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Transcriptomic ldentification of
Draxin-Responsive Targets During
Cranial Neural Crest EMT

Erica J. Hutchins, Michael L. Piacentino and Marianne E. Bronner*

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States

Canonical Wnt signaling plays an essential role in proper craniofacial morphogenesis, at
least partially due to regulation of various aspects of cranial neural crest development.
In an effort to gain insight into the etiology of craniofacial abnormalities resulting from
Wnt signaling and/or cranial neural crest dysfunction, we sought to identify Wnt-
responsive targets during chick cranial neural crest development. To this end, we
leveraged overexpression of a canonical Wnt antagonist, Draxin, in conjunction with
RNA-sequencing of cranial neural crest cells that have just activated their epithelial-
mesenchymal transition (EMT) program. Through differential expression analysis, gene
list functional annotation, hybridization chain reaction (HCR), and quantitative reverse
transcription polymerase chain reaction (RT-gPCR), we validated a novel downstream
target of canonical Wnt signaling in cranial neural crest — RHOB — and identified
possible signaling pathway crosstalk underlying cranial neural crest migration. The
results reveal novel putative targets of canonical Wnt signaling during cranial neural
crest EMT and highlight important intersections across signaling pathways involved in
craniofacial development.
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INTRODUCTION

The neural crest is a multipotent stem cell population in the vertebrate embryo that undergoes
coordinated induction, specification, and epithelial-mesenchymal transition (EMT) events to
migrate and ultimately differentiate into a wide range of cell types. The migratory pathways
and derivatives formed by the neural crest are regionalized according to their axial level of
origin, such that cells from a given axial level give rise to a characteristic array of progeny and
follow distinct pathways from those arising at other axial levels (Gandhi and Bronner, 2018).
The most anterior “cranial” neural crest population underlies much of the development of the
face (Cordero et al., 2011), and is the only neural crest population in vivo with the ability to
differentiate into facial skeleton, contributing to the upper and lower jaw, and bones of the neck
(Noden, 1975; Le Douarin, 1982; Simoes-Costa and Bronner, 2015). Importantly, perturbation of
various stages of cranial neural crest development results in a myriad of craniofacial malformations
(Vega-Lopez et al., 2018).

Many facets of cranial neural crest development are regulated by Wnt signaling (Wu et al., 2003;
Yanfeng et al., 2003; Steventon et al., 2009; Milet and Monsoro-Burq, 2012; Simoes-Costa et al.,
2015; Rabadan et al., 2016; Hutchins and Bronner, 2018, 2019; Gandhi et al., 2020). Furthermore,
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Wnt signaling is critical for normal facial patterning; mutations
in Wnt pathway components or dysregulation of canonical Wnt
signaling output result in defects in craniofacial morphogenesis
(Huelsken et al., 2000; Chiquet et al., 2008; Reid et al., 2011; He
and Chen, 2012; Kurosaka et al., 2014). Thus, identification of
canonical Wnt targets during cranial neural crest development
would greatly enhance understanding the etiology of craniofacial
abnormalities resulting from Wnt signaling or cranial neural
crest dysfunction.

Here, we took advantage of a canonical Wnt signaling
inhibitor, Draxin, to identify Wnt-responsive targets during chick
cranial neural crest development. As Draxin overexpression
impedes cranial neural crest EMT in a B-catenin-dependent
mechanism (Hutchins and Bronner, 2018, 2019), here we utilize
Draxin overexpression together with RNA-sequencing (RNA-
seq) on sorted populations of cranial neural crest cells to identify
novel downstream targets of canonical Wnt signaling during
cranial neural crest EMT.

MATERIALS AND METHODS

Embryo Electroporation and Expression
Constructs

Electroporations were performed at Hamburger-Hamilton stage
HH4 (Hamburger and Hamilton, 1951), using commercially
available fertile chicken (Gallus gallus) eggs (Sunstate
Ranch, Sylmar, CA, United States), as previously described
(Hutchins and Bronner, 2018). The cranial neural crest-specific
enhancer NCI1.1m3:GFP (Simoes-Costa et al., 2012), Draxin
overexpression (Hutchins and Bronner, 2018), BRE:GFP
BMP reporter (Le Dreau et al., 2012), NC1-A90fcat canonical
Wnt signaling activation (Hutchins and Bronner, 2018), and
control expression (Betancur et al., 2010b) constructs were
described previously.

Tissue Dissociation and FACS

Following electroporation, embryos were incubated at 37°C until
HH9+. We then dissected embryonic heads anterior to the
otic vesicle in Ringer’s solution, washed tissue with sterile PBS
(Corning cellgro #21-031-CV), then incubated tissue in Accumax
(Innovative Cell Technologies, Inc. #AM-105) at 37°C for 15 min,
with trituration every 5 min. Following dissociation, cells were
washed with Hanks’ Balanced Salt Solution (Thermo Fisher
Scientific #88284), filtered through a 20 WM nylon net mesh filter
(Millipore Product #NY2004700), and resuspended in Hanks’
supplemented with 0.25% bovine serum albumin and 5% RQI
DNase (Promega #M6101). GFP + cells were then collected using
fluorescence activated cell sorting (FACS) at the Caltech Flow
Cytometry Cell Sorting Facility.

Library Preparation and Sequencing

We used 1500 GFP+ cranial neural crest cells per replicate
to prepare libraries. cDNA libraries were prepared using the
Takara Bio SMART-Seq v4 Ultra Low Input cDNA kit, according
to manufacturer instructions. RNA-Seq was performed at the

Caltech Millard and Muriel Jacobs Genetics and Genomics
Laboratory at 35 million reads on two biological replicates
for both the control cranial and Draxin overexpression cranial
neural crest cells. Sequencing libraries were built according to
[lumina Standard Protocols and SR50 sequencing was performed
in a HiSeq Illumina machine by the Caltech Millard and
Muriel Jacobs Genetics and Genomics Laboratory. Sequence
reads were aligned to the G. gallus genome (galgal6) with
Bowtie2 (Langmead and Salzberg, 2012), transcript counts
were calculated with HTSeq-Count (Anders et al.,, 2015), and
differential expression analysis was performed with DESeq2
(Love et al, 2014). Gene lists were analyzed for functional
annotation using PANTHER (Mi et al, 2019) and DAVID
(Huang da et al., 2009a,b).

Hybridization Chain Reaction

Embryos to be processed for hybridization chain reaction (HCR)
were fixed in 4% paraformaldehyde 1 h at room temperature, then
dehydrated in graded methanol washes and stored at least one
overnight at —20°C. HCR was performed as previously described
(Gandhi et al., 2020), with custom probes designed and ordered
through Molecular Technologies.

Image Acquisition and Analysis

Confocal images were acquired with an upright Zeiss LSM
880 at the Caltech Biological Imaging Facility. Images were
minimally processed for brightness/contrast and pseudocolored
using Fiji (Schindelin et al., 2012) and Adobe Photoshop 2020.
Relative fluorescence intensity was determined in Fiji. For each
whole mount image, the line tool was used to draw an ROI
surrounding the area of neural crest indicated by positive
HCR fluorescence for neural crest marker TFAP2f. Integrated
density measurements were quantified for ROIs on the control
electroporated (left) and experimental electroporated (right)
sides from the same embryo. Relative fluorescence intensity was
then calculated by dividing the integrated density measurements
for the experimental versus the control side of the same embryo.
Statistical analyses were performed using Prism (8; GraphPad
Software). P values are defined in the text, and significance
was established with P < 0.05. P values were calculated for
embryos using one-tailed paired ¢-tests with integrated density
measurements for control versus experimental sides, and for
qRT-PCR using two-tailed one sample t-tests for A ACr values.

Quantitative Reverse Transcription PCR
(RT-qPCR)

RNA was extracted from sorted cells (Draxin overexpression)
and dissected HH9+ embryonic half heads (NC1-A90fcat
canonical Wnt signaling activation) using the RNAqueous-
Micro Total RNA Isolation Kit (Invitrogen), according to
manufacturer instructions. Following RNA isolation in elution
buffer, cDNA was reverse transcribed using the SuperScriptIII
First-Strand  Synthesis System (Invitrogen) with oligo-dT
priming. Quantitative PCR (qPCR) was performed using
gene-specific primers with FastStart Universal SYBR Green
Master Mix with Rox (Roche) and ¢cDNA (diluted 1:10) on a
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QuantStudio 3 Real-Time PCR System (Applied Biosystems)
in triplicate. We determined ACr with normalization against
18S ribosomal RNA (ACr = Target Cr — 18S Cr) for Draxin,
SNAI2, and RHOB for samples, then calculated AACt values
(AACT = Average Control ACt — Perturbation ACr) for each
target and replicate. The gene-specific primers used for qPCR
were: Draxin-F 5'-CTACGCTGTTATGCCAAATTCC; Draxin-
R 5-GAATGATCCCTGCTCTCCATT; SNAI2-F 5-GCA
ACAAGACCTATTCCACTTTC;  SNAI2-R  5-GTACTTG
CAGCTGAACGATTTC; RHOB-F 5-CGTGATCCTCATGT

GCTTCT; RHOB-R 5-TGCGCAGGTCTTTCTTGT; 18S-F
5'-CCATGATTAAGAGGGACGGC; 18S-R  5-TGGCAAA
TGCTTTCGCTTT.

RESULTS

Identification of Draxin-Responsive
Genes in Migrating Cranial Neural Crest

We have previously shown that the secreted protein Draxin
functions as a potent inhibitor of cranial neural crest cell
migration during EMT (Figure 1A; Hutchins and Bronner, 2018,
2019). Its effects on neural crest are elicited extracellularly via
B-catenin-dependent Wnt signaling inhibition, precisely at the
early stages of cranial neural crest EMT at HH9+ (Hutchins
and Bronner, 2018). To parse the cranial-specific targets of
Draxin underlying its effect on neural crest EMT and uncover
potential novel targets of canonical Wnt signaling, we performed
RNA-sequencing (RNA-seq) on sorted chick cranial neural crest
cells, with and without Draxin-mediated Wnt inhibition. To
this end, we co-electroporated the FoxD3 NC1.1m3 enhancer,
which drives GFP expression specifically in the cranial neural
crest population (Simoes-Costa et al., 2012), with either a Draxin
overexpression construct containing an internal ribosomal entry
site (IRES) driving H2B-RFP (Hutchins and Bronner, 2018) or
the same construct without the Draxin coding region as a control
(Figure 1B). Embryos were subsequently developed to the onset
of cranial neural crest EMT (HH9+), by which point Draxin-
mediated effects on EMT are evident (Figure 1C; Hutchins and
Bronner, 2018, 2019), to identify EMT-related genes sensitive to
canonical Wnt inhibition. From heads dissected anterior to the
otic vesicle, we isolated 1500 GFP+ cranial neural crest cells per
replicate by FACS, then performed cDNA library preparation and
sequencing (Figure 1D).

Differential expression analysis initially revealed 284
differentially expressed genes with >1.8 fold change and
FDR < 0.01. For subsequent functional analysis, we filtered
the gene lists to exclude lowly expressed genes (average
normalized count values < 1000), resulting in a filtered list
of 134 differentially expressed genes (36 downregulated, 98
upregulated) (Figure 2A). Using PANTHER analysis (Mi et al.,
2019) to probe molecular functions of these gene targets,
we observed enrichment of factors highly associated with
transcriptional regulation, enzymatic reactions (including
kinases) and secreted proteins indicative of targets associated
with intracellular signaling pathways, and structural molecules
(such as cytoskeletal and extracellular matrix proteins) indicative

of cell migration-associated targets (Figure 2B). Among the
most highly changed genes, we found significant enrichment
of Draxin, as expected due to its experimental overexpression.
Interestingly, we also detected significant downregulation of
the Notch pathway effector HES5 (and related genes), and
BMP4 (as well as its downstream target MSXI) (Figures 2C,D),
suggesting potential signaling pathway crosstalk between Draxin,
canonical Wnt signaling, and other pathways with critical roles
in neural crest development. Given that Draxin has been shown
to intersect with additional signaling pathways in other contexts
(Ahmed et al.,, 2011; Hossain et al., 2013; Meli et al., 2015),
further studies are needed to parse direct and indirect effects
relevant to craniofacial morphogenesis and neural crest EMT.

Biological Pathway Analysis of
Draxin-Responsive Genes in Cranial

Neural Crest

To better understand the molecular processes in which Draxin,
and by extension canonical Wnt signaling, function during
cranial neural crest EMT, we performed functional annotation
for the dataset using the Database for Annotation, Visualization
and Integrated Discovery (DAVID) (Huang da et al., 2009a,b).
Consistent with established roles of canonical Wnt signaling and
Draxin-mediated inhibition during cranial neural crest EMT, we
observed enrichment of genes associated with transcriptional
regulation, cell adhesion, and lipid synthesis, which we have
recently shown is important for cell signaling during cranial
neural crest EMT (Piacentino et al., 2020). In addition, we found
numerous genes associated with bone/cartilage formation (e.g.,
CYTLI, ILK, NOV), a critical function of cranial neural crest,
and genes involved in ribosome biogenesis (e.g., NOP56, PESI,
NOC2L), which has implications for craniofacial development
(Ross and Zarbalis, 2014) (Figure 3A).

Among the targets associated with transcriptional regulation,
we detected significant downregulation of SNAI2, which has
been shown to be a direct target of canonical Wnt signaling,
and subsequently Draxin (LaBonne and Bronner-Fraser, 1998;
Monsoro-Burq et al, 2005 Wu et al., 2005; Hutchins and
Bronner, 2018) (Figure 3B). In addition, we observed significant
downregulation of genes that mediate cell adhesion and
EMT (Figure 3C), including RHOB, shown to be required
for neural crest delamination in the trunk (Liu and Jessell,
1998), and EPCAM, which has been shown to participate
in cancer cell EMT (Wang et al, 2018). We also observed
significant correlations for disease-associated genes, including
those involved in craniofacial (Figure 3D) and nervous system
dysfunction (Figure 3E). This was expected given the role of the
cranial neural crest in craniofacial development, and established
roles for Draxin in nervous system development (Islam et al.,
2009; Tawarayama et al., 2018).

Functional Validation of a Novel

Immediate Early Canonical Wnt Target

To validate Draxin-responsive targets from our dataset,
we performed quantitative HCR on embryos bilaterally
electroporated with the Draxin overexpression construct on
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FIGURE 1 | Experimental design for identification of Draxin-responsive targets in cranial neural crest EMT. (A) Cross-section through embryo electroporated with a
Draxin overexpression construct on the right side of the embryo. Immunostaining for E-cadherin (E-cad) and the neural crest marker Pax7 at HH9+ highlights the
deleterious effects of Draxin overexpression on cranial neural crest EMT and migration away from the midline (dotted line), compared to the contralateral control side.
(B-D) Experimental design to isolate cranial neural crest cells with or without Draxin overexpression. Gastrula stage chick embryos were co-electroporated with a
neural crest-specific enhancer driving EGFP expression in cranial neural crest cells (NC1.1m3) and either a Draxin overexpression or control construct (B). NC1.1m3
enhancer expression revealed EGFP + cranial neural crest cells were responsive to Draxin overexpression and exhibited EMT defects (C). Fluorescence activated cell
sorting (FACS) was used to isolate EGFP+ cranial neural crest cells with and without Draxin overexpression that were subsequently processed for RNA-sequencing
and differential expression analysis (D). Scale bar, 20 wm. HH, Hamburger-Hamilton stage; OE, overexpression; IRES, internal ribosomal entry site.
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the right side of embryos and the control construct on the
left side (as in Figure 1B). To establish the area of neural
crest migration from which to measure target fluorescence
intensities, we visualized expression of TFAP28, a neural
crest marker and non-target of Draxin. We focused on early
HH9 + embryos, corresponding to the beginning of cranial
neural crest EMT and initial stages of migration, in order to
probe immediate early gene changes. As a result, modest defects
were evident in the distance cranial neural crest cells migrated
away from the midline (Figures 4A-D), consistent with a Draxin
overexpression phenotype, albeit to a lesser extent than later
stage HH9+ embryos in which migration has progressed more
laterally (Figures 1A,C; Hutchins and Bronner, 2018, 2019). We
measured SNAI2 and RHOB fluorescence intensities for Draxin
overexpression versus control sides of individual embryos, and
found significant downregulation of gene expression (Figure 4E;
78.0 & 2.8% of the control side for SNAI2 and 81.0 £ 5.5% of
the control side for RHOB; P < 0.01, one-tailed paired ¢-test),
consistent with predicted trends based on our transcriptomic
analyses. This is consistent with our previously published work
indicating that Draxin acts upstream of Snail2 protein expression
(Hutchins and Bronner, 2018). We further validated the effects of
Draxin overexpression on SNAI2 and RHOB using quantitative
reverse transcription PCR (RT-qPCR) with sorted cells collected

alongside sequenced cells from Figure 1; consistent with the HCR
data (Figures 4A-E), we detected significant downregulation of
both SNAI2 and RHOB with Draxin overexpression (Figure 4F).

Given that RHOB has been previously shown to be a BMP-
responsive target (Liu and Jessell, 1998) and insensitive to Wnt
signaling (Taneyhill and Bronner-Fraser, 2005) in trunk neural
crest, we next sought to determine whether the reduction in
RHOB we observed in cranial neural crest was due to direct effects
from Wnt signaling, or indirect effects through downregulation
of BMP. We have previously shown that canonical Wnt signaling
is active in cranial neural crest at the onset of EMT using a
fluorescent reporter (Hutchins and Bronner, 2018), while BMP
signaling is active in the presumptive cranial neural crest at
earlier stages during their induction (Piacentino and Bronner,
2018); here we employed a similar approach to investigate the
timing of BMP signaling activation in cranial neural crest at the
onset of EMT. Electroporation of a fluorescent BMP reporter
(BRE::GFP) revealed a lack of active BMP signaling in cranial
neural crest cells that have undergone EMT and commenced
migration at HH9+ (Supplementary Figure 1). Thus, it is
unlikely that the reduction in RHOB we observed was due to
suppressive effects on BMP signaling by Draxin. To more fully
examine whether RHOB downregulation was due to direct effects
from Wnt signaling, we performed RT-qPCR on embryos with
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and without canonical Wnt signaling activation during cranial
neural crest EMT. Here, we specifically activated canonical Wnt
signaling in specified cranial neural crest by driving expression of
a stabilized form of B-catenin under the control of a neural crest-
specific enhancer (NC1-A90Bcat). Importantly, we observed
upregulation of SNAI2, an established direct target of canonical
Wnt signaling (LaBonne and Bronner-Fraser, 1998; Monsoro-
Burq et al.,, 2005; Wu et al., 2005), as well as upregulation of
RHOB, suggesting a direct link with Wnt signaling. Interestingly,
we also observed concomitant downregulation of endogenous
DRAXIN, suggesting the possibility of a negative feedback loop
with respect to DRAXIN expression (Figure 4G).

Taken together, our data identify a novel target of Draxin
and canonical Wnt signaling during cranial neural crest
EMT (RHOB), and suggest that Draxin downregulation, and
subsequent activation of Wnt signaling, is essential for crosstalk
and feedback of signaling pathways that alter cranial neural crest
transcriptional activation, and ultimately EMT.

DISCUSSION

Using transcriptome profiling of Draxin-responsive targets,
we identified likely gene targets of canonical Wnt signaling
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FIGURE 3 | Biological pathways and diseases associated with Draxin-responsive transcriptome dataset. (A-C) Biological pathway analysis identified enrichment of
targets associated with transcriptional regulation, cell adhesion, chondrocyte/osteoblast differentiation, negative regulation of apoptosis, ribosome biogenesis, and
lipid synthesis. (D,E) Functional annotation identified genes highly correlated with craniofacial abnormalities and nervous system dysfunction.

during cranial neural crest EMT. Consistent with our previously
published work examining protein expression (Hutchins
and Bronner, 2018), we verified transcript downregulation
of canonical Wnt target SNAI2 in response to Draxin
overexpression. Furthermore, we also identified and validated
a novel target — RHOB. RhoB is BMP-responsive in trunk

neural crest and is necessary for delamination (Liu and Jessell,
1998); its misexpression has been associated with defects
in laminin organization within the basement membrane
(Perez-Alcala et al., 2004). Interestingly, we have previously
demonstrated that Draxin, via regulation of canonical Wnt
signaling, also is involved in regulating laminin organization and
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with Draxin overexpression. Scale bar, 20 um. (F) A ACy values from quantitative reverse transcription PCR (RT-gPCR) for DRAXIN, SNAI2, and RHOB (normalized
against 78S, comparing control versus overexpression cells) from HH9+ sorted cranial neural crest cells co-electroporated with NC1.1m3 fluorescent GFP reporter
with or without Draxin overexpression (DraxinOE). As expected, DRAXIN was significantly upregulated whereas SNAI2 and RHOB were significantly downregulated in
DraxinOE cranial neural crest cells. *P < 0.05, two-tailed one sample t-test. (G) A ACt values from quantitative reverse transcription PCR (RT-qPCR) for DRAXIN,
SNAI2, and RHOB (normalized against 78S, comparing control versus Wnt-activated cells) from dissected HH9+ cranial tissue from embryos co-electroporated with
NC1.1m3 fluorescent RFP reporter with or without stabilized B-catenin expression (NC1-A90Bcat). In contrast to Wnt inhibition via DraxinOE (F), SNAI2 and RHOB

were significantly upregulated with Wnt activation via NC1-A90Bcat, whereas DRAXIN was significantly downregulated. *P < 0.02, two-tailed one sample t-test.

remodeling of the basement membrane during cranial neural
crest development (Hutchins and Bronner, 2019). Furthermore,
we also observed downregulation of the BMP ligand BMP4,
suggesting that BMP signaling may act downstream of Wnt
signaling during or immediately after cranial neural crest EMT.
In trunk, it has been shown that neural crest delamination
is regulated by BMP, and that canonical Wnt signaling
is controlled by BMP signaling through BMP-responsive
expression of the Wntl ligand (Burstyn-Cohen et al., 2004).
This is particularly interesting in light of our observations
from a GFP reporter construct that BMP signaling is inactive
in cranial neural crest at the onset of EMT (Supplementary
Figure 1). Interestingly, Draxin has also been shown to
inhibit neural crest migration in the trunk (Su et al, 2009
Zhang et al, 2017). Thus, whether RHOB expression is
differentially regulated based on axial level (i.e., in response
to BMP signaling in trunk neural crest versus in response to
Whnt signaling in cranial neural crest) or based on signaling
pathway crosstalk (which may also be dependent on axial level)
remains to be explored.

In searching our datasets for neural crest-specific factors,
we also noted modest upregulation of SOX10 and ETSI, genes

associated with neural crest EMT (Tahtakran and Selleck, 2003;
Theveneau et al., 2007; Simoes-Costa and Bronner, 2015),
which seemed contradictory to the antagonistic role of Draxin
in modulating cranial neural crest EMT. ETSI expression is
restricted to the cranial population of neural crest and is itself
activated via ¢cMYB (Betancur et al, 2010a); together with
Sox9, Etsl and cMYB function as activating gene regulatory
inputs into a SOXIOE2 enhancer (Betancur et al., 2010b),
regulating SOX10 expression in cranial neural crest. Interestingly,
in other contexts, canonical Wnt signaling has been shown to
trigger degradation of cMYB protein (Kanei-Ishii et al., 2004);
given that Draxin is endogenously expressed at HHY, it is
possible that its normal inhibitory effects on canonical Wnt
signaling may be necessary to reduce degradation of cMYB to
activate endogenous levels of ETSI and SOX10, which initiate
expression prior to the onset of EMT. Thus, we postulate
here that during early cranial neural crest migration, excess
cMYB protein is stabilized via exogenous Draxin-mediated
inhibition of canonical Wnt signaling; as a result, this may
trigger upregulation of ETSI and SOXIO gene expression.
However, despite upregulation of factors positively associated
with EMT, downregulation of SNAI2 alone is sufficient to
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impede cranial neural crest migration (Nieto et al, 1994;
Hutchins and Bronner, 2019).

Taken together, our data identify novel targets of canonical
Whnt signaling during cranial neural crest EMT, and highlight
potential avenues of intersection for signaling pathways involved
in craniofacial development. The results raise the intriguing
possibility that the sequence and magnitude of signaling and gene
expression crosstalk during cranial neural crest development may
help precisely regulate craniofacial morphogenesis.
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