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An accurate estimation of critical speed (CS) is important to accurately define the
boundary between heavy and severe intensity domains when prescribing exercise.
Hence, our aim was to compare CS estimates obtained by statistically appropriate
fitting procedures, i.e., regression analyses that correctly consider the dependent
variables of the underlying models. A second aim was to determine the correlations
between estimated CS and aerobic fitness parameters, i.e., ventilatory threshold,
respiratory compensation point, and maximal rate of oxygen uptake. Sixteen male
runners performed a maximal incremental aerobic test and four exhaustive runs at 90,
100, 110, and 120% of the peak speed of the incremental test on a treadmill. Then, two
mathematically equivalent formulations (time as function of running speed and distance
as function of running speed) of three different mathematical models (two-parameter,
three-parameter, and three-parameter exponential) were employed to estimate CS, the
distance that can be run above CS (d′), and if applicable, the maximal instantaneous
running speed (smax). A significant effect of the mathematical model was observed
when estimating CS, d′, and smax (P < 0.001), but there was no effect of the fitting
procedure (P > 0.77). The three-parameter model had the best fit quality (smallest
Akaike information criterion) of the CS estimates but the highest 90% confidence
intervals and combined standard error of estimates (%SEE). The 90% CI and %SEE
were similar when comparing the two fitting procedures for a given model. High and very
high correlations were obtained between CS and aerobic fitness parameters for the three
different models (r ≥ 0.77) as well as reasonably small SEE (SEE ≤ 6.8%). However, our
results showed no further support for selecting the best mathematical model to estimate
critical speed. Nonetheless, we suggest coaches choosing a mathematical model
beforehand to define intensity domains and maintaining it over the running seasons.
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INTRODUCTION

The prescription of exercise intensity, one of the most important
criteria to induce specific adaptations to training (Maclnnis
and Gibala, 2017), is often based on the percentage of the
maximal rate of oxygen uptake (V̇O2max) or maximal heart rate
(American College of Sports Medicine, 2000; Burgomaster et al.,
2007; Roy et al., 2018). However, among individuals, the lactate
threshold, the respiratory compensation point (RCP), and critical
power (CP)/speed (CS) were located at different percentages of
V̇O2max (Fontana et al., 2015), leading to substantial differences
between participants in terms of characteristics of metabolic
responses and duration of exercise at a common percentage of
the maximum. Therefore, using an exercise prescription based
on percentages of maximum values does not guarantee control
of exercise intensity (DiMenna and Jones, 2009; Lansley et al.,
2011). Instead, a model considering exercise intensity domains
for exercise prescription has been recommended (Iannetta et al.,
2020). Parameters such as oxygen uptake kinetics (Whipp and
Mahler, 1980), ventilatory threshold (VT) (Wasserman et al.,
1973), maximum lactate steady-state (Iannetta et al., 2018), and
CP/CS (Vanhatalo et al., 2007; Constantini et al., 2014; Jones et al.,
2019) can be used to define these various intensity domains.

CP/CS allows defining of the boundary between heavy and
severe intensity domains (Jones et al., 2019; Galán-Rioja et al.,
2020). Therefore, having an accurate estimation of CP/CS is
important. This is obtained by fitting the experimental data
to a mathematical model, chosen among several possibilities
that differ with respect to their mathematical forms and
number of parameters (Monod and Scherrer, 1965; Wilkie,
1980; Moritani et al., 1981; Whipp et al., 1982; Morton, 1986,
1990, 1996; Peronnet and Thibault, 1989). The original linear
model formulation was proposed by Monod and Scherrer (1965).
This model was applied to cycle ergometry and relates the
work performed during an exhaustive bout and its duration
through two parameters (two-parameter model): CP (Monod
and Scherrer, 1965) or threshold of fatigue (Bigland-Ritchie and
Woods, 1984) and the sustainable work of exercise above that
metabolic rate (W′) (Monod and Scherrer, 1965). Power has
been related to time by dividing the original formulation by
the exercise duration (Poole et al., 1986; Gaesser and Wilson,
1988; Housh et al., 1989) while Gaesser et al. (1990) proposed
expressing this exercise duration as function of power, which
led to the well-known hyperbolic formulation (Morton and
Hodgson, 1996). Another model variant, proposed by Morton
(2006), expresses the work performed as function of power, since
this work (power multiplied by time to exhaustion) is also a
dependent variable. However, this model has, to our knowledge,
never been used so far.

A straightforward transposition of CP to running was studied
by several researchers (Ettema, 1966; Hughson et al., 1984;
Housh et al., 1991, 2001; Sid-Ali et al., 1991; McDermott et al.,
1993). The CS and distance that can be run above CS (d′)
are the running analogs of CP and W′, respectively (Hughson
et al., 1984; Housh et al., 1991; Pepper et al., 1992; Hill and
Ferguson, 1999; Jones and Vanhatalo, 2017). CS is thought to
reflect an inherent characteristic of the aerobic energy supply

system (Hughson et al., 1984; Gaesser and Wilson, 1988; Poole
et al., 1988) and is observed to be correlated with V̇O2max
(Hughson et al., 1984; Gaesser and Wilson, 1988; Poole et al.,
1988), as well as lactate thresholds (Poole et al., 1988) and RCP
(Moritani et al., 1981).

Major shortcomings of the two-parameter model are the
assumptions 1) of infinite running speed as time to exhaustion
approaches zero, and 2) that at the point of fatigue, d′ has
been completely covered (Gaesser et al., 1995; Morton, 1996).
To overcome these limitations, Morton (1996) proposed a three-
parameter model including an additional parameter, the maximal
instantaneous running speed (smax), and a d′ that can be only
partly covered for a running speed between CS and smax.
Alternatively, Hopkins et al. (1989) proposed a three-parameter
exponential model based on CS and smax, but where d′ was
replaced by an undefined time constant (τ). The authors reported
that their three-parameter exponential model gave better fits
than the two-parameter model for inclined treadmill running of
short duration (<3 min) (Hopkins et al., 1989). These two- or
three-parameter models can be formulated as either distance as
function of time, time as function of distance, running speed
as function of time, time as function of running speed, distance
as function of running speed, and running speed as function of
distance, which are mathematically equivalent.

To obtain a statistically appropriate estimation of the model
parameters, the correct choice of model formulation and
regression analysis should be chosen (Patoz et al., 2021). Such
choice is based on the data provided by the experiment and
the knowledge of the independent and dependent variables. For
the treadmill CS test, running speed is the independent variable
while time to exhaustion and distance (implicitly, because it
is given by running speed multiplied by time to exhaustion)
are the dependent variables. To minimize the error of a model
formulation expressing the dependent and independent variables
on the vertical and horizontal axes, respectively, the least squares
(LS) loss function can be used and requires that the dependent
variable be observed with additive error while the independent
one would have no additive error (Morton and Hodgson, 1996).
Statistical theory has shown that errors in the independent
variable are of minor importance, making error minimization
in the dependent variable sufficient (Morton and Hodgson,
1996). However, due to heteroscedasticity of the dependent
variable (McLellan and Skinner, 1985; Poole et al., 1988; Faude
et al., 2017), Morton and Hodgson (1996) suggested to use
weighted LS (WLS).

Several researchers have compared the estimation of the
parameters provided by the three different models (two-
parameter, three-parameter, and three-parameter exponential)
and some of their different formulations for cycle ergometry
(Gaesser et al., 1995; Bull et al., 2000; Bergstrom et al., 2014)
and running on a treadmill (Housh et al., 2001). Significant
differences were obtained between the different formulations
of the two-parameter model (Gaesser et al., 1995; Bull et al.,
2000; Housh et al., 2001; Bergstrom et al., 2014). The three
models also differed significantly from one another and the three-
parameter model gave the lowest estimation of CP (Gaesser
et al., 1995; Bull et al., 2000; Bergstrom et al., 2014) and CS
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(Housh et al., 2001). However, these studies (Gaesser et al., 1995;
Bull et al., 2000; Housh et al., 2001; Bergstrom et al., 2014) did not
consider time to exhaustion as the dependent variable, as honestly
highlighted by Gaesser et al. (1995). Moreover, these previous
studies (Gaesser et al., 1995; Bull et al., 2000; Housh et al.,
2001; Bergstrom et al., 2014) are not methodologically exhaustive.
Indeed, none of these studies acknowledged heteroscedasticity of
the dependent variable.

Hence, the purpose of this study was twofold. First, we
compared the estimations of the model parameters obtained by
statistically appropriate fitting procedures (the combination of
model formulation and regression analysis) applied to the three
different models (two-parameter, three-parameter, and three-
parameter exponential). We hypothesized that the estimations
of CS, d′, and smax would be significantly different between
the mathematical models employed, but not between the fitting
procedures. We also hypothesized that the three-parameter
model would give the lowest estimation of CS, as already
observed by Housh et al. (2001) for statistically inappropriate
fitting procedures. Second, we determined the correlations
between estimated CS and aerobic fitness parameters, i.e., VT,
RCP, and V̇O2max, as well as the standard error of estimate (SEE)
of these relations. We hypothesized that lower quality of the fit
[determined by Akaike information criterion (AIC)] would be
associated with lower correlations between CS and aerobic fitness
parameters and higher SEE.

MATERIALS AND METHODS

Participant Characteristics
Sixteen male runners gave written informed consent to
participate in the present experiment (age: 25.6 ± 3.9 years
old; height: 1.79 ± 0.05 m; body mass: 69.2 ± 5.3 kg). For
study inclusion, participants were required to be in good self-
reported general health with no symptoms of cardiovascular
disease or major coronary risk factors, no current or recent lower-
extremity injury that could prevent them from giving 100% of
their capacity during the test or from meeting a certain level of
running performance. More specifically, runners were required
to have a speed associated with V̇O2max (sV̇O2max) greater or
equal to 4.44 m/s (16 km/h). The study protocol was approved by
the Ethics Committee (CER-VD 2018-01814) and adhered to the
latest Declaration of Helsinki of the World Medical Association.

Experimental Procedure
Each participant completed five experimental sessions
interspersed by at least 2 days in the laboratory. All participants
were advised to avoid strenuous exercise the day before a test
but to maintain their usual training program otherwise. During
the first session, participants completed a maximal incremental
aerobic test on a treadmill (Arsalis T150—FMT-MED, Louvain-
la-Neuve, Belgium). This test consisted of a 10-min warm-up
at 2.78 m/s followed by an incremental increase in the running
speed of 0.28 m/s every 2 min until exhaustion. Throughout
the test, participants breathed into a mask connected to a gas
analyzer (Quark, Cosmed, Italy). Pulmonary gas exchange

variables [expired minute ventilation (V̇E), oxygen uptake
(V̇O2), and carbon dioxide output (V̇CO2)] were measured
breath-by-breath and subsequently averaged over 10-s intervals
throughout the test. Before each test, the O2 and CO2 analyzers
were calibrated using room air and known concentrations of
calibration gas (16.00% O2, 5.02% CO2, and the remainder
N2), and the turbine was calibrated using a 3-L syringe (Hans
Rudolph, Germany).

This test was used, first, to determine the peak speed (PS)
of the incremental test of each participant. PS is defined as the
running speed of the last fully completed increment (sV̇O2max)
plus the fraction of time spent in the following uncompleted
increment (α) multiplied by the running speed increment
(1s = 0.28 m/s) (Kuipers et al., 2003): PS = sV̇O2max + α4s.
Second, the V̇O2max was defined as the highest measured V̇O2
value corresponding to (1) a plateau of V̇O2 with increased
running speed (1V̇O2 between the last two increments smaller
than 50% of the average 1V̇O2 during the submaximal phase
of the test) and/or (2) an heart rate greater than 90% of the
theoretical maximum heart rate given by 220—age associated
with a respiratory quotient greater than 1.1 and a rate of
perceived exertion greater than 17. Third, VT and RCP were
determined based on gas exchange data and using the method
proposed by Wasserman et al. (1973).

The other four tests were performed in a randomized order
and consisted of exhaustive runs at a given percentage of the
participant’s PS (90, 100, 110, or 120%). These tests were as
follows: after a 10-min warm-up at 2.78 m/s and a 5-min rest
period, the running speed was increased to a given percentage of
PS, and the participant had to maintain the pace until exhaustion.
The time to exhaustion was collected for each of the four sessions.
No information about the timings or running speed was given
to any participant, who were strongly encouraged, during any of
the five experimental sessions. All participants were familiar with
running on a treadmill.

Mathematical Modeling
The estimations of CS, d′, and smax were obtained from two
different but mathematically equivalent formulations for the
three different models. Gaesser et al. (1990) proposed the
two-parameter model formulation given by Eq. 1 (non-linear,
time-running speed) while Eq. 2 (non-linear, distance-running
speed) represents the formulation proposed by Morton (2006).
The three-parameter model formulation proposed by Morton
(1996) and the inverse of the three-parameter exponential model
formulation proposed by Hopkins et al. (1989) are given by Eqs.
3 and 5 (non-linear, time-running speed), respectively, while
Eqs. 4 and 6 (non-linear, distance-running speed) represent their
distances as a function of running speed formulations.

t(s) =
d′

s− CS
(1)

d(s) = s t(s) = s
d′

s− CS
(2)

t(s) =
(s− smax)d′

(s− CS)(CS−smax)
(3)
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d(s) = s t(s) = s
(s− smax)d′

(s− CS)(CS−smax)
(4)

t(s) = τ log
(
smax − CS
s− CS

)
(5)

d(s) = s t(s) = s τ log
(
smax − CS
s− CS

)
(6)

t, s, and d stand for time, running speed, and distance,
respectively. Of note, distance as a function of running speed was
simply given by multiplying time as function of running speed by
running speed, i.e., d(s) = s t(s).

The three-parameter exponential model does not provide a
direct estimation of d′ because the distance that can be run
above CS is time-dependent in such a model. Indeed, rearranging
the two-parameter model formulation proposed by Whipp et al.
(1982) and given by Eq. 7 (i.e., the inverse of Eq. 1)

s (t) =
d′

t
+ CS (7)

leads to d′ = t[s(t)− CS] = d(t) − tCS. Then, applying
this result to the three-parameter exponential model gives
an equation where the left-hand side is time-dependent, i.e.,
d′(t) = t(smax − CS)e−t/τ. The maximum (d′max) of this equation
appears where its first derivative is equal to zero, which is at
t = τ and is given by d′max = τ(smax − CS)e−1. This parameter
(d′max) was used as an estimate of d′ for the three-parameter
exponential model when comparing the d′ provided by the
different models.

Data Analysis
Two different fitting procedures were used on the data set
obtained for each participant to estimate CS, d′, and smax. More
specifically, t(s) and d(s) using WLS were evaluated. These two
fitting procedures are statistically appropriate, i.e., they minimize
the error along the axes corresponding to the dependent variables
(Vinetti et al., 2020) and should overcome heteroscedasticity
Morton and Hodgson (1996). Weights were applied to the
corresponding dependent variables, i.e., time to exhaustion in
t(s), and distance in d(s). Following Morton and Hodgson (1996),
weights were set proportional to the inverse of the variance of the
dependent variable, where the variance was itself set proportional
to the dependent variable. Noteworthy, the model variants d(t)
and t(d) have not been used. The reason being that in these
cases, distance and time to exhaustion should be considered as
dependent variables. However, the errors of both variables are
correlated, i.e., the error of distance is given by the product of
speed and the error of time to exhaustion variable, since speed
does not carry any error. This is known as endogeneity and, to the
best of our knowledge, there exists no regression method that can
handle such case (Antonakis et al., 2014). Error minimization was
performed iteratively using the Levenberg-Marquardt algorithm
(Levenberg, 1944; Marquardt, 1963). After inspecting residual
plots, deviations from homoscedasticity were present for the
two fitting procedures applied to the three different models, the

three-parameter model with d(s) and the two-parameter model
with t(s) showing the least and the most heteroscedasticity,
respectively (Supplementary Figure 1).

To obtain the V̇O2 values at the CS estimates for each
participant, first the CS estimates were converted to the times
at which these running speeds occurred during the maximal
incremental aerobic test assuming a linear relation between
running speed and time [i.e., s = 2.78 + 0.14t, leading to
t = (s− 2.78)/0.14, where t and s stand for time and running
speed, respectively]. Then, the V̇O2 values at the CS estimates
were simply given by placing these corresponding times into
the computed linear regression of V̇O2 as a function of time
recorded during the maximal incremental aerobic test. Data
analysis was performed using Python (version 3.7.4, Python
Software Foundation1).

Statistical Analysis
Descriptive statistics were expressed as the mean ± standard
deviation. The 90% confidence intervals (CI) of CS, d′ and if
applicable, smax, the combined standard error of the estimate
(%SEE), i.e., the sum of SEE preliminary transformed to percent
units of CS, d′ and if applicable, smax, and the AIC of the fitting
procedure were computed to assess the quality of the fit. For the
linear regression of V̇O2 as a function of time, its coefficient of
determination (R2) was calculated to examine its accuracy.

After inspecting residual plots, no obvious deviations from
homoscedasticity and normality were present. Linear mixed
models fitted by restricted maximum likelihood were used to
compare CS, d′, and smax obtained from the three mathematical
models (two-parameter if applicable, three-parameter, and three-
parameter exponential) and two fitting procedures [t(s) and
d(s)]. The fixed effects included the mathematical models, fitting
procedures, and their interaction. The within-subject nature was
controlled for by including random effects for participants. The
variance explained by the fixed effects over the total expected
variance was given by R2

marginal while R2
conditional represented the

variance explained by the fixed and random effects together
over the total variance (Johnson, 2014). Intraclass correlation
coefficients (ICC) of the random effects were computed as the
ratios of the variance of the random coefficient divided by
the sum of itself and the residual variance. On the basis of
commonly used thresholds, poor, moderate, good, and excellent
ICCs are given by ICC values <0.5, 0.5–0.75, 0.75–0.90, and
≥0.90, respectively (Koo and Li, 2016). Pairwise post hoc
comparisons of any significant fixed effects were performed using
Holm corrections.

Correlations, 90% CI, SEE (in %), and systematic differences
of predicted value (1, in %) were computed among the three
mathematical models and two fitting procedures with regard
to CS, d′, and smax and similarly between CS and aerobic
fitness parameters. Data were log transformed as suggested
by Hopkins et al. (2009). Correlations were computed using
Pearson’s correlation coefficients (r). Very high, high, moderate,
low, and negligible correlations were given by r values of 0.90–
1.00, 0.70–0.90, 0.50–0.70, 0.30–0.50, and 0.00–0.30, respectively

1http://www.python.org
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(Hinkle et al., 2003). Statistical analysis was performed using
Python, Jamovi (version 1.0.8, [Computer Software]2), and R
3.5.0 (The R Foundation for Statistical Computing, Vienna,
Austria) with a level of significance set at P ≤ 0.05.

RESULTS

The variables determined by the incremental test were
sV̇O2max: 5.05 ± 0.38 m/s, PS: 5.16 ± 0.39 m/s, V̇O2max:
63.0 ± 4.9 ml/min/kg, VT: 47.1 ± 3.9 ml/min/kg (74.8 ± 4.1
%V̇O2max), and RCP: 56.3 ± 4.8 ml/min/kg (89.3 ± 3.6
%V̇O2max). The average R2 obtained for the linear regression of
the V̇O2 as a function of time relationship recorded during the
maximal incremental aerobic test was 0.94± 0.04.

The regression analysis for one representative participant and
for each of the three mathematical models as well as the two
fitting procedures [t(s) and d(s)] is presented in Figure 1.

Table 1 depicts the time to exhaustion corresponding to the
four exhaustive runs performed at 90, 100, 110, and 120% of the
participant’s PS.

Table 2 depicts CS, d′, and smax, together with their
corresponding 90% CI, %SEE, and AIC obtained from the three
mathematical models and two fitting procedures.

The linear mixed model with random effects explained almost
all variance in the data for CS while a large part of variance in
the data was still unexplained for d′ and smax even with random
effects (Table 3). These results were reinforced by the ICC of
the random effects, which was excellent for CS but poor and
moderate for d′ and smax, respectively (Table 3).

A significant mathematical model effect was obtained for
CS, d′, and smax (P < 0.001; Table 3). CS was significantly
faster for the three-parameter exponential model compared
with CS determined by two- (P < 0.001) and three-parameter
(P < 0.001) models and it was significantly faster for the two-
than for the three-parameter model (P < 0.001; Table 2). d′ was
significantly lower for the two- and three-parameter exponential
model than for the three-parameter model (P < 0.001; Table 2).
The three-parameter exponential model had a significant slower
estimation of smax than the three-parameter model (P < 0.001;
Table 2).

No significant fitting procedure effect or significant
mathematical model x fitting procedure interaction effect
were reported for CS, d′, and smax (P ≥ 0.77; Table 3).

On a group level, the average AIC was lower for the three-
parameter model for both fitting procedures; however, it was
very close to the average AIC for the three-parameter exponential
model (Table 2). Note that, because the units of the residual sum
of squares error (RSS) depend on the fitting procedure itself, the
AICs can be compared between models within a given fitting
procedure but not between the two fitting procedures. On an
individual level, t(s) and d(s) fitting procedures gave the lowest
AIC when using the three-parameter model for 12 participants
while 4 participants obtained the lowest AIC when using the
three-parameter exponential model.

2https://www.jamovi.org

The three-parameter model reported the highest 90% CI as
well as the highest %SEE (Table 2). However, %SEE can in general
not be compared between the two- and three-parameter models
because they do not have the same number of parameters to
estimate. Nevertheless, the 90% CI of CS and d′ in the three-
parameter and three-parameter exponential models were higher
than in the two-parameter model, even if expressed in percent
units. Therefore, the two models with three parameters carried
more error on their estimates than the two-parameter model. The
90% CI and %SEE were similar when comparing the two fitting
procedures for a given model (Table 2).

SEE and 1 between CS obtained from the three mathematical
models and two fitting procedures ranged from 0.06 to 3.95%
and from −0.10 to 0.03%, respectively, while correlations were
very high (0.93 ≤ r ≤ 1.00; 90% CI: [≥0.84, ≤1.00]) and were
all statistically significant (P < 0.001). For d′, SEE and 1 ranged
from 0.58 to 20.2% and from -1.89 to 1.37%, respectively, while
correlations were high and very high (0.77 ≤ r ≤ 1.00; 90%
CI: [≥0.52, ≤1.00]) and statistically significant (P < 0.001). For
smax, SEE and 1 ranged from 0.62 to 9.09% and from -0.06
to 0.14%, respectively, while correlations were moderate to very
high (0.67 ≤ r ≤ 1.00; 90% CI: [≥0.34, ≤1.00]) and statistically
significant (P ≤ 0.004).

The V̇O2 at the CS estimates expressed as a percentage
of V̇O2max as well as the CS expressed as a percentage of
sV̇O2max for the three mathematical models and two fitting
procedures are given in Table 4. The V̇O2 corresponding to
the CS estimates were based on linear regression, therefore, the
significant differences between V̇O2 values were the same as those
for the CV estimates (Table 2; Housh et al., 2001).

Correlations, 90% CI, SEE, and 1 between CS and aerobic
fitness parameters are given in Table 5. Correlations were high
and very high, and all statistically significant (P ≤ 0.001).

DISCUSSION

Conventional statistical approaches demonstrated a significant
effect of the mathematical model when estimating CS, d′, and
smax, but no significant effect of the fitting procedure. These
results validated our first hypothesis that the estimates of CS, d′,
and smax would be significantly different between mathematical
models employed, but not between fitting procedures. Moreover,
the three-parameter model gave the lowest estimation of
CS, in accordance with our first hypothesis. Lower SEE
and higher correlations between aerobic fitness parameters
and CS estimated using a given mathematical model and
fitting procedure were not necessarily associated with a lower
AIC for these models and procedures, which refuted our
second hypothesis.

The linear mixed model showed interindividual differences
in CS, d′, and smax, as depicted by the larger R2

conditional
than R2

marginal (Table 3), but with a higher impact for
CS than for d′ and smax, as depicted by the excellent
ICC of the random effects for CS but poor and moderate
ICCs for d′ and smax, respectively (Table 3). In addition,
a large part of the variance was still unexplained for d′
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FIGURE 1 | Regression analysis for each of the three mathematical models [two-parameter (2-param), three-parameter (3-param), and three-parameter exponential
(3-param exp)] and the two fitting procedures (A) t(s) using weighted least squares (WLS) and (B) d(s) using WLS. t: time, s: running speed, and d: distance.

TABLE 1 | Means ± standard deviations of the time to exhaustion corresponding to the four exhaustive runs performed at 90, 100, 110, and 120% of the participant’s
peak speed (PS).

Running speed (%PS) 90 100 110 120

Time to exhaustion (min) 14.8 ± 2.57 5.94 ± 1.21 2.78 ± 0.78 1.68 ± 0.50

TABLE 2 | Mean ± standard deviation of the critical speed (CS), distance that can be run above CS (d′), and maximal instantaneous running speed (smax ), and their
corresponding 90% confidence interval (in parenthesis) obtained from the three mathematical models [two-parameter (2-param), three-parameter (3-param), and
three-parameter exponential (3-param exp)] and two fitting procedures [t(s) and d(s) using weighted least squares] together with the combined standard error of the
estimate (%SEE) and the Akaike information criterion (AIC) assessing the quality of the fit.

Mathematical
model

Fitting
procedure

CS (m/s) d′ (m) smax (m/s) %SEE AIC

2-param t(s) 4.39 ± 0.41 (0.10 ± 0.05) 226.0 ± 57.0 (66.9 ± 26.31) – 9.8 ± 3.4 32.3 ± 3.4

d(s) 4.39 ± 0.40 (0.10 ± 0.05) 222.3 ± 56.0 (65.2 ± 25.1) – 9.7 ± 3.4 45.8 ± 3.4

3-param t(s) 4.12 ± 0.52 (0.27 ± 0.28) 556.9 ± 289.8 (360.6 ± 386.0) 7.72 ± 0.85 (1.50 ± 1.44) 24.8 ± 15.2 24.1 ± 5.3

d(s) 4.12 ± 0.52 (0.27 ± 0.27) 546.6 ± 279.1 (352.3 ± 367.7) 7.76 ± 0.88 (1.58 ± 1.59) 25.2 ± 15.3 37.8 ± 5.2

3-param exp t(s) 4.55 ± 0.41 (0.12 ± 0.15) 219.5 ± 59.2 (151.6 ± 112.4) 6.96 ± 0.43 (0.55 ± 0.34) 23.9 ± 15.1 24.4 ± 9.0

d(s) 4.56 ± 0.41 (0.12 ± 0.15) 217.7 ± 58.0 (150.7 ± 110.0) 6.98 ± 0.43 (0.55 ± 0.35) 24.1 ± 15.2 38.2 ± 8.7

TABLE 3 | Percentage of variance explained, fixed effects, and random effects [intraclass correlation coefficient (ICC)] when assessing the effect of the mathematical
model and fitting procedure on critical speed (CS), distance that can be run above CS (d′), and maximal instantaneous running speed (smax ) using a linear mixed model.

CS d′ smax

Variance explained % % %

R2
marginal 14.0 45.7 24.5

R2
conditional 96.0 72.0 75.6

Fixed effects P P P

Mathematical model <0.001 <0.001 <0.001

Fitting procedure 0.79 0.83 0.77

Mathematical model x fitting procedure interaction 1.00 0.99 0.90

Random effects – – –

ICC for intercept 0.95 0.48 0.68

The variance explained by the fixed effects over the total expected variance was given by R2
marginal while R2

conditional represented the variance explained by the fixed and
random effects together over the total variance. Statistical significances (P ≤ 0.05) are indicated in bold.
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TABLE 4 | Oxygen uptake [V̇O2; expressed as a percentage of maximal rate of oxygen uptake (V̇O2max)] at the critical speed (CS) estimates as well as CS [expressed
as a percentage of speed associated with V̇O2max (sV̇O2max )] for the three mathematical models [two-parameter (2-param), three-parameter (3-param), and
three-parameter exponential (3-param exp)] and the two fitting procedures [t(s) and d(s) using weighted least squares].

2-param 3-param 3-param exp

t(s) d(s) t(s) d(s) t(s) d(s)

V̇O2 (%V̇O2max) 88.2 ± 4.4 88.3 ± 4.4 83.1 ± 6.7 83.2 ± 6.6 91.3 ± 4.1 91.4 ± 4.1

CS (%sV̇O2max) 86.7 ± 2.5 86.8 ± 2.5 81.3 ± 6.2 81.4 ± 6.1 90.1 ± 2.9 90.1 ± 2.8

TABLE 5 | Pearson’s correlations coefficients (r) together with their corresponding 90% confidence intervals (CI), standard error of estimate (SEE, in %), and systematic
differences of predicted value (1, in %) between critical speed (CS) obtained from the three mathematical models [two-parameter (2-param), three-parameter (3-param),
and three-parameter exponential (3-param exp)] and two fitting procedures [t(s) and d(s) using weighted least squares] and aerobic fitness parameters [ventilatory
threshold and respiratory compensation point (VT and RCP), and maximal rate of oxygen uptake (V̇O2max)].

2-param 3-param 3-param exp

t(s) d(s) t(s) d(s) t(s) d(s)

VT r 0.85 0.85 0.77 0.77 0.83 0.83

CI 0.66–0.94 0.66–0.94 0.50–0.90 0.51–0.90 0.63–0.93 0.63–0.93

P <0.001 <0.001 <0.001 0.001 <0.001 <0.001

SEE 4.37 4.36 5.50 5.43 4.70 4.67

1 −0.13 0.05 −1.46 2.40 1.07 −0.93

RCP r 0.90 0.90 0.77 0.78 0.88 0.88

CI 0.77–0.96 0.76–0.96 0.52–0.90 0.53–0.91 0.73–0.95 0.73–0.95

P <0.001 <0.001 <0.001 0.001 <0.001 <0.001

SEE 3.90 3.88 5.82 5.73 4.27 4.23

1 0.01 −0.01 1.99 −2.56 −1.95 2.61

V̇O2max r 0.91 0.90 0.85 0.85 0.91 0.91

CI 0.79–0.96 0.78–0.96 0.66–0.94 0.66–0.94 0.79–0.96 0.80–0.97

P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

SEE 3.63 6.84 4.49 4.43 3.40 3.38

1 0.27 −0.01 −1.38 −2.56 0.40 0.33

Data were log transformed as suggested by Hopkins et al. (2009). Statistical significance of the correlations (P ≤ 0.05) are indicated in bold.

and smax (R2
conditional ≤ 72.0%; Table 3). Therefore, CS

could be well estimated by using the mathematical model
and fitting procedure, but this is not the case for d′
and smax. Furthermore, the high and very high between-
model correlations (r ≥ 0.93) obtained for CS suggest that
the estimation of CS provided by each model qualitatively
represents the same, as already pointed out by Gaesser et al.
(1995). By contrast, some between-model correlations were
high and moderate for d′ and smax, respectively (r ≥ 0.67),
suggesting less link between estimations of d′ and smax
from the different regression analyses. Overall, the regression
analyses provided more robust estimates of CS than of d′
and smax.

The three-parameter model gave the lowest AIC on a group
level as well as for 75% of the participants for both t(s) and
d(s) fitting procedures. Nevertheless, the AICs of both three-
parameter models were very close to one another (Table 2).
The AICs for the two-parameter model were 34% and 21%
higher than the three-parameter model ones for t(s) and d(s),
respectively. Therefore, the two-parameter model gave the lowest
quality of the fit, while the three-parameter model seemed to be
the most accurate one for both fitting procedures even though
it was only slightly better than the three-parameter exponential

model. These observations contradict previous findings that
obtained similar R2 values between different mathematical
models (Gaesser et al., 1995; Bull et al., 2000; Housh et al.,
2001; Bergstrom et al., 2014) [except for a two-parameter
linear model expressing power as function of 1/time (Gaesser
et al., 1995; Bull et al., 2000)]; this might be explained several
ways. First, comparing the accuracy of regression analyses for
models based on a different number of parameters (e.g., two
vs. three parameters) requires an adjusted R2 to normalize
with respect to the number of parameters within the model.
However, these studies (Gaesser et al., 1995; Bull et al., 2000;
Housh et al., 2001; Bergstrom et al., 2014) did not mention
such usage. Second, R2 was shown to be an unfavorable
measure to describe the validity of a non-linear regression
(e.g., both model formulations of the three-parameter model)
(Spiess and Neumeyer, 2010) and when using weights in the
regression analysis (Willet and Singer, 1988). Therefore, one
remaining possibility to compare the quality of the fit of
different mathematical models is to use RSS or a parameter
that depends on it such as AIC. However, the units of RSS
(and thus AIC) being dependent on the fitting procedure (i.e.,
on the choice of model formulation and axes on which the
errors are minimized), the AICs of the various fitting procedures
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cannot be compared, i.e., AIC of t(s) cannot be compared to
the one of d(s).

Another option to compare the quality of the fit of different
mathematical models is to use %SEE (Triska et al., 2021).
However, as already mentioned, %SEE depends on the number
of parameters to estimate and is therefore not optimal to
compare two- and three-parameter models. Nevertheless, in
our case, the 90% CI of CS and d′ in the three-parameter
and three-parameter exponential models were higher than in
the two-parameter model, even if expressed in percent units.
Therefore, the two-parameter model gave the lowest %SEE
(9.7%) and SEE for CS (0.7%) and d′ (9%), while the three-
parameter gave the highest %SEE (25%; CS: 2.2%, d′:17%,
and smax: 5.8%), but only 1% higher than the three-parameter
exponential model (24%; CS: 0.8%, d′:20.8%, and smax:2.4%).
Based on %SEE, the three-parameter model seemed to be
the least accurate model, which is in contradiction with the
results based on AIC.

CS was thought to reflect an inherent characteristic of the
aerobic energy supply system (Hughson et al., 1984; Gaesser
and Wilson, 1988; Poole et al., 1988). Such a characteristic is
supported by the small SEE and high and very high correlations
obtained between CS and aerobic fitness parameters such as
VT, RCP, and V̇O2max (SEE ≤ 6.84; r ≥ 0.77; Table 5).
These results additionally confirm previous observations that
showed that CS correlated with V̇O2max (Hughson et al.,
1984; Gaesser and Wilson, 1988; Poole et al., 1988) and RCP
(Moritani et al., 1981). However, the three-parameter model
reported the highest SEE [if we do not consider SEE for the
two-parameter model and d(s)] and smallest correlations, which
were associated with the largest 90% CI (4.43 ≤ SEE ≤ 5.82;
0.77 ≤ r ≤ 0.85; Table 5). This is in line with the fact that
the three-parameter model reported the highest %SEE (Table 2).
Nonetheless, SEE and correlations were still small and high,
respectively, for this model.

The linear mixed model provided a significant effect of the
mathematical model when estimating CS, d′, and smax (Table 3).
These results accord with those of previous observations that
depicted considerable differences in the estimation of parameters
among different models (Gaesser et al., 1995; Bull et al., 2000;
Housh et al., 2001; Bergstrom et al., 2014). The three-parameter
model provided the lowest estimation of CS on a group level
(Table 2) as well as on an individual level. CS estimated
using the three-parameter model were 6% and 9% smaller than
when using the two-parameter and three-parameter exponential
models, respectively. The two-parameter model was shown to
produce overestimated CS (Pepper et al., 1992). The authors
observed that the time to exhaustion at a running speed set at
CS estimated by the two-parameter model was much smaller
than expected. Indeed, participants were able to run only 16 min
instead of a theoretically indefinite time. Because CS predicted
by the three-parameter exponential model was faster than CS
predicted by the two-parameter model (+3%; Table 2), we
could conclude that the three-parameter exponential model also
produced overestimated CS.

The observed between model differences for the CS estimates
(up to 0.44 m/s, Table 2) are not negligible and would certainly

have an impact when prescribing a training session based on
exercise intensity. Therefore, we encourage coaches prescribing
exercise based on critical intensity to choose a mathematical
model beforehand to estimate CS and maintain it over the
running seasons, so that CS is always estimated in the same
way. Moreover, even though the estimated CS should be a
very good approximation of the critical intensity but not the
critical intensity per se, we suggest to physiologically verify that
the estimated CS represents the upper boundary of sustainable
exercise. In addition, coaches should not hesitate to make small
adjustments based on the observed performance. Moreover,
given the day-to-day variation of human performance and the
CI of the estimated CS, i.e., about 5% of its value (Table 2), it
would be justified to prescribe exercise intensity outside these
confidence limits to avoid being in the phase transition between
the heavy and severe intensity domains (Anderson et al., 2019).

Jones and Vanhatalo (2017) found that CS occurred at 70–
90% of V̇O2max, depending on training status (the higher
the training status, the higher the CS in %V̇O2max). In the
present study, the V̇O2 at the CS estimates for the three-
parameter model were close to the middle of the range defined
by Jones and Vanhatalo (2017) (83%; Table 4), while the
V̇O2 at the CS estimates for the two-parameter and three-
parameter exponential models were in the higher end of the
range (≥88.2 %V̇O2max; Table 4). Higher V̇O2 at the CS
estimates were already reported by Housh et al. (2001) for the
two-parameter and three-parameter exponential models (≥94
%V̇O2max) than for the three-parameter model (89 %V̇O2max).
These authors even reported V̇O2 at the CS estimates that
exceeded V̇O2max for the exponential model (105 %V̇O2max).
In the present study, CS corresponded to 81, 87, and 90
%sV̇O2max for the three-parameter, two-parameter, and three-
parameter exponential models, respectively. Billat et al. (1995)
observed that CS corresponded to 86% of sV̇O2max for runners
having 75 ml/min/kg of V̇O2max and 6.22 m/s of sV̇O2max.
These values were higher than those of the participants of
this study (+16 and +19%, respectively). Therefore, we could
speculate that CS estimated by the three-parameter model (81
%sV̇O2max) is closer to reality than CS estimated by the other two
models (≥87 %sV̇O2max). Both arguments reinforce the idea that
both two-parameter and three-parameter exponential models
overestimate CS. In any case, a future study involving exhaustive
runs below, at, and above CS whilst assessing oxygen uptake
responses to exercise would be needed to quantitatively validate
this suggestion.

The estimation of d′ using the three-parameter model were
roughly 2.5 times larger than those from the other two models.
These findings are consistent with those of previous studies
(Gaesser et al., 1995; Morton, 1996; Bull et al., 2000; Housh
et al., 2001; Bergstrom et al., 2014). Morton (1996) suggested
that such a model overcomes physiological assumptions of the
two-parameter model such as an infinite power when time
approaches zero and that at d′, the muscular energy reserve is
empty. Assuming an sV̇O2max of 6 m/s and a time to exhaustion of
∼5 min at 100% of sV̇O2max (Billat et al., 1995), the corresponding
total distance covered is 1,800 m. The anaerobic contribution
was shown to represent approximately 10% of the total distance
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covered, i.e., approximately 200 m (Billat, 2001). Therefore,
because Morton (1996) suggested that the three-parameter model
allows d′ to be only partly covered for a running speed between
CS and smax, this statement causes the estimate of d′ that is larger
in the three-parameter model than in the other two models to not
be unrealistically high. This idea is reinforced by an explanation
based on anaerobic energy calculation by Gaesser et al. (1995).

Buchheit and Laursen (2013) found that athletes with similar
sV̇O2max to those of the present study had a smax ranging from 161
to 183 %sV̇O2max. Higher level athletes (sV̇O2max = 6.36 m/s) were
shown to have a lower relative smax (149 %sV̇O2max) (Sandford and
Stellingwerff, 2019). Therefore, the estimation of smax using the
three-parameter exponential model seemed to be unrealistically
too small (∼136 %sV̇O2max) whereas the one obtained using
the three-parameter model seemed closer to reality (∼155
%sV̇O2max). Nonetheless, this has to be nuanced by the fact that
most of the running trials at 120 %PS gave a time to exhaustion
below 2 min, which is below the usual recommendation (Jones
and Vanhatalo, 2017) and could have influenced the estimation of
the parameters present in the mathematical models. In addition,
participants were long distance runners, meaning that they are
not accustomed to running at high speeds (i.e., >100 %sV̇O2max)
and that they actually did not have a high smax. This assumption
is supported by the observations of Sandford and Stellingwerff
(2019), who showed that a 400-m elite runner (sV̇O2max = 6.23
m/s) had a smax of 158 %sV̇O2max while a 1,500-m elite runner
(sV̇O2max = 6.45 m/s) had a smax of 141 %sV̇O2 max.

No significant fitting procedure or mathematical model
x fitting procedure interaction effects were reported for the
estimations of CS, d′, and smax (Table 3). Gaesser et al. (1995)
proposed that differences between the estimation of parameters
among models could come from the designation of the dependent
and independent variables, the number of parameters in each
model, and the choice of model (e.g., two-parameter, three-
parameter, or three-parameter exponential). Moreover, two
mathematically equivalent model formulations requiring linear
vs. non-linear regressions were shown to provide different
estimations of their underlying parameters (Colquhoun, 1971).
In this study, we observed that using different but statistically
appropriate fitting procedures, i.e., that correctly attribute the
dependent and independent variables, applied to a given model
did not have an impact on the estimations of CS, d′, and smax, as
long as all the model formulations are non-linear or linear.

Heteroscedasticity of the dependent variable was explicitly
depicted by Hinckson and Hopkins (2005) when using usual LS
fitting procedure. Indeed, these authors demonstrated systematic
and non-uniform deviation from their models by showing
the residuals as function of predicted values. In this study,
the suggestion made by Morton and Hodgson (1996) to
overcome heteroscedasticity, i.e., weights proportional to the
inverse of the values of the dependent variable, were applied.
However, the absolute weighted residuals as function of predicted
values for the two fitting procedures applied to the three
different models depicted clear deviations from homoscedasticity
(Supplementary Figure 1). Therefore, considering weights in
the fitting procedure did not overcome the heteroscedasticity
problem. Nonetheless, a future study considering different

weighting schemes should be performed in order to observe if
a specific weighting scheme, different from the one proposed by
Morton and Hodgson (1996), could overcome heteroscedasticity
of the dependent variable.

Some limitations to the present study exist and need
to be addressed. On the one hand, the participant should
complete five experimental sessions interspersed by at least
2 days, which could be slightly unpractical. On the other hand,
performing a regression analysis with only four measurement
points is already quite few, especially when dealing with
heteroscedasticity. Nonetheless, the estimation of CS based on
four points is considered as the best practice (Poole et al.,
2021). Moreover, there is a well-known large variability in the
time to exhaustion during treadmill running at CS (Pepper
et al., 1992). Furthermore, due to the proximity between CS
and RCP in terms of %V̇O2max (CS: 87.6 %V̇O2max; RCP: 89.3
%V̇O2max) and the high and very high correlations between
them (r ≥ 0.85), one could wonder the relevance of CS. However,
the recent meta-analysis of Galán-Rioja et al. (2020) showed
that CS and RCP are not synonymous. Besides, CS can be
estimated using personal best times, which does not require
the participant to go to the laboratory (Jones et al., 2019).
Finally, a recent study demonstrated that using estimations of CS
from raw training data can be sufficient to successfully predict
marathon performance and provide useful pacing information
(Smyth and Muniz-Pumares, 2020).

To conclude, this study demonstrated that CS, d′, and
smax estimated from three different mathematical models (two-
parameter, three-parameter, and three-parameter exponential
model) differed significantly, but that no difference in the
estimation of CS, d′, and smax was reported between different
statistically appropriate fitting procedures applied to a given
model. Weights did not help overcoming heteroscedasticity of
the dependent variable. CS estimates from the three different
models were correlated with aerobic fitness parameters, i.e., VT,
RCP, and V̇O2max. Moreover, small SEE was obtained. The
three-parameter model gave the lowest AIC on a group level
and the smallest CS estimates. However, the three-parameter
model reported the highest %SEE and 90% CI. Therefore,
our results showed no further support for selecting the best
mathematical model to estimate critical speed. Nevertheless, our
results showed that statistically appropriate fitting procedures
gave the same estimates for a given model. For these
reasons, we suggest coaches choosing a mathematical model
with appropriate fitting procedure beforehand to define CS
and intensity domains and maintaining it over the running
seasons. Moreover, our findings suggest that each CS estimation
during season should be physiologically verified and training
prescription should be done around CS (±10%) for taking into
account CI of its estimation and the day-to-day variation of
human performance.
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