et al., 2017). Albuminuria, which implies continuous urinary
loss, indicates pathological kidney damage which is caused
by elevating membrane permeability (Webster et al., 2017).
In addition, albumin level is decreased secondary to uremic
state, chronic inflammation and malnutrition, which are present
in ESKD, and is a marker of mortality (Zoccali et al., 2005;
Honda et al., 2006; Phelan et al., 2008).Therefore, we classified
these two biomarkers into the “Kidney health” group (Table 2).
Impaired kidney function can also lead to electrolytic alteration
(i.e., potassium derangement, dysnatremia, and dysmagnesemia;
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FIGURE 1 | Explanations of Mahalanobis Distance and MMD. (A) A two-dimensional example of Mahalanobis distance. (B) A low dynamic movement of Moving
Multivariate Distance (MMD), i.e., low intraindividual variability. (C) A high dynamic MMD movement, i.e., high intraindividual variability. (D) A two-dimensional
autocorrelation.

Dhondup and Qian, 2017). The reduced potassium excretory
capacity, which usually causes hyperkalemia, has been shown
to be significantly associated with hospitalization and the
prognosis of CKD patients (Luo et al., 2016; Dhondup and
Qian, 2017). Therefore, we also included potassium and sodium
in the “Kidney health” group (Table 2). Kidney dysfunction
could interfere with erythropoietin (EPO) production; this could
further lead to anemia, which is one of the complications of
CKD (Webster et al., 2017). Accordingly, we included seven
biomarkers describing red blood cells in the “O2 transport”
group (Table 2). Similarly, the kidney plays an essential role in
regulating calcium and phosphate metabolism (Dhondup and
Qian, 2017; Webster et al., 2017), and mineral bone disease
is indeed one of CKD’s possible complication (Dhondup and
Qian, 2017; Webster et al., 2017). We thus created a third
group named “Mineral Bone Disease” which includes calcium
and phosphate (Table 2). For each physiological group, we used
the visit interval of the least frequently measured biomarker as
the interval for MMD calculation (i.e., we use “Four months” as
the visit interval for the “Kidney health” group since it includes
“Albumin”). Lastly, MCH, MCHC, and MCV are mathematically
redundant, since they can be calculated from hemoglobin, RBC
count, and HCT. To check the effect of this redundancy on
MMD, we conducted sensitivity analyses excluding the three

TABLE 1 | Characteristics of study participants at first visit included in analyses
(i.e., after excluding the first 6 months of dialysis).

Characteristic (n = 763)

Age (years) ± SD 64.2 ± 15.8

Male, n (%) 479 (62.8)

Diabetic, n (%) 391 (51.2)

Death, n (%) 525 (68.8)

Hemodialysis time (years), median (IQR: 25%,75%) 2.12 (0.67, 4.44)

Received at least once successful kidney transplant* (%) 149 (19.5%)

Number of visits per patient, median (IQR: 25%,75%) 57 (21, 117)

*No subsequent dialysis 2 years after received a kidney transplant.

redundant biomarkers from both the blood schedule-based
biomarker sets and physiological system biomarker sets and then
performed Cox proportional hazard models (see details in section
“Survival Analysis”).

Moving Multivariate Distance Calculation
We previously demonstrated that Mahalanobis distance can
serve as a global measure of physiological dysregulation by
calculating the distance of one’s biomarker profile relative
to a population norm, essentially serving as a measure of
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TABLE 2 | Biomarker information.

Biomarker Mean ± SD Two weeks One month Four months Physiological system

Hematocrit (%) 0.33 ± 0.05 X X X O2 transport

Hemoglobin (g/L) 107.72 ± 15.04 X X X O2 transport

MCH* (pg) 31.44 ± 2.15 X X X O2 transport

MCHC*(g/L) 329.70 ± 11.46 X X X O2 transport

MCV* (fL) 95.33 ± 5.92 X X X O2 transport

Platelet count (109/L) 216.45 ± 84.94 X X X –

Potassium (mmol/L) 4.76 ± 0.73 X X X Kidney health

RBC count (1012/L) 3.44 ± 0.51 X X X O2 transport

RDW (%) 15.75 ± 1.96 X X X O2 transport

Sodium (mmol/L) 138.26 ± 3.78 X X X Kidney health

WBC count (109/L) 7.84 ± 3.66 X X X –

Calcium (mmol/L) 2.23 ± 0.19 X X MBD**

Creatinine (µmol/L) 635.88 ± 291.58 X X Kidney health

Glucose (mmol/L) 7.63 ± 3.87 X X –

Phosphate (mmol/L) 1.53 ± 0.49 X X MBD**

Albumin (g/L) 36.27 ± 5.56 X Kidney health

*The biomarkers are not mathematically independent from other selected biomarkers.
**MBD, mineral bone disease.

aberrant physiological profile (Cohen et al., 2013, 2014, 2015;
Milot et al., 2014; Li et al., 2015). In this previous work, we
used a reference population (either the entire dataset or a
younger and healthier population) to calculate the variance-
covariance matrix (S) among biomarkers and mean values for
each biomarker included in the Mahalanobis distance calculation
(1). Since we were interested in measuring intraindividual rather
than interindividual variation, here we used the individual
biomarker profile of each previous visit xt−1 rather than the
population mean µ as the reference for calculating the distance
to its following biomarker profile xt (Figures 1B,C), though
the covariance among biomarkers S was still calculated at the
population level (2).

Mahalanobis Distance =
√

(x− µ)TS−1(x− µ) (1)

MMD =
√

(xt − xt−1)
TS−1 (xt − xt−1) (2)

Therefore, a higher MMD represents higher intraindividual
multivariate variability. By using the previous state rather
than the population mean as a reference population, and by
using a time series, MMD measures something completely
different than traditional Mahalanobis distance: the variability
of an individual’s profile in physiological space (Supplementary
Figure 1). However, S−1 is identical in Eqs 1, 2, calculated from
all observations of x within each biomarker set, as it is assumed
the physiological space defined by correlation structure is largely
invariant across individuals.

The stationarity of the covariance matrix (=correlation matrix,
since all variables are normalized) is a strong assumption in our
model; future work will assess how the correlation structure may
also evolve prior to critical transitions. Here, in order to test the
importance of this assumption, we varied the variance-covariance
matrices in three ways. First, we adjusted all the covariance

values to 0 while keeping the variance (diagonal) in the variance-
covariance matrix, var-cov (I). Then, we calculated the variance-
covariance matrices by using only biomarker profiles from the
last 3 months before death var-cov (II), and by using only those at
least 2 years before death, var-cov (III).

Some biomarkers were log (white blood cell count, red cell
distribution width, and glucose) or square-root (platelet count)
transformed to better approach the assumption of multivariate
normality in Mahalanobis distance, and all biomarkers were
z-transformed according to the entire population mean and
standard deviation before MMD calculation. We calculated the
average among all the individual MMDs every half-year before
death (or last contact for censored individuals, i.e., those who
ceased hemodialysis after having a kidney transplant or were lost
in follow-up before the end of the study) with 95% confidence
intervals to visualize the MMD trend over time. Formal statistical
tests of these trends are provided by the survival analysis in the
next section. The R packages of “ggplot2”, “ggpubr” were used
for visualization.

Survival Analysis
To assess MMD’s predictive power of mortality, we ran Cox
proportional hazards models with the package “survival (3.2-
7)”, using years before death or last contact as the time-to-
event variable. We controlled for sex and diabetic diagnosis, for
age with a cubic spline (bs function, “fda” package), and for
individuals using the cluster argument in the “coxph” function.
We log-transformed MMD (log-MMD) for survival analysis
since MMD is not normally distributed, and the calibration curve
(“calibrate” function, “rms” package) of the log-transformed
version showed a much more linear prediction in most cases,
especially for the “Two weeks” biomarker set (data not shown).
In a few cases, biomarker values at two consecutive visits yielded
MMD equals to zero, which indicates no observed change in
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physiological condition from one visit to the next. In this case,
we used half of the minimum value for the individual MMD,
and then further performed log-transformation. We calculated
the difference in hazard ratio (HR) between the 97.5th percentile
and the 2.5th percentile (“HR95”) of log-MMD to illustrate the
magnitude of the effect regardless of the scale of a continuous
independent variable. We also checked whether the proportional
hazards (PH) were constant over time, and thus that the model
met the PH assumption by using the “cox.zph” function. We used
the function “forestplot” for plotting. All analyses were run in R
version 3.6.0. All code is available upon request.

RESULTS

Characteristics of our study population are shown in Table 1.
Briefly, our study population was comprised of 763 patients on
long-term hemodialysis (“Full” dataset) for an average of 3.3
years. 525 (68.8%) of the patients died before the end of the study,
while the rest were censored (future outcome was unknown). One
hundred forty-nine patients had at least once successful kidney
transplant (i.e., no subsequent dialysis 2 years after having a
kidney transplant). Half of the patients were diabetics (51.2%),
nearly two thirds were men (62.8%). It should also be noted that,
while the population had a large age range (16.2 to 94.6 years),
more than half (67.8%). of the participants were aged 65 or older
at their last visit included in analyses (“Individuals 65+” dataset).

MMD Trends Over Time
Figure 2 shows MMD trends prior to last contact, kidney
transplant, or death. For deceased individuals, the MMD of each
three blood schedule-based biomarker sets shows an upward
trend during the last year before death (Figure 2C). A similar
but much less marked trend is visible for some analyses for
the censored individuals (Figure 2A); however, no important
trend is seen in biomarker sets for the individuals before
receiving a kidney transplant (Figure 2B). Such trends were
also evident when grouping the biomarkers by physiological
system (Figures 2D–F). Such upward trends of the MMD prior
to death were replicated regardless of whether individuals with
missing data before death were excluded at different intervals
(Supplementary Figures 3, 4), or the individuals’ age factor
(Supplementary Figures 2, 4), or regardless of the covariance
matrix used (Supplementary Figure 7).

Survival Analysis
MMD was found to be a strong predictor of mortality, regardless
of detailed analytical decisions. Among the blood schedule-
based biomarker sets, the “Two weeks” biomarker set gives
the highest HR95 (Figure 3A). Generally speaking, signal
increases slightly but not meaningfully as we are increasingly
stringent about excluding individuals with missing visits prior
to death (Figure 3A). Such results were replicated on the
“Individuals 65+” dataset (Supplementary Figure 5). MMD in
all three physiological systems was also associated with increased
mortality risk (Figure 3B), though effects were generally much
more modest than when combining all biomarkers. The O2

transport group gave the greatest HR95 among the physiological
systems tested. Most Cox models were acceptable in terms of
the PH assumption, though the PH assumption tended to be
violated in models that did not exclude individuals missing data
just prior to death (Supplementary Tables 2, 3 and 4). Results
were also broadly replicated using different covariance matrices;
results were somewhat stronger using an identity matrix for
the variance (Supplementary Tables 7–9), and a bit weaker
using the var-cov (II) (calculated based on individual’s biomarker
profile from the last 3 months before death), but qualitative
results are similar.

For the sensitivity analyses excluding the redundant
biomarkers, results were qualitatively similar, and the “Two
weeks” biomarker set and “O2 transport” physiological system
biomarker set showed a higher HR95, indicating an even a
stronger effect (Supplementary Tables 5, 6), however, both with
a lower acceptance in terms of PH assumption (Supplementary
Tables 5, 6). To test for any potential hidden bias in the
data or the proposed methodology, notably a boundary effect
where apparent but not real variability increases close to a
data boundary, such as death, we calculated MMD by randomly
shuffling visit order for each individual and found no evidence for
such bias (Supplementary Figure 6 and details in Supplement).

DISCUSSION

Here, we defined the concept of MMD as a way to quantify
the variability of an individual’s biomarker profile over time
(or, more generally, the multivariate variability of a time
series). MMD applies the concept of Mahalanobis distance, but
rather than comparing a set of biomarkers to a population
mean, it compares it from one visit to the subsequent one
within one individual. A greater MMD thus indicates higher
intraindividual multivariate variability. We showed that MMD
increases markedly in the period preceding death in patients
on hemodialysis, starting at 1 year before death but increasing
exponentially in the few last months. Moreover, MMD is a
strong predictor of mortality risk, and results were replicated
using different sets of biomarkers based on their measurement
frequency, with stronger effects using biomarker sets measured
every 2 weeks compared to every month and every 4 months.
These findings recapitulate the ones from Nakazato et al.
(2017) showing greater changes in albumin variability in
CKD patients, rather than changes in albumin levels per se
(Nakazato et al., 2017). This finding was further supported
with a similar approach but combining multiple biomarker
coefficients of variation through principal components analysis
(Nakazato et al., 2020).

From a network physiology perspective (Bashan et al., 2012;
Ivanov et al., 2016), our findings confirm a synchronicity of
variance increases prior to death across distinct physiological
systems (Figures 2F, 3B). This synchronicity observed here
appears largely due to changes in the variance rather than the
covariance of markers, as the result is qualitatively similar when
assessed with various covariance structures (Supplementary
Figure 7). Future work will examine whether changes in
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FIGURE 2 | MMD half-year trends for different biomarker sets of hemodialysis patients. (A,D) show MMD of the censored individuals until their last contact. (B,E)
show MMD of the individuals before receiving a successful kidney transplant (without subsequent dialysis 2 years after kidney transplant performed). (C,F) show
MMD of the deceased individuals before the death, excluding individuals whose biomarker profile was missing during the last 30 days before the death. (A–C) used
blood schedule-based biomarker sets, while (D–F) used physiological system biomarker sets. All the panels above were made based on the “Full” dataset (all the
763 hemodialysis patients). Note that the best statistical test for the differences observed here is the Cox models presented in Figure 3, Supplementary Figure 5,
and Supplementary Tables 2–10. The trend graphics here are for illustrative purposes only.

the covariance structure might also be harnessed to improve
predictions. Hemodialysis data such as we use here are not likely
to be fine-scale enough to evaluate how signals propagate from
one system to another, but other types of physiological data such
as vital signs might permit this.

Additionally, mortality risk increases and the PH assumption
is generally better respected as data become more complete
prior to death, suggesting that we may be underestimating the
true effects, or what might be detected with biomarker data
at a finer time scale (Wen et al., 2018). Further validation

in other medical conditions or datasets should be done to
assess the sensitivity and efficiency of our approach. The
poorer performance of specific physiological subsets compared
to the full set of biomarkers suggests that signal increases
substantially as more biomarkers are included, but this requires
further validation and direct comparison. Also, as has been
shown for clinical frailty (Fried et al., 2009; Ghachem et al.,
2020), the additive dysfunction of many physiological systems
might cause organismal collapse, rather than individual system
dysfunction; hence a measure combining different physiological

Frontiers in Physiology | www.frontiersin.org 7 March 2021 | Volume 12 | Article 612494

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-612494 March 11, 2021 Time: 11:24 # 8

Liu et al. Moving Multivariate Distance Predicts Mortality

FIGURE 3 | Survival analysis of the “Full” dataset. We ran Cox hazard proportional models in (A) the blood-schedule based biomarker sets and (B) the physiological
system biomarker sets, using different cut offs (i.e., excluding individuals based on the time length of unavailable biomarker profiles). Points represent the difference
in hazard ratio between the 97.5th percentile and the 2.5 percentile, and segments represent 95% confidence intervals.

systems may better capture the underlying physiology and
the synchronization of larger networks of systems. We also
found an upward MMD trend in censored individuals in the
few months preceding the end of the study period, though
such trend appears later and is less obvious than for the
deceased individuals. It probably reflects that all patients
involved in the study were suffering from CKD and thus
some, if not many, censored individuals were probably heading
toward death. Another possible interpretation was that there
could be a hidden bias in the data or the method that
creates an artificial trend, but this was not supported by
our results on shuffled visits (Supplementary Figure 6 and
details in Supplement).

Various approaches have been developed to study critical
transitions of complex systems in various domains. In

neuroscience, Bashan et al. (2012) demonstrated that several
integrated physiological systems play part in topological
transition in sleep stages. Ghalati et al. (2019) used the Surprise
Loss (SL) approach to characterize the critical transition that
occurs before a septic shock. Dakos et al. (2008) illustrated
the critical slowing down that precedes tipping points
in climate transitions, using a time-series autocorrelation
approach. Moreover, Dakos et al. (2012) compared different
methods to predict critical transitions in ecological time
series data, proposing a methodological guide that should be
applicable in various fields. Nonetheless, none of the proposed
approaches to critical transitions involved a multivariate
description of the system.

In clinical practice, a reliable early diagnostic approach is
in high demand since the current early diagnosis of chronic
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disease is still far from perfect (Webster et al., 2017). For CKD,
many patients are asymptomatic and can only be detected by
screening tests or at an advanced stage (Webster et al., 2017),
which usually leads to a poor prognosis. Likewise, in patients
with ESKD (GFR < 15 mL/min, per 1.73 m2, Webster et al.,
2017), there are no current reliable indicators of physiological
collapse. Management of CKD, particularly in older patients,
remains a challenge, notably due to the interaction of CKD with
other comorbidities (Anderson et al., 2009). Several mortality risk
factors have a higher prevalence in CKD subjects, including lower
physical activity level (Johansen et al., 2000), anemia (Astor et al.,
2002; Ble et al., 2005), as well as cognitive decline and dementia
(Seliger et al., 2004; Kurella et al., 2005; Hailpern et al., 2007). In
this study, we have shown that the newly defined MMD approach
can measure temporal intraindividual multivariate variability and
may thus serve as an EWS in CKD patients. This model supposes
a network physiology structure in which there is coordination
across systems. The MMD approach can be used to quantify
the global variability of multiple biomarkers, which indicate the
dynamic from different physiological systems; thus, physiological
network variability. Early prediction of underlying physiological
change may help clinicians to manage these patients by indicating
the need for further investigation or treatment. Before the system
collapses, there are opportunities for the system to reverse to the
equilibrium state or alternative stable states (Scheffer et al., 2001;
Trefois et al., 2015).

There are also some limitations to this study. Time intervals
in our study cohort were not always as precise as the prescribed
blood test schedule, due to hospitalization events and other
unknown reasons. To circumvent this problem, we only selected
blood tests that felt into regular intervals but set a range of a
few days to maximize the sample size. The smallest interval we
used in the study was 2 weeks. However, a two-week interval is
still a relatively long period from a physiological perspective, and
the capacity to predict such a critical transition could be more
powerful and precise if we could use a shorter interval (Wen et al.,
2018). All patients in our study population were suffering from
the same condition, even at the beginning of the study; thus, we
did not compare our results with healthy participants, nor did we
have records prior to the chronic kidney condition. Future studies
should aim to make such comparisons. Lastly, we use a stationary
covariance matrix for MMD calculation, a strong assumption in
a dynamic network system. While results don’t change markedly
with changes in the covariance matrix, future work will explore
how changes in covariance might also be related to impending
critical transitions.

Our multivariate approach shows promise for predicting
critical transitions. Such detectable EWSs might prevent
hospitalizations and complications, thereby saving lives and
costs to the healthcare system by indicating the need for early
interventions. Beyond CKD patients, our approach could also be
applicable in other medical contexts (intensive care, congestive
heart failure, cognitive decline, clinical frailty, or perhaps aging
more generally), to predict non-adverse critical transitions (e.g.,
sleep and waking, or different sleep cycles), and even in other
fields such as ecology (ecosystem collapses), economy (financial
crises), and climate change. Thus, future work should validate our

approach with other data and within other contexts and compare
it to other methods for predicting critical transitions.
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