
fphys-12-613330 February 23, 2021 Time: 12:5 # 1

ORIGINAL RESEARCH
published: 23 February 2021

doi: 10.3389/fphys.2021.613330

Edited by:
Dalin Tang,

Worcester Polytechnic Institute,
United States

Reviewed by:
Han Yu,

Southeast University, China
Dewei Yang,

Chongqing University of Posts
and Telecommunications, China

Lizhen Wang,
Beihang University, China

*Correspondence:
Guangming Zhang

gmwell@gmail.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Computational Physiology
and Medicine,

a section of the journal
Frontiers in Physiology

Received: 16 November 2020
Accepted: 28 January 2021

Published: 23 February 2021

Citation:
Zhang G, Mao Y, Li M, Peng L,

Ling Y and Zhou X (2021) The Optimal
Tetralogy of Fallot Repair Using

Generative Adversarial Networks.
Front. Physiol. 12:613330.

doi: 10.3389/fphys.2021.613330

The Optimal Tetralogy of Fallot
Repair Using Generative Adversarial
Networks
Guangming Zhang1*†, Yujie Mao1†, Mingliang Li1, Li Peng1, Yunfei Ling2 and
Xiaobo Zhou3

1 West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China, 2 Department of
Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China, 3 School of Biomedical Informatics,
The University of Texas Health Science Center at Houston, Houston, TX, United States

Background: Tetralogy of Fallot (TOF) is a type of congenital cardiac disease with
pulmonary artery (PA) stenosis being the most common defect. Repair surgery needs
an appropriate patch to enlarge the narrowed artery from the right ventricular (RV) to the
PA.

Methods: In this work, we proposed a generative adversarial networks (GANs) based
method to optimize the patch size, shape, and location. Firstly, we built the 3D PA
of patients by segmentation from cardiac computed tomography angiography. After
that, normal and stenotic areas of each PA were detected and labeled into two sub-
images groups. Then a GAN was trained based on these sub-images. Finally, an optimal
prediction model was utilized to repair the PA with patch augmentation in the new
patient.

Results: The fivefold cross-validation (CV) was performed for optimal patch prediction
based on GANs in the repair of TOF and the CV accuracy was 93.33%, followed by the
clinical outcome. This showed that the GAN model has a significant advantage in finding
the best balance point of patch optimization.

Conclusion: This approach has the potential to reduce the intraoperative misjudgment
rate, thereby providing a detailed surgical plan in patients with TOF.
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INTRODUCTION

Tetralogy of Fallot (TOF) is a type of congenital cardiac disease affecting around 3%oo individuals
(Apitz et al., 2009; Khan et al., 2019). Four typical defects of TOF comprise pulmonary stenosis,
ventricular septal defect, right ventricular (RV) hypertrophy, and overriding aorta. With oxygen-
poor blood induced by TOF cycling over the body, faint, dyspnea, and cyanosis may occur (Kalra
et al., 2010; Chiu et al., 2012). The repair of TOF includes closure of the ventricular septal defect
and ensures the unobstructed blood flow from ventricle to aorta. This repair is usually done several
months after birth. When pulmonary stenosis presents, a patch across the RV outflow tract is
implanted to mitigate pulmonary regurgitation. Meanwhile, a volume load is exerted on the RV,
which influence RV function both at rest and at exercise and correlate with the degree of PR.
Treatment for PR would increase the exercise tolerance of individual.

Frontiers in Physiology | www.frontiersin.org 1 February 2021 | Volume 12 | Article 613330

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.613330
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2021.613330
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.613330&domain=pdf&date_stamp=2021-02-23
https://www.frontiersin.org/articles/10.3389/fphys.2021.613330/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-613330 February 23, 2021 Time: 12:5 # 2

Zhang et al. Tetralogy of Fallot Repair

Currently, we can accurately diagnose the TOF based on
cardiac computed tomography (CTs). However, we are unable to
accurately predict the patch size, shape, and location following
the virtual repair surgery despite of multiple approaches for trial.
It is an urgent need, both from doctors and patients, to develop
a reliable patch simulation tool to accurately plan the repair
surgery of TOF. To this end, we proposed a predicting system
that can accurately simulate the patch size, shape, and location
for repair of TOF.

Through integrating and utilizing multiple network
architectures, deep learning is capable of meticulous image
processing, such as segmentation, object detection, image fusion,
and classification. Unlike conventional machine learning that
lean on feature extraction for training algorithms, deep networks
allow deep learning for direct image data proceeding. Up to
today, deep learning has been applied in many different research
fields to solve complicated problems (Litjens et al., 2017), made
possible through parallel computing and big datasets. Acquiring
a large annotated medical imaging dataset can be rather
challenging for classification problems (e.g., discriminating
healthy and diseased subjects), as one training example then
corresponds to one subject. Data augmentation, e.g., rotation,
cropping, and scaling, is normally used to increase the amount
of training data, but can only provide limited alternative data.
A more advanced data augmentation technique, generative
adversarial networks (GANs) (Goodfellow et al., 2014), uses
two competing convolutional neural networks (CNNs): one that
generates new samples from noise and one that that discriminates

samples as real or synthetic. The most obvious application of
a GAN in medical imaging is to generate additional realistic
training data in order to improve classification performance.
Another application is to use GANs for image translation, e.g.,
to generate CT data from magnetic resonance (MR) images
or vice versa (Dar et al., 2019). This can for example be very
useful for multimodal classification of healthy and diseased
subjects, where several types of medical images (e.g., CT and
MRI) are combined to improve sensitivity. In medical image
analysis, GANs contribute to mitigate the confines of dataset
sizes and annotation (Karras et al., 2020; Yang et al., 2020). For
example, to better classify liver lesion in CNN, synthetic CT
images are generated using conditional GANs (Frid-Adar et al.,
2018) and introduced into training for data augmentation. In
terms of accuracy, GAN based data augmentation (Madani et al.,
2018) outperform the traditional one in classification of chest
X-ray. While synthetic images generated by GANs are visually
pleasing, they may not always provide meaningful features
to ameliorate the performance of model for task solving. The
GANs provide an appropriate way to learn deep representations
without widespread use of labeled training data.

In order to simulate an appropriate patch to expand the
narrowed pathway from the RV to the pulmonary artery (PA).
In this work, we proposed a GAN based method to optimize
the patch size, shape, and location. Firstly, all CT images were
resliced into view parallel to the cross-section of the artery. Three-
dimensional geometric models were constructed based on the
cardiac CT angiography. After that, both stenotic and normal

FIGURE 1 | Overview of the pipeline for simulating the optimal patch design based on pulmonary artery CT. The GAN comprises a generator CNN G and a
discriminator CNN D. Regression is used to determine the pulmonary artery value at every voxel in a pulmonary artery stenosis CT. This is done by a skip connection
which augments an estimated patch from hemodynamics analysis to the input stenosis CT image. The discriminator is trained to discriminate repaired CT images
from normal pulmonary artery CT images.

Frontiers in Physiology | www.frontiersin.org 2 February 2021 | Volume 12 | Article 613330

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-613330 February 23, 2021 Time: 12:5 # 3

Zhang et al. Tetralogy of Fallot Repair

area on PA were detected on each patient based on 3D models.
Here, area with diameter less than 5 mm is identified as stenotic
area, and a normal area with equal length is also determined
on the same PA. These detected areas were then labeled back
on the CT images and formed two sets of sub-images. Next, a
GAN was trained based on these sub-images. Finally, fivefold
cross-validation (CV) was performed to validate our model.

METHODOLOGY

Theoretical Preliminaries
Generative adversarial network is a deep learning method
that can be characterized by training a pair of networks in
competition with each other. As a deep generative neural-
network architecture, GAN consists of two sub-networks: the
generator G, and the discriminator D. The generator learns to
map from a latent space s to a data distribution of interest
y in a target domain, and discriminator learns to distinguish
candidates produced by generated image G(z) from the true
image data m (Goodfellow et al., 2014). The aim of training
the generative network is to increase the discriminative error
rate of the discriminator network, generating images that are
indistinguishable from the real data, and the discriminator may
be characterized as a mapping function transferring image data to
a probability, converting the image from the real data distribution
to apart generated and real images. To implement this, GANs use
the following adversarial loss function (FGAN):

FGAN (G, D) = Vm[logD(m)] + Vs[log(1− D(G(s)))], (1)

where V represents expected value for the training. The generator
G tries to minimize the adversarial loss, while the discriminator
D tries to maximize the adversarial loss. This competitive process
improves modeling the networks until the counterfeits are
indistinguishable from the genuine one. When the networks
converge, the generator G is able to produce realistic fake image
data that the discriminator D cannot distinguish (Goodfellow
et al., 2014). For the purpose of stabilizing the training process,
a squared loss can replace the negative log-likelihood cost for
adversarial loss in (1):

FGAN(D, G) = −Vm[(D(m) − 1)2
] − Vs[D(G(s))2

] (2)

In our study, 3D geometric models of the PA were constructed
by segmenting the cardiac CT angiography. Both stenotic and
normal area on PA were detected and labeled. Then, sub-images
of the stenotic and normal area were served as input data to
train the GAN model.

Figure 1 shows the GANs system for optimal patch design,
which consists of two structural components. One component
has a CNN generator G for analyzing the stenotic area ISP of
the PA on CT. The generator denoted by G(ISP) represents an
estimation for the repaired pulmonary CT images of INP. The
networks use two methods to calculate resemblance between
G(ISP) and INP. Firstly, if voxels in ISP and INP are consistent
from each other, the error between generator G(ISP) and INP
is minimized during training. Secondly, the CNN discriminator

D will be trained to differentiate between G(ISP) and INP
simultaneously. When the discriminator D can recognize the
distinction simply, such as the generated CT images do not
seem like normal pulmonary CT images, the generator needs to
improve its approximation. As a result, both generator G and
discriminator D networks have different missions in the training.
The generator G implements a regression of voxel data of normal
PA CT and the discriminator D performs classification of normal
and pulmonary stenosis artery CT.

Generator CNN
The PA stenosis CT image ISP is transformed by the generator
CNN G into an repaired image G(ISP) approximating the
reference normal pulmonary CT image INP. We assume that
INP = ISP + P, where P represents an extensional patch used to
repair the stenosis artery. Hence, the deep learning layers in the
CNN has the mission to estimate the size and location of patch P
by mimicking the normal area of PA. The extensional patch P is
predefined as a rectangle patch with equal length of the stenotic.

In our networks, the CNN generator contains a 3D rectangular
volume of PA voxels. It usually consists of four consecutive

FIGURE 2 | Stenosis and normal pulmonary artery. (A1) CT of pulmonary
artery stenosis where the stenosis part of artery is marked in green. (A2)
Three-dimensional artery with stenosis part in green. (B1) CT of pulmonary
artery stenosis where the normal part of artery is marked in green. (B2)
Three-dimensional artery with normal part in green.
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FIGURE 3 | Stenosis and normal pulmonary artery. (A1) Three-dimensional anatomic model for pulmonary artery stenosis. Green area is the stenosis part. (A2)
Shows the repaired pulmonary artery with optimal patch. (A3) Optimal patch in the blue color. (A4) Hemodynamic analysis for repair pulmonary artery with normal
pressure and flow velocity.

FIGURE 4 | Prediction results for optimal patch design model.
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FIGURE 5 | Sensitivity analysis.

convolution layers with the convolution kernels for calculation
(Wolterink et al., 2017). The final convolution layer brings
out the estimated optimal patch through a linear activation
function in networks. This patch is then calculated from the
normal pulmonary CT image to a stenosis CT image G(ISP).
The trained layers exceeded the final convolution layer apply a
leaky rectified linear activation functions (LReLUs) to make the
training progress stably. In this model, the weights are initialized
with a normal distribution (µ = 0, σ = 0.01). In the CNN
generator, batch normalization (Yuan et al., 2019) is using re-
centering and re-scaling method to make the GANs faster and
more stable by normalization of the input layer. The mini-batch
normalization can reduce the number of training epochs required
for deep networks.

Discriminator CNN
The discriminator takes either a normal pulmonary CT sub-
image INP or a processed repaired CT sub-image G(ISP) as
input data, it distinguishes whether the input image is a
normal pulmonary CT image or not. The input data to the
discriminator is a 3D rectangular volume box. Convolution layers
are organized in four blocks. Like the generator, LReLU activation
functions and batch normalization are applied in discriminator
D. A sigmoid activation to determine whether the input is a
normal pulmonary CT image (label 1) or not (label 0) is employed
in the final layer contains. The weights in the discriminator D
are initialized by the Adam optimizer (Kingma and Ba, 2014),
which usually be used replace the stochastic approximation
of gradient descent optimization procedure to update GANs
weights iteratively in the training procedure.

EXPERIMENTS AND RESULTS

Eighteen male and twelve female TOF patients who underwent
repair surgery at an average age of 1.8 months, ranging from 1 to
3.5 months, were randomly chosen and included into the study.

CT angiography images of each patient were used for pulmonary
segmentation. Multi-slice CT of the stenosis pulmonary were
taken at peak diastole before operation and imported into Mimics
19.0 Image Software (Materialise, Leuven, Belgium) for further
processing. Three-dimensional anatomical models of PA were
reconstructed at a threshold level of 320–800 Hounsfield, which
allowed for the separation of main PA, left PA and right artery
and preserved the detailed geometry features in the meantime.

Figure 2 shows the training data of stenosis and normal
PA. Figure 2A1 demonstrates the CT of PA stenosis where the
stenotic part of artery is marked in green. Figure 2A2 shows the
3D artery with stenosis part in green. Figure 2B1 demonstrates
the CT of PA stenosis where the normal (without stenosis) part
of artery (which is wider than that in Figure 2A1) is marked
in green. Figure 2B2 shows the 3D artery with normal part in
green. To limit the region-of-interest and reduce computational
complexity, we restricted the zone to the 10 mm around stenosis
part of PA because no tissue deformations appeared in other
regions in the repair surgery. All experiments were performed
on a NVIDIA Titan Xp (12 GB) GPU. Approximating running
time was 1800 s.

Figure 3 shows the optimal repaired PA estimated from our
model. Figure 3A1 demonstrates 3D anatomic model for PA
stenosis. Green area is the stenosis part. Figure 3A2 shows the
repaired PA with optimal patch. Figure 3A3 indicates optimal
patch in the blue color. Figure 3A4 demonstrates hemodynamic
analysis for repair PA with normal pressure of 30 mmHg and flow
velocity of 1.2 m/s. All hemodynamic analyses were performed
on ADINA software.

Post-operative MRI of patients were considered as ground
truth. Diameters of the repaired PA were measured and compared
with our predicted model. Tolerance error of 2 mm was set to
determine the correctness of our predicted patch. The fivefold
CV was performed on 30 cases with ground truth for optimal
patch prediction based on GANs in the repair of TOF and the CV
accuracy was 93.33%. In Figure 4, Case #7 and #12 failed because
both main PA and left PA were repaired. More factors were taken
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into account in real practice situation, such as the angle of the two
branches of PA. Blood flow obstruction might also occur when
this angle is too small.

DISCUSSION

Sensitivity analysis (Li et al., 2013) was performed to explore
the model output variation upon perturbation of variables (Iman
et al., 1981; Saltelli et al., 2000) such as patch size D, shape
S, location L, mesh related cross section area A, wall shear
stress W, blood flow rate F, and parameters (Ji et al., 2017)
such as 10 coefficients

{
wi} 10

i=1 which represent the important
features via DX score (Ji et al., 2019; Hu et al., 2020). While a
perturbation over a range of 5% was imposed on all factor values,
the output variance was bounded by 5%, indicating the high
stability of our model. The effectiveness of each factor was shown
in Figure 5. Factors such as D, S, and L showed a low sensitivity
(1.2–2.5 upon 5% parameter perturbation), while other factors
such as W and F showed a higher sensitivity (3.1–3.9 upon 5%
parameter perturbation) for optimal patch prediction. Our model
can potentially underlie the mechanisms of TOF outcomes.

In this article, the results show that the proposed method is
capable of substantial repair TOF in PA CT images, and that
combining a voxel-wise squared error loss with adversarial loss
led to an optimal patch generation that was similar to that in
the reference normal PA CT image. This shows that the GANs
model has a significant advantage in finding the best balance
point of patch optimization training with only squared error loss
led to repair images with stenosis part. Larger patch will cause
outflow obstruction due to abnormal angle of main PA and left
PA branches. Smaller patch cannot augment the stenosis artery
to the normal shape. Thus, our optimal patch design system
performed well by GANs with hemodynamic analysis for repair
TOF. However, the patch deformation behaviors during diastolic
and systolic of cardiac cycle were unable to be analyzed using the

current system. Therefore, this system will be further improved
by advanced biomechanical technology in the future.

As a result, this approach has the potential to reduce the
intraoperative misjudgment rate, thereby providing a detailed
surgical plan in patients with TOF.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

ETHICS STATEMENT

The retrospective study involving human participants was
reviewed and approved by the Medical Research Ethics
Committee of West China Hospital. The written informed
consent of patients/participants were waived in this study.

AUTHOR CONTRIBUTIONS

YL: data collection. GZ and YM: data analysis and writing of the
manuscript. YL, LP, and ML: data interpretation. XZ: research
conception. GZ: critical revision of the manuscript. All authors
reviewed and approved the manuscript.

FUNDING

This work was supported by 1.3.5 project for disciplines of
excellence, West China Hospital, Sichuan University (Grant
ZYJC18010), Center of Excellence-International Collaboration
Initiative Grant (Grant 139170052), and Sichuan Province
Program of Key Research and Development (2021YFS0091).

REFERENCES
Apitz, C., Webb, G. D., and Redington, A. N. (2009). Tetralogy of Fallot. Lancet

374, 1462–1471. doi: 10.1016/S0140-6736(09)60657-7
Chiu, S. N., Wang, J. K., Chen, H. C., Lin, M. T., Wu, E. T., Chen, C. A., et al. (2012).

Long-term survival and unnatural deaths of patients with repaired tetralogy of
Fallot in an Asian cohort. Circ. Cardiovasc. Qual. Outcomes 5, 120–125.

Dar, S. U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., and Cukur, T. (2019).
Image synthesis in multi-contrast MRI with conditional generative adversarial
networks. IEEE Trans. Med. Imaging 38, 2375–2388.

Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., and Greenspan, H.
(2018). ”Synthetic Data Augmentation Using Gan for Improved Liver Lesion
Classification,” in Proceedings of the 2018 IEEE 15th International Symposium
on Biomedical Imaging (ISBI 2018), (Piscataway, NJ: IEEE), 289–293. doi:
10.1109/ISBI.2018.8363576

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., et al. (2014). ”Generative adversarial nets,” in Proceedings of the Advances in
Neural Information Processing Systems 27 (Nips 2014), (Red Hook, NY: Curran
Associates, Inc).

Hu, H., Guan, Q., Chen, S., Ji, Z., and Lin, Y. (2020). Detection and recognition
for life state of cell cancer using two-stage cascade CNNs. IEEE/ACM Trans.
Comput. Biol. Bioinform. 17, 887–898.

Iman, R. L., Helton, J. C., and Campbell, J. E. (1981). An approach to sensitivity
analysis of computer-models .1. introduction, input variable selection and
preliminary variable assessment. J. Qual. Technol. 13, 174–183. doi: 10.1080/
00224065.1981.11978748

Ji, Z., Yan, K., Li, W., Hu, H., and Zhu, X. (2017). Mathematical and computational
modeling in complex biological systems. Biomed. Res. Int. 2017:5958321.

Ji, Z., Zhao, W., Lin, H. K., and Zhou, X. (2019). Systematically understanding
the immunity leading to CRPC progression. PLoS Comput. Biol. 15:e1007344.
doi: 10.1371/journal.pcbi.1007344

Kalra, N., Klewer, S. E., Raasch, H., and Sorrell, V. L. (2010). Update on tetralogy
of Fallot for the adult cardiologist including a brief historical and surgical
perspective. Congenit. Heart Dis. 5, 208–219.

Karras, T., Laine, S., and Aila, T. (2020). A Style-Based Generator Architecture
for Generative Adversarial Networks. Washington, D.C: IEEE Transactions
on Pattern Analysis and Machine Intelligence. doi: 10.1109/TPAMI.2020.297
0919

Khan, S. M., Drury, N. E., Stickley, J., Barron, D. J., Brawn, W. J., Jones, T. J.,
et al. (2019). Tetralogy of Fallot: morphological variations and implications for
surgical repair. Eur. J. Cardiothorac. Surg. 56, 101–109.

Kingma, D. P., and Ba, J. (2014). Adam: A Method for Stochastic Optimization.
Available online at: https://arxiv.org/pdf/1412.6980.pdf (accessed November 21,
2019).

Frontiers in Physiology | www.frontiersin.org 6 February 2021 | Volume 12 | Article 613330

https://doi.org/10.1016/S0140-6736(09)60657-7
https://doi.org/10.1109/ISBI.2018.8363576
https://doi.org/10.1109/ISBI.2018.8363576
https://doi.org/10.1080/00224065.1981.11978748
https://doi.org/10.1080/00224065.1981.11978748
https://doi.org/10.1371/journal.pcbi.1007344
https://doi.org/10.1109/TPAMI.2020.2970919
https://doi.org/10.1109/TPAMI.2020.2970919
https://arxiv.org/pdf/1412.6980.pdf
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-613330 February 23, 2021 Time: 12:5 # 7

Zhang et al. Tetralogy of Fallot Repair

Li, F., Tan, H., Singh, J., Yang, J., Xia, X., Bao, J., et al. (2013). A 3D multiscale model
of cancer stem cell in tumor development. BMC Syst. Biol. 7(Suppl. 2):S12.
doi: 10.1186/1752-0509-7-S2-S12

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M.,
et al. (2017). A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60–88.

Madani, A., Moradi, M., Karargyris, A., and Syeda-Mahmood, T. (2018). ”Chest
x-ray generation and data augmentation for cardiovascular abnormality
classification,” in Proceedings of the Medical Imaging 2018: Image Processing,
(Bellingham, WA: SPIE), 10574.

Saltelli, A., Chan, K., and Scott, E. M. (2000). Sensitivity Analysis. Chichesterm, NY:
Wiley.

Wolterink, J. M., Leiner, T., Viergever, M. A., and Isgum, I. (2017). Generative
adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med.
Imaging 36, 2536–2545. doi: 10.1109/TMI.2017.2708987

Yang, X., Lin, Y., Wang, Z., Li, X., and Cheng, K. T. (2020). Bi-modality medical
image synthesis using semi-supervised sequential generative adversarial
networks. IEEE J. Biomed. Health Inform. 24, 855–865.

Yuan, X. Y., Feng, Z., Norton, M., and Li, X. L. (2019). ”Generalized batch
normalization: towards accelerating deep neural networks,” in Proceedings of the
Thirty-Third Aaai Conference on Artificial Intelligence / Thirty-First Innovative
Applications of Artificial Intelligence Conference / Ninth Aaai Symposium on
Educational Advances in Artificial Intelligence (Palo Alto, CA: AAAI Press),
1682–1689. doi: 10.1609/aaai.v33i01.33011682

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Zhang, Mao, Li, Peng, Ling and Zhou. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physiology | www.frontiersin.org 7 February 2021 | Volume 12 | Article 613330

https://doi.org/10.1186/1752-0509-7-S2-S12
https://doi.org/10.1109/TMI.2017.2708987
https://doi.org/10.1609/aaai.v33i01.33011682
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

	The Optimal Tetralogy of Fallot Repair Using Generative Adversarial Networks
	Introduction
	Methodology
	Theoretical Preliminaries
	Generator CNN
	Discriminator CNN

	Experiments and Results
	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


