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Cardiac disease is a leading cause of morbidity and mortality in developed countries.
Currently, non-invasive techniques that can identify patients at risk and provide accurate
diagnosis and ablation guidance therapy are under development. One of these is
electrocardiographic imaging (ECGI). In ECGI, the first step is to formulate a forward
problem that relates the unknown potential sources on the cardiac surface to the
measured body surface potentials. Then, the unknown potential sources on the cardiac
surface are reconstructed through the solution of an inverse problem. Unfortunately,
ECGI still lacks accuracy due to the underlying inverse problem being ill-posed, and this
consequently imposes limitations on the understanding and treatment of many cardiac
diseases. Therefore, it is necessary to improve the solution of the inverse problem. In
this work, we transfer and adapt four inverse problem methods to the ECGI setting:
algebraic reconstruction technique (ART), random ART, ART Split Bregman (ART-SB)
and range restricted generalized minimal residual (RRGMRES) method. We test all these
methods with data from the Experimental Data and Geometric Analysis Repository
(EDGAR) and compare their solution with the recorded epicardial potentials provided
by EDGAR and a generalized minimal residual (GMRES) iterative method computed
solution. Activation maps are also computed and compared. The results show that
ART achieved the most stable solutions and, for some datasets, returned the best
reconstruction. Differences between the solutions derived from ART and random ART
are almost negligible, and the accuracy of their solutions is followed by RRGMRES, ART-
SB and finally the GMRES (which returned the worst reconstructions). The RRGMRES
method provided the best reconstruction for some datasets but appeared to be less
stable than ART when comparing different datasets. In conclusion, we show that the
proposed methods (ART, random ART, and RRGMRES) improve the GMRES solution,
which has been suggested as inverse problem solution for ECGI.

Keywords: inverse problem, ECGI, iterative methods, MFS, ART-SB, GMRES, RRGMRES, ART

INTRODUCTION

In Europe and North America, 50–100 sudden cardiac deaths per 100,000 people occur each year
(John et al., 2012), and cardiac disease is a leading cause of morbidity and mortality (Wilkins
et al., 2017; Roth et al., 2018). Non-invasive techniques to identify patients at risk, provide accurate
diagnoses and perform ablation guidance therapy are currently under study (Shah, 2015). One of
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the most common non-invasive techniques is
electrocardiographic imaging (ECGI; Wang et al., 2011).
The ECGI technique enables study of the body surface potentials
in relation to the heart anatomy. Heart activity is reconstructed
from a dense array of body-surface electrocardiograms and
patient-specific heart-torso geometry.

Despite the success of the ECGI technique in recent years
(Ramanathan et al., 2004; Wang et al., 2011; Dubois et al.,
2012; Haissaguerre et al., 2013; Cochet et al., 2014; Shah,
2015), improvements of the inverse problem solutions are
needed to better understand and more precisely treat many
cardiac diseases (Duchateau et al., 2019). The inverse problem
is ill-posed, variations in heart surface potentials can lead
to similar body surface potential distributions, and noise or
artifacts in the measured data may negatively impact the
solution. To ensure a unique and stable solution to this problem
requires the use of: (i) regularization techniques (e.g., Tikhonov
regularization) that can explicitly include a constraint or prior
information in the minimization term, introducing a trade-off
between the bias and the variance or (ii) iterative regularization
algorithms that do not include functional regularization. The
convergence of these algorithms to the solution is dependent on
numerous iterations. Both regularization techniques and iterative
regularization algorithms have been studied in the context of
ECGI to seek a unique and stable solution to the problem
described above (Guillem et al., 2020).

The main goal of this study is to apply methods from
inverse problems in other fields, such as computer science and
bioengineering, to the ECGI context. The aim is to adapt and test
the ability of existing methods from other fields to reconstruct
epicardial potentials. This study compares solutions in terms of
amplitude, morphology and the resulting activation maps of the
reconstructed ECGI electrograms.

The method of fundamental solution (MFS), a meshless
method (Karageorghis and Fairweather, 1987) is applied to ECGI
to solve the forward problem (Wang and Rudy, 2006). Iterative
regularization algorithms are used to solve the inverse problem.
Unlike Tikhonov regularization, iterative methods are not based
on imposing constraints and therefore do not require a priori
data, knowledge about the solution or the determination of a
regularization parameter.

The forward problem has traditionally been reduced to cardiac
and measurement surfaces by applying Green’s second theorem
and discretized using the boundary element method (BEM; Barr
et al., 1977). The MFS has been applied in this study to overcome
the disadvantages of BEM, as the artifact introduced by the
singularities adjacent to the surfaces in the fundamental basis
function used and the high computational time required to mesh
the heart and measurement surfaces (Wang and Rudy, 2006).

CardioInsight, a commercial implementation of the ECGI,
uses MFS for the forward problem and uses spatial Tikhonov
regularization or the generalized minimal residual (GMRES)
method to reconstruct the epicardial potentials (Rudy et al.,
2011). Tikhonov regularization seeks a balance between the bias
and its variance, whereas the GMRES method is a projection
iterative approach based on Krylov subspaces (Ramanathan et al.,
2003; Rudy et al., 2011). In certain cases, the GMRES method

has been found to localize potential features (e.g., multiple
potential minima) that are lost in the Tikhonov solution and to
improve the T-wave amplitudes (Ramanathan et al., 2003; Rudy
et al., 2003). The GMRES is currently used to solve the MFS
problem in the commercial CardioInsight technologies ECGI
system (Rudy et al., 2011; Zeng et al., 2018). The performance
of this technique for the MFS in a general setting was also shown
(Karageorghis and Smyrlis, 2009).

Nevertheless, the GMRES method has proven to include the
noise from the data. New methods based on “shifted” Krylov
bases, such as range restricted generalized minimal residual
(RRGMRES; Hansen, 2010), have been introduced in other fields
(such as computed tomography) to combine “projection and
regularization.” This has proven to reduce the noise introduced
by GMRES (Hansen, 2010). However, these new methods have
not yet been tested in ECGI.

This study approach began by testing the iterative GMRES,
which has previously been tested in ECGI (Ramanathan et al.,
2003; Rudy et al., 2003) and used with the MFS as forward
problem. Second, the algebraic reconstruction technique (ART;
Chamorro-Servent et al., 2013; Hansen and Jørgensen, 2018) –
a Kaczmarz method widely used in tomographic imaging
reconstruction, including cardiac images (Ziegler et al., 2009) –
was adapted and tested. ART has not previously been used
to reconstruct cardiac potentials and activation maps using
the ECGI system. The next step was to test an ART method
that combined a denoising at each iteration; this method has
either not previously been used in a cardiac setting (Chamorro-
Servent et al., 2013). Finally, we also applied the RRGMRES. The
RRGMRES is a regularizing iterative method that was developed
in the inverse problem field to improve GMRES accuracy for
problems that include noise and/or artifacts in the data (Hansen,
2010), which is often the case for ECGI data.

All methods were validated using real data from the
Experimental Data and Geometric Analysis Repository (EDGAR;
Aras et al., 2015), which is an Internet-based open-source archive
of curated data that is freely distributed to the international
research community as a tool for application and validation
of ECGI techniques. The objective of EDGAR is to facilitate
collaboration among the ECGI research community to expedite
the development and improvement of ECGI methods.

MATERIALS AND METHODS

Forward Problem
In the MFS (Wang and Rudy, 2006), the electrical potentials can
be expressed as a linear combination of the Laplace fundamental
solutions over a discrete set of virtual source points. The latter
located outside the domain of interest (�). In the ECGI setting, �
is defined by the volume conductor enclosed by the body surface
(0T) and the epicardial surface (0E).

Therefore, the potentials 8 are expressed as 8 (x) = a0 +
NS∑
j=1

f
(
x, yj

)
aj, where x are the location points in the domain

of interest (x ∈ �),
(
yj
)
j=1..NS

are the NS fixed locations of
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the virtual sources points
(
yj /∈ �

)
, and

(
aj
)
j=1..NS

are their
respective coefficients. Here, f stands for the Laplace fundamental
solution, which is defined as f

(
x, yj

)
=

1
4πr , where r =

∣∣x− yj
∣∣

is computed as the Euclidean distance in 3D.
The virtual sources locations are fixed following (Wang and

Rudy, 2006) such as in Figure 1. They are located by deflating
the

(
xEi
)
i=1,2,··· ,NE

points, where reconstructing the epicardial
potentials, at 0E (by a numerical factor 0.8), and inflating the(
xTi
)
i=1,2,··· ,NT

locations of electrodes at 0T (by a factor 1.2), both
relative to the geometrical center of the heart. Hence, there are
a total of NS = NT + NE virtual source points fixed locations,
where NT is the number of torso virtual source points and
NE, the number of epicardial ones. It is important to note that

MFS does not involve using a mesh. The solution of the Laplace
equation (physics of the problem) is done by only using the
locations xEi and xTi , as well as the respective virtual sources.

Following the potentials expression above for 8(x), where x ∈
�, we can express the potentials on the epicardial surface (x ∈
0E), too. Hence, 8E can be written as:

8E = a0 +

NS∑
j=1

f
(
x, yj

)
aj, x ∈ 0E, yj ∈ 0̂T ∪ 0̂E (1)

Then, we can find the unknown coefficients of the virtual
sources

(
a0, a1, · · · , aNS

)
, by imposing, in an equivalent weight,

the Dirichlet (8 = 8T) and the zero-flux or homogeneous
Neumann (∂n8 = 0) boundary conditions for x ∈ 0T . Hence,
by using the potential definition and the values of its normal
derivatives, this yields to solve the linear system:

8
(
xTi
)
= a0 +

NS∑
j=1

f
(
xTi , yj

)
aj = 8T (2)

FIGURE 1 | Schematic configuration of the pseudo-boundaries [deflating 0.8
and inflating 1.2, using the experimental values accorded in Wang and Rudy
(2006)]. Where 0T is the body surface, 0E the epicardial surface, 0̂T is the
virtual inflated body surface, 0̂E the virtual deflated epicardial surface, and �

the domain of interest.

∂n8
(
xTi
)
=

NS∑
j=1

∂ni f
(
xTi , yj

)
aj = 0 (3)

where 8T = (8i)i=1,··· ,NT are the electrical potentials recorded

on the locations of the torso electrodes
((
xTi
)
i=1,2,··· ,N T

)
.

For simplicity, this linear system can be written in a matrix
notation as Ma = d, being

M =



1 f
(
xT1 , y1

)
· · · f

(
xT1 , yNS

)
...

. . .
...

1 f
(
xTNT

, y1

)
· · · f

(
xTNT

, yNS

)
0 ∂n1 f

(
xT1 , y1

)
· · · ∂n1 f

(
xT1 , yNS

)
...

. . .
...

0 ∂nNT f
(
xTNT

, y1

)
· · · ∂nNT f

(
xTNT

, yNS

)


(4)

a =
(
a0, a1, · · · , aNS

)T
εR1+Ns (5)

and

d =
(

8T
0

)
εR2NT (6)

And solving a least-squares optimization problem, we can
find the unknown sources coefficients (aεR1+Ns ). To solve
this optimization problem, we can use a regularization or
iterative regularization method. In this work we used iterative
regularization methods, as we explain in section “Inverse
Problem.”

Once the coefficient vector is obtained, we can finally solve
the potentials at any location in the domain of interest (x ∈ �)
by using the potentials expression above for 8(x). Therefore, the
epicardial surface potentials (8E), can be reconstructed following
Eq. 1, when x ∈ 0E .

Inverse Problem
The iterative methods solve a linear system Ax = b, which in
mathematical formulation would be expressed as x = A−1b, if
A was invertible and not ill-conditioned. In our application,
the linear system is defined, as explained in section “Forward
Problem,” by Ma = d. However, for simplicity, in this section we
used the general notation since some of the methods described
here require a square matrix, and our MFS’ matrix is not square.
Then, we explained how to choose A and b in each respective
inverse problem method’s subsection. In all cases, we used x =
a = (a0, a1, . . . , aNs).

In general, iterative methods always start with an initial
vector and produce a sequence of iterations x1, x2, x3. that
converge to some solution. The methods used in this study
are semiconvergent iterative methods. In the semiconvergent
methods the first iterations tend to converge to a good
approximation of the exact solution, but at some stage, they start
to diverge and converge toward the perturbed naïve solution,
A−1b (Hansen, 2010). Then, the stopping criterion for these
iterative methods is based on choosing the iteration number
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that early stops the optimization. To stop the iterations at
the optimum time is equivalent to a large-scale regularization
method (Hansen, 2010). For each method, we verified that the
number of iterations correspond to the first local minimum of
the “spatial” relative error (RE) and the first local maximum for
the correlation coefficient (CC), respectively. “Spatial” RE and CC
are described in section “Statistical Analysis.”

GMRES
In mathematics, the GMRES is an iterative method for
the numerical solution of a non-symmetric system of linear
equations. The method approximates the solution of Ax = b by
the vector in an order-r Krylov subspace (xn ∈ Kr) that minimizes
the Euclidean norm of the residual rn = Axn − b (Saad and
Schultz, 1986). The Arnoldi iteration is used to find this vector
(Saad and Schultz, 1986).

In linear algebra, the order-r Krylov subspace generated by
an n-by-n matrix A and a vector b of dimension n is the linear
subspace spanned by the images of b under the first r powers
of A (starting from A0

= I) (Saad and Schultz, 1986), that is:
Kr
(
A, b

)
= span{b,Ab,A2b, . . . , Ar−1 b} .

This method requires a square matrix as an input, then, the
matrix A in this work was written as A = M′M, and the vector b
as b = M

′

d.
In this work we compared the computed solution of

GMRES (previously used in the ECGI setting) with the results
of the different iterative methods. With this purpose, the
GMRES was implemented following the GMRES function
from MATLAB R2019b.

ART and Random ART
The ART (Hansen, 2010) uses an iterative technique to solve
the large linear system Ax = b. This method is used for
underdetermined and ill-posed linear systems (Hansen, 2010).

The ART method is called as a row action method since these
are methods that sequentially involve one row at a time (Hansen,
2010; Hansen and Jørgensen, 2018). The kth iteration consists of
an update of the current solution vector xk by scanning through
the rows of A as follows:

xk(i) = xk(i−1)
+

bi − aTi x
k(i−1)

||ai||22
ai for i = 1, . . . , m (7)

where bi is the ith component of the right-hand side b, aTi is the
ith row of the coefficient matrix (turned into a column vector)
and m = Ns + 1 (the rows of the MFS’ matrix).

Finally, it is necessary to save the updated solution vector in
the new iteration (k):

xk+1
= xk(m) (8)

In ART, A corresponds to the MFS’ matrix (M) which maps the
virtual sources x = a = (a0, a1, . . . , aNs) to the initial data b = d
(i.e., b = [8T, 0, . . . , 0]).

The ART method used in this work was adapted to the
ECGI setting following the open-source code provided by
(Hansen and Jørgensen, 2018).

To initialize ART, two main different ways are commonly used
in other fields: by setting the first solution vector (x0) as a zero

vector or as a random vector. Some studies proved that using a
random vector as first solution vector for ART, converge earlier
than initialize it with a zero vector (Hansen, 2010). Hence, both
choices for the initial vector of ART were tested in this work, to
compare them. We called random ART, the ART method using a
random vector for x0 .

ART Split Bregman
The ART-Split Bregman (ART-SB) is an algorithm (Chamorro-
Servent et al., 2013) which combines a denoising with the solution
of the ART method, at each iteration. The ART-SB method has
been used in other fields such as optical tomography (Chamorro-
Servent et al., 2013), but it had never been tested with ECGI
data. The denoising algorithm is based in a technique mostly used
for compressed sensing technique (and L1-norm solution) called
Split Bregman (SB; Goldstein and Osher, 2009).

ART-Split Bregman is implemented using a two-step iteration
to the same system as the one used by ART in section “ART and
Random ART” (Ax = b):

• The first step corresponds to the minimization problem

xk = minx̃||Ax̃− b||22 (9)

solved by ART for each kth iteration.

• The second step corresponds to the denoising problem

x̃ = minx̃ TV(x̃)+
µ

2
||x̃− xk||22 (10)

where µ = 0.1 (such in Chamorro-Servent et al., 2013) is the
weighting parameter for the fidelity term||x̃− xk||22 and TV (or
Total Variation). Thus, the solution x̃ constitutes the estimate for
the next ART iteration (k+ 1).

Here, we considered TV as a 3D anisotropic TV (computed
by the L1-norm derivatives of x̃ in each spatial direction). The
SB method allowed splitting the problem in two subproblems
that are easier to solve. To this end, the unconstrained
problem of Eq. 10 is transformed into an equivalent constrained
problem by applying the Bregman iteration (Goldstein and
Osher, 2009). And we solved the L1-norm derivatives of x̃ in
each spatial direction separately by using shrinkage operators
(Goldstein and Osher, 2009).

The ART-SB algorithm has been adapted to this setting by
using an open access software (Chamorro-Servent et al., 2013).

RRGMRES
As mentioned in section “GMRES,” GMRES method
is useful for solving an inverse problem designed for
non-symmetric square matrices. However, the order-
r Krylov subspace includes the noisy right-hand side
b = bexact + e and thus the noise component e. This is
a big disadvantage of the previously described GMRES
method. The GMRES solution, obtained as a linear
combination of the vector b in the first subspace, is likely
to include a large noise component in the first subspace that
increases iteratively (Hansen, 2010), and negatively impacts
the final solution.
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The RRGMRES aims to solve this issue. The main difference
with GMRES is that RRGMRES works with the “shifted” order-r
Krylov subspace which starts with the vector Ab, i.e., Kr

(
A, b

)
=

span{Ab,A2b, . . . , Arb}. The advantage of this subspace is that
the noise components are now multiplied by A already in the first
subspace, which is demonstrated to produce a smoothing effect
(Hansen, 2010).

Hansen (2010) performed the RRGMRES instead of the
GMRES to improve the inverse problem error provided
by the GMRES method. The RRGMRES method used
in this work was the one developed by the authors in
(Hansen and Jørgensen, 2018).

Like GMRES, the RRGMRES requires a square matrix to
solve the linear system Ax = b. Hence, the method was applied
after multiplying by the transpose matrix M′, at both sides of
the MFS’s system.

Test Bed Based Experiment
Ten datasets, obtained from the EDGAR (Aras et al., 2015),
provided by three different research groups, were used in
this work to develop the forward method and to test all the
proposed inverse problems algorithms. All of them provided
simultaneous epicardial and body surface potentials, meshes
of the involved geometries (i.e., the body surface and the
epicardium) and/or the electrode meshes were the potentials
were measured. Therefore, to facilitate the comparative explained
in section “Comparative Analysis,” we used the nodes of the
provided meshes as the respective location points on the surfaces
required to compute our MFS meshless. Torso and epicardial
channels in which signals were absent or contained NaN
numbers were discarded.

Dog Torso and Epicardial Recordings With Pacing
(Maastricht 2015)
This dataset was provided by Maastricht University (Cluitmans
et al., 2014). The data measured is a normal sinus beat and
a paced beat (paced from the epicardial left ventricular apex).
Body surface potentials and heart potentials were acquired
simultaneously in a uniquely instrumented, anesthetized, normal
dog.

The body surface potentials were recorded with NT = 135
electrodes attached to the dog’s body surface, while the epicardial
potentials were recorded with NE = 83 electrodes implanted
around the heart surface (“sock”). However, in the case of the
paced beat, there were defective electrodes, and the remaining
electrodes were placed in NE = 65 locations.

Pig Torso, Epicardial Recordings With Pacing
(Auckland)
This dataset was made available by the Auckland
Bioengineering Institute at the Auckland University in
2015 (Bear et al., 2015). Similarly, as in “Dog Torso and
Epicardial Recordings With Pacing (Maastricht-15-09-
06),” simultaneous torso and cardiac surface recordings
were measured concurrently in a pig during sinus
rhythm and pacing rhythm, paced from the epicardial left
ventricular apex.

In this case, they used NT = 135 electrodes, attached to the
pig’s torso, to record the body surface potentials, and NE = 239
electrodes fixed to the inner surface of the “sock”, to record the
epicardial potentials.

Ischemia Torso Tank With Epicardial Recordings
(Utah 2015-05-02)
These experiments were performed by the Cardiovascular
Research and Training Institute (CVRTI) and the Scientific
Computing and Imaging (SCI) Institute at the University of Utah
(Aras et al., 2015; Tate et al., 2018).

They used a cage to measure the epicardial potentials with
NE = 599 and a torso tank with NT = 192 electrodes to record
torso signals for this ischemia study.

Comparative Analysis
Statistical Analysis
After reconstructing the epicardial potentials, the CCs and the
relative root-mean squared errors –referred in this work as RE,
were computed over the provided time steps following:

CC =
∑N

i=1
(
8TEi − 8TEi

) (
8CEi − 8CEi

)√∑N
i=1
(
8TEi − 8TEi

)2
√∑N

i=1
(
8CEi − 8CEi

)2
(11)

RE =

√√√√∑N
i=1
(
8CEi −8TEi

)2∑N
i=1
(
8TEi

)2 (12)

where 8TE were the target potentials, i.e., the epicardial potentials
recorded by the sock’s (or cage’s) electrodes provided by EDGAR
(in each case), and the computed potentials, 8CE, were the
reconstructed ones.

Following this, we did two studies: (i) Considering both
potentials (target and computed) at each spatial locations,
averaged over time (N); (ii) Considering both potentials at each
time, averaged over space (N). In the first study we aimed to
provide a “spatial” visualization and in the second study, a
“temporal” one. CCs and RE have been largely used to compare
electrical potentials in the ECGI setting (Cluitmans et al., 2018).
The highest CC represents the best morphology and the lowest
RE the best amplitude of the reconstructed potentials.

For the “spatial” visualization, we plotted the Q1, median (or
Q2) and Q3, and the lines extending from the boxes (whiskers)
indicating the variability outside Q1 and Q3 following the
Figure 2. Additionally, the “∗” depicts the outliers. An outlier
represents an observation that is numerically distant from the
rest of the data (i.e., located outside the whiskers of the boxplot).
Our boxplot draws points as outlier if they are greater than
Q3 + mw(Q3 −Q1) or less than Q1 − mw(Q3 −Q1), where mw
is the largest whisker length.

For the temporal visualization, first we computed the root-
mean-squared (RMS) potentials:

RMS =

√∑N
i=1(8TEi)

2

N
(13)

where N is the number of spatial locations.
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FIGURE 2 | Quartiles (Q∗) and boxplots’ description schema.

Afterward, we compared the CCs, and REs of the
reconstructed potentials averaged over a 100 ms window
around the QRS complex. This window is calculated based on
the RMS following (Bear et al., 2015).

This can provide a quantitative comparative since variations
on the QRS complex indicate issues on ventricular depolarization
and on myocardial ischemia data (Burnes et al., 2000; Romero
et al., 2016; Almer et al., 2019).

Activation Maps
Finally, to see the differences of the methods for the
different heart surface’s regions, we computed the recorded
and ECGI-reconstructed dV/dT patterns when possible.
These patterns were first computed for the over activation
and recovery time, and afterward over the QRS complex
(activations maps).

The locations of the dV/dT patterns over activation and
recovery time were depicted with the corresponding “spatial”
CC and RE (following section “Statistical Analysis”). We showed
a percentage of accurate points by selecting a fixed threshold
(CCs > 0.8 and REs < 0.5, both chosen experimentally for the
specific datasets used in this written work), as the figures show in
the next section.

RESULTS

We computed the reconstruction of the 10 datasets introduced
in section “Test Bed Based Experiment.” Those include: two
paced rhythms against two sinus rhythms, and four myocardial
ischemia datasets against two control datasets. The main results

of the comparative study described in section “Comparative
Analysis” can be found in the next subsections.

Boxplots of the “spatial” CC and RE
Averaged Over Time of the
Reconstructed Potentials
We plotted the boxplots following the specifications in section
“Statistical Analysis,” for the different quartiles of the resulted
CCs and REs for each reconstructed dataset. Boxplot of the
averaged CCs and REs over time for each space location
can be found in Figures 3–5. We refer to them as “spatial”
CCs and REs. Additionally, we represented the outliers
by “∗.”

For the Maastricht and Auckland datasets, the boxplots to
compare the reconstructions with the respective target potentials
(i.e., provided potentials measured at the sock) were depicted in
Figure 3.

“Temporal” CC and RE Averaged Over
Space of the Reconstructed Potentials
During a Defined Temporal Window Over
QRS
Following section “Statistical Analysis,” the CCs and REs were
averaged over space for each time of a 100 ms window around
the QRS complex. We refer to them as “temporal” CCs and REs.

For the Maastricht and Auckland datasets, “temporal” CCs
and REs of the reconstructions compared with the respective
target potentials (i.e., provided potentials measured at the sock)
were depicted in Figure 6, together with the computed RMS.
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FIGURE 3 | Boxplots showing the mean, the distribution, the standard deviation (“whiskers”) and the outliers (“*”), for: (A) the CC results of the sinus rhythm; (B) the
CC results of the paced rhythm; (C) the RE results of the sinus rhythm; (D) the RE results of the paced rhythm. Y-axis specify the dataset and the reconstruction
method used.Similarly, for a two control subjects and four ischemia ones from the Utah dataset, the boxplots to compare the reconstructions with the respective
target potentials (i.e., the provided potentials measured at the cage) were respectively shown in Figures 4, 5.

Similarly, for the Utah dataset, “temporal” CCs and REs of the
reconstructions compared with the respective target potentials
(i.e., the provided potentials measured at the cage) were shown
in Figure 7, together with the computed RMS.

Activation Maps
For demonstration purposes, in this subsection, we showed a view
of the resulted activation maps for the different reconstruction
methods against the target one for the paced rhythm Auckland
dataset: Figure 8 shows the dV/dT pattern over activation
and recovery time, and Figure 9 over the QRS complex
(activations maps).

As mentioned in section “Pig Torso, Epicardial Recordings
With Pacing (Auckland-2012-06-05)” the pacing was done in the
epicardial left ventricle apex.

Additionally, in Figure 8 we outlined the locations with the
best “spatial” CC and RE following the explanation in “Activation
Maps.”

The reader can refer to the Supplementary Material of this
manuscript to find the activation maps of the other sinus and
paced rhythm datasets used in this work.

DISCUSSION

The aim of this work was to adapt and apply four different
inverse problem iterative methods from computer science and
other bioengineering applications to the field of ECGI. The
solutions of these methods were compared to the respective
target potentials (i.e., provided epicardial potentials measured
with sock or cage) and the computed GMRES solution. The
GMRES method is used in the commercial ECGI system
CardioInsight, which was introduced in the European Union
in 2011 and in the United States in 2015 (Rudy et al.,
2003). This method has proven to overcome some limitations
of Tikhonov regularization (Ramanathan et al., 2003; Rudy
et al., 2011; Zeng et al., 2018). The CardioInsight system
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FIGURE 4 | Boxplots showing the mean, the distribution, the standard deviation (“whiskers”) and the outliers (“*”), for: (A) CC and (B) RE. The y-axis show the
reconstruction method used for each one of the two control recordings of the Utah dataset (Control 1, Control 2).

FIGURE 5 | Boxplots showing the mean, the distribution, the standard deviation (“whiskers”) and the outliers (“*”), for: (A) CC and (B) RE. Y-axis show the
reconstruction method used for each one of the four ischemia recordings of the Utah dataset (I1, I2, I3, I4).

uses the MFS method as forward problem (Rudy et al.,
2011; Zeng et al., 2018), and this method was also used in
the present study.

The analyzed iterative inverse problem methods are
semiconvergent (see section “Inverse problem”). Codes that
guaranteed convergence were used to solve the different iterative
methods. Based on the analysis and verification process about
the number of iterations (see section “Statistical Analysis”), 500
iterations were used for ART, random ART and ART-SB; 10
iterations were used for GMRES; and 100 iterations were used
for RRGMRES (results not shown).

As explained in section “Comparative Analysis” of this paper,
the reconstructed potentials were compared with the target
measures via: (i) boxplots that displayed the amplitude and
morphology of the reconstructed epicardial potentials for each
spatial point averaged over time (referred as “spatial” CC and RE);
(ii) RE and CC during a defined temporal window over the QRS
onset (referred as “temporal” CC and RE); and (iii) activation
maps if the provided geometries rendered their use possible. As
previously mentioned, the lowest RE value indicates the best
amplitude for the reconstructed potentials/activation maps, and
the highest CC value indicates the best provided morphology.
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FIGURE 6 | For the datasets: (A) the sinus rhythm of Maastricth; (B) the sinus rhythm of Auckland; (C) the paced rhythm of Maastricth; (D) the paced rhythm of
Auckland. From top to down: “temporal” CC and RE of each reconstruction technique and RMS of the target potentials. All of them for a defined 100 ms window
over the QRS.

FIGURE 7 | RE and CC of each reconstruction technique and RMS of the target potentials, averaged over space during a defined temporal window over the QRS,
for (A) a control Utah dataset (Control 1) and (B) an ischemia Utah dataset (I3).
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FIGURE 8 | Activation maps applied to the paced rhythm Auckland dataset, for: (A) Reference potentials; (B) ART; (C) GMRES; (D) ART Split Bregman;
(E) RRGMRES. All figures have the same colorbar than panel (A). For each activation map, the locations corresponding to the “spatial” RE < 0.5 and CC > 0.8 are
overplotted as shown in the legend.

The boxplots of the “spatial” REs and CCs for the
reconstructed epicardial potentials of the various datasets
show the median, distribution, deviation, and outliers (see
Figure 2). In terms of REs and CCs, the ART, random
ART, and RRGMRES methods had the best results, whereas
the GMRES reconstructions had the worst. Specifically, the

GMRES method resulted in median and Q3 results that were
worse than those of the three other methods. In the case of
Auckland dataset, the reconstructions of the recordings during
the paced rhythm (see Figures 3B,D) had better results than
those during the normal sinus rhythm for both CC and RE
(Figures 3A,C). In Maastricht dataset, no conclusive differences
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FIGURE 9 | Activation maps of the potentials during a 100 ms window (over QRS), applied to the paced rhythm Auckland dataset for: (A) Reference potentials and
QRS window; (B) ART; (C) GMRES; (D) ART Split Bregman; (E) RRGMRES. All figures have the same colorbar than panel (A).

between the CC of the two rhythms were observed, regardless
of GMRES technique. However, the paced rhythm provided
worse results in RE than the sinus one. The solutions provided
by the ART and random ART methods were among the best
results with regard to stability between the paces and sinus
rhythm datasets.

In the “spatial” analysis of ischemia and control datasets
from Utah (Figures 4, 5), the boxplots showed that each
method achieved a similar “spatial” CC, as well as a good
median and distribution. The control datasets (Figure 4)

provided similar results in that the RRGMRES and ART
methods had slightly better results than the GMRES method.
Similar behavior was observed in the ischemia and control
datasets (Figures 4, 5); specifically, RRGMRES was the best
reconstruction method, followed by ART, random ART, ART-
SB, and finally GMRES. The results of the different methods had
a higher statistical significance regarding “spatial” RE than CC,
mainly for GMRES (Figure 5).

In Figure 6, the “temporal” CC and RE were displayed
(over a time window of 100 ms around the QRS complex) for
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the Maastricht and Auckland datasets. In all cases, the best
reconstructions (i.e., those with the lowest RE and highest CC)
were observed during the QRS complex. The ART, Random
ART and RRGMRES methods achieved the best reconstructions
during the QRS for the Maastricht dataset. Differences between
the reconstruction techniques were almost inappreciable in the
QRS complex; however, GMRES was found to provide the worst
reconstructions of all the methods examined. In the Maastricht
dataset, the main differences were in the RE. However, the values
of “temporal” CC and RE were not dependent on the rhythm.

The “temporal” CC and RE were also analyzed over a time
window around the QRS complex for the Utah datasets. Figure 7
displays the results for one control and ischemia datasets. During
the period out of QRS, unstable behavior and poor values were
observed for the CC and RE solutions for all reconstruction
methods, but ART proved to be the most stable and best method
(not shown results). This unstable behavior out of the QRS could
explain the higher number of outliers found in Figures 4, 5
against the Figure 3. During the QRS complex, the RRGMRES
method achieved the best reconstruction through time for the
ischemia dataset, although it was not smooth for the control
dataset. ART also provided a good reconstruction for both
ischemia and control datasets.

Activation maps were plotted based on the dV/dT. Figures 8, 9
show the activation maps of the paced rhythm for the reference
and each reconstruction method of Auckland dataset. Figure 8
refers to both activation and recovery times, and Figure 9 only
to activation times (QRS complex). Additional activation maps
from other datasets are included in the Supplementary Material.

For each activation map of Figure 8, location points of the
epicard were overplotted with the best reconstructed potentials
regarding the “spatial” CCs and REs averaged over time, as
explained in section “Statistical Analysis.” The locations of the
reconstructed potentials with the best REs strongly corresponded
to the atria (see Figure 8). However, the locations of the
reconstructions with the best CCs corresponded to both atria
and ventricles (see Figure 8). At the epicardial left ventricle apex
(the location where the pacing was done), the RRGMRES method
provided the most accurate reconstruction of the tested methods.

The activation map did not appropriately identify the
transition between early and late activation, which may be due
to the small amount of torso and heart locations that were
used to reconstruct the solution or to issues with the high ill-
posedness of the problem. Then, additional improvements are
needed. However, the activation maps of Figure 9 suggest a
better transition between early and late activation times for ART,
ART-SB and RRGMRES than GMRES.

Epicardial potentials, 8E, could be determined at more
locations than the ones computed by applying Eq. 1 from
section “Forward Problem” to additional x ∈ 0E locations.
This study’s aim was to compare the reconstructed solution
with the measured epicardial potentials (target); therefore, to
avoid introducing interpolation errors, the results were only
compared in the epicardial electrode locations. This is a
limitation to provide further clinical discussion on the results.
However, the RRGMRES, ART, and random ART methods
indicate an improvement in the ventricles and the QRS complex.

These results suggest that these methods could provide clinical
advantages over GMRES, due to the importance of the QRS
in ventricular depolarization and the ischemia-related changes
found in the QRS complex (Burnes et al., 2000; Romero et al.,
2016; Almer et al., 2019).

The methods examined in this study improved the solution
when treating the MFS as a forward problem. It is unknown
whether the conclusion would differ if the forward problem
was formulated with a mesh-based method. However, the
study results clearly indicate that the RRGMRES method is an
improvement over the GMRES method. This improvement is
attributable to the noise and artifact reduction of RRGMRES in
Krylov subspaces, as explained in section “RRGMRES.”

Another benefit of Krylov-based methods is their ability to
recycle subspaces (Kilmer and De Sturler, 2006). This benefit
could lead to important progress in reducing the computational
burden of future clinical explorations.

In this work, we selected the necessary virtual sources for
the MFS following (Wang and Rudy, 2006). However, different
virtual source’s choice in the MFS modifies the ill-conditioning
of the related inverse problem (Karageorghis and Smyrlis, 2009;
Chamorro-Servent et al., 2016). And, when the distances of the
virtual sources from the boundary are large, the ill-conditioning
becomes more severe (Karageorghis and Smyrlis, 2009). Finally,
it is well-known that the number of needed iterations for iterative
solvers depends on the ill-conditioning of the problem (Hansen,
2010). GMRES’ solution is not affected by different distance’s
choice of the virtual sources (Karageorghis and Smyrlis, 2009).
GMRES and RRGMRES are both based on Krylov bases. Then,
we do not expect either differences comparing the solutions
provided for both methods. However, further study is needed
about the affectation of these sources on the ART, random ART,
and ART-SB solutions.

In summary, the results of this study indicate that the
ART, random ART and RRGMRES methods yielded the best
reconstruction of potentials, followed by ART-SB, and finally
the GMRES method. The random ART method has traditionally
been used to reduce the number of necessary iterations for
the ART method. However, the ART method does not require
computation of random vectors for each inverse problem, as the
random ART method does. The ART method was identified as
the best method, due to the negligible differences between the
solutions of the ART and random ART methods and the number
of iterations required.

The results also indicate that ART is the most stable method
of solving both paced and sinus (Maastricht and Auckland)
datasets. This method also provided a reliable solution for control
Utah dataset. The RRGMRES method reconstructions for the
Auckland and Utah ischemia’s datasets provided the best results
of all methods examined. However, the RRGMRES method did
not work well for all datasets (e.g., Maastricht dataset in Figure 3)
or out of the QRS for the Utah datasets. In conclusion, the
proposed ART, random ART and RRGMRES methods were all
improvements on the GMRES, which is the only method that had
previously been tested in ECGI (Ramanathan et al., 2003). Based
on the findings of this study, ART proved to be the most stable
method of those examined.
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