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Tissue-resident stem cells may enter a dormant state, also known as quiescence,
which allows them to withstand metabolic stress and unfavorable conditions. Similarly,
hibernating mammals can also enter a state of dormancy used to evade hostile
circumstances, such as food shortage and low ambient temperatures. In hibernation,
the dormant state of the individual and its cells is commonly known as torpor, and is
characterized by metabolic suppression in individual cells. Given that both conditions
represent cell survival strategies, we here compare the molecular aspects of cellular
quiescence, particularly of well-studied hematopoietic stem cells, and torpor at the
cellular level. Critical processes of dormancy are reviewed, including the suppression of
the cell cycle, changes in metabolic characteristics, and cellular mechanisms of dealing
with damage. Key factors shared by hematopoietic stem cell quiescence and torpor
include a reversible activation of factors inhibiting the cell cycle, a shift in metabolism
from glucose to fatty acid oxidation, downregulation of mitochondrial activity, key
changes in hypoxia-inducible factor one alpha (HIF-1α), mTOR, reversible protein
phosphorylation and autophagy, and increased radiation resistance. This similarity is
remarkable in view of the difference in cell populations, as stem cell quiescence regards
proliferating cells, while torpor mainly involves terminally differentiated cells. A future
perspective is provided how to advance our understanding of the crucial pathways that
allow stem cells and hibernating animals to engage in their ‘great slumbers.’

Keywords: cell cycle, cell dormancy, hibernation, metabolism, torpor, quiescence

INTRODUCTION

The difference between life and death of individual cells or animals depends on their ability to
survive, particularly during periods of scarcity. When environmental conditions are unfavorable,
or nutrients are scarce, individual cells may enter a dormant state (quiescence). Similarly, some
mammals may hibernate to cope with such conditions by suppressing metabolism in a state called
torpor. Given that they represent cell survival strategies triggered by external factors, cell quiescence
and hibernation both deploy molecular adaptations to survive environmental stress such as low
temperature and shortage of nutrients, and even increase their resistance to withstand periods
of low oxygen supply. In both cases, phenotypic plasticity is of paramount importance to ensure
survival, yet it is undocumented whether the mechanism governing entry or exit from cellular
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dormancy and torpidity are similar. Here, we summarize
mechanisms used in cellular quiescence and mammalian
hibernation and use the collective findings to establish
their resemblance.

Cellular Dormancy
Cellular dormancy is the ability to enter a quiescence state
(reversible cellular arrest) by withdrawing from the cell cycle and
entering the so called G0 phase (Nakamura-Ishizu et al., 2014).
The cell cycle is divided into four phases: G1 phase (interphase),
S phase (DNA synthesis), G2 phase (interphase), and M phase
(mitosis) (Yang and Sheridan, 2014). Cells that overcome the
G1 checkpoint commit to divide and proceed to the S phase,
culminating in cell division. In the early G1 phase, cells that
are non-proliferating, undivided, senescent (permanent cell cycle
arrest) or terminally differentiated, can withdraw from the cell
cycle and enter a dormant or quiescent state (G0) (Figel and
Fenstermaker, 2018). Quiescent cells are characterized by low
mobility, low metabolic activity and rare division (Rocheteau
et al., 2014). Once quiescent, cells may either re-enter the G1
phase in response to growth signals and commit to divide
(reversible quiescence) or continue dormancy, which may or
may not ultimately lead to senescence, i.e., a state of permanent
cell cycle arrest with high metabolic activity and secretion of
inflammatory factors (Sabbatinelli et al., 2019). In contrast, non-
proliferating cells that are either terminally differentiated or
senescent are irreversibly arrested.

In humans, reversible quiescence commonly occurs in many
somatic cells including hematopoietic stem cells (Nakamura-
Ishizu et al., 2014), muscle stem cells (Chakkalakal et al.,
2012), epithelial stem cell (Coloff et al., 2016), neural stem
cell (Kalamakis et al., 2019), and hair follicle stem cell (Wang
et al., 2016). Although quiescence is a key characteristic of
tissue-resident stem cells, which function as a dormant reserve
to replenish the tissue loss throughout life, the discovery of
highly proliferative stem cells in several tissues has challenged
the concept that quiescence is an integral property of all stem
cells (Clevers and Watt, 2018). Given the divergent mechanisms
governing quiescence in different stem cells, this review will focus
on the most extensively and well-characterized tissue-resident
stem cells: hematopoietic stem cells (HSCs) (Richmond et al.,
2016). Nevertheless, quiescence can also be found in non-stem
cells such as endothelial cells (Sabbatinelli et al., 2019) and mature
hepatocytes, the latter being considered long-term quiescent cells
essential for liver regeneration (Zimmermann, 2004; Berasain
and Avila, 2015). Although quiescence is not an inherent property
that characterizes stem cells or distinguishes them from non-
stem cells (e.g., consider mature hepatocytes), dysregulation and
loss of quiescence affects homeostasis of many progenitor cell
populations, ultimately leading to stem cell exhaustion, i.e., the
depletion of stem cells with impact on health (Orford and
Scadden, 2008). Stem cell exhaustion is particularly noticeable
in HSCs, due to their multi-lineage capacity of differentiation
and self-renewal potential (Pietras et al., 2011). HSCs give rise to
progenitor cells that differentiate into all lineages of mature blood
cells. However, continuous self-renewal of HSCs is insufficient for
lifelong maintenance, as the inevitable accumulation of damage

would result in dysfunctional hematopoiesis, leading to diseases
such as leukemia (Riether et al., 2015). Hence quiescence is
considered an essential feature to prevent HSCs exhaustion. To
avoid this potential hazard, HSCs are kept quiescent in a unique
microenvironment in the bone marrow. Quiescence is actively
maintained in HSCs, in which the microenvironment plays a
crucial role to assure their longevity and function. Furthermore,
computational modeling of HSCs kinetics infers that human
HSCs complete the cell cycle once every 18 years to self-renew
and generate progenitor cells. Quiescence thus allows stem
cells to prolong their lifespan to maintain critical physiological
functions (Hao et al., 2016).

Animal Dormancy
Dormancy in animals can be subdivided into four subclasses:
hibernation (Lee, 2009), diapause (Renfree and Shaw, 2000),
estivation (Masaki, 2009; Storey and Storey, 2012), and
brumation (McEachern et al., 2015). Hibernation is often
described as winter dormancy and is adopted by both warm
and cold-blooded vertebrates. Furthermore, hibernation is
characterized by alternating periods of low metabolic activity
(torpor), and normalization of metabolism and physiology
(arousals) (Carey et al., 2003). Diapause refers to a spontaneous
interruption of the development, characterized by a reduction
of metabolic activity and is mainly observed in insects and a
few mammalian species (Renfree and Shaw, 2000; Denlinger,
2002). Estivation occurs in vertebrates and invertebrates and
is characterized by reduced metabolic rate and inactivity to
avoid desiccation during hot periods with soaring temperatures
(Masaki, 2009; Storey and Storey, 2012). Brumation is mostly
seen in reptiles and strictly induced by low ambient temperatures.
It is characterized by long periods of inactivity with lowered
respiration rate, intersected by brief periods of activity required to
drink (McEachern et al., 2015). Despite having evolved different
forms of dormancy, the end goal of these animals is the same:
survival of periods with low energy supply.

Between these forms of animal dormancy, hibernation is the
best explored regarding molecular changes, which is why we will
almost exclusively focus on hibernation in mammals. Depending
on the species and environmental challenges hibernation takes
different forms, mostly consisting of seasonal hibernation with
multi-day torpor bouts and brief arousals (12–18 h) versus
daily torpor during which metabolism is suppressed for 6–
10 h (Turbill et al., 2011). Likely, similar molecular mechanisms
govern both, as some species switch between multi-day and
daily torpor (Wilz and Heldmaier, 2000; Dausmann et al.,
2004). Hibernation consists of (daily) torpor phases that are
characterized by low metabolism, which are interspersed by brief
periods of arousal with restoration of metabolic rate to levels of
non-hibernating animals. Torpidity is a state in which physical
activity, development, growth and metabolism are transitorily
and profoundly reduced in response to harsh environmental
conditions and to reduce energy dissipation (Heldmaier et al.,
2000). In this review, we discriminate between the two different
forms of torpidity by using ‘torpor’ and ‘daily torpor.’

During torpor, animals undergo profound physiological,
morphological and behavioral changes. For example, body
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temperature of seasonal hibernators in cold environments
sharply declines to as low as 0–4◦C, heart rate and respiration
decreases by 95%, and renal function is significantly reduced
(Carey et al., 2003). Most hibernators synchronize their
dormancy with environmental changes, with some animals
entering dormancy only after the start of unfavorable conditions
(consequential dormancy, such as facultative hibernation in
the Syrian hamster), while others have a yearly rhythmicity
allowing them to enter in advance of harsh conditions (predictive
dormancy, such as seasonal hibernation in ground squirrels)
(Lee, 2009; Masaki, 2009; Ruf and Geiser, 2015).

Prerequisites for Dormancy
Cellular quiescence in HSC is associated with three key changes
in cell physiology: (i) cell cycle arrest by inhibition of cyclin-
dependent kinases (CDKs) upon an increase in expression
of cyclin-dependent kinase inhibitors (CKIs), (ii) lowering
of metabolism with a switch from carbohydrate to lipid-
based metabolism and (iii) resistance to accumulating cellular
damage conferred by differential expression of genes involved in
apoptosis, proliferation and oxidative stress.

The exact signals that induce torpidity in mammals are still not
known, yet reduction of metabolic rate is at its heart (Heldmaier
et al., 2000; Storey and Storey, 2004). Torpor entry is achieved
by active suppression of metabolism and by limiting ATP-
expensive activities, ultimately leading to a change of physiology
in cells, tissues and organs. In torpor, vital functions including
respiratory and heart rate strongly decline secondary to the
metabolic suppression, while temperature regulation is adjusted
to accommodate lower body temperatures (Tsiouris, 2005; Ruf
and Geiser, 2015). Moreover, reversible cell cycle arrest has been
reported in hypoxic red-eared slider turtles and torpid 13-lined
squirrels (Biggar and Storey, 2009; Wu and Storey, 2012a), in
concert with the metabolic suppression and shift in energy source
from carbohydrates to fatty acids (Storey et al., 2010).

Because of the similarity between the overall regulation of
HSC quiescence and torpidity, it is conceivable that some form of
reversible quiescence occurs during hibernation and might even
be necessary for the induction of hibernation. The interaction
between these mechanisms may set the stage for both reversible
cellular quiescence and hibernation allowing them to withstand
stress conditions and extend their life span. However, it must be
underlined that the impact of mechanisms involved, particularly
those regulating cell cycle, differ largely between quiescence in
stem cells and torpidity. While in stem cells cell cycle regulation
drives their proliferation and self-renewal, it is less clear what its
role is in terminally differentiated cells, as studied in torpor.

CELL CYCLE REGULATION

General Regulation of the Cell Cycle
While numerous intrinsic and extrinsic factors regulate the cell
cycle, they generally converge on the cell cycle master regulators,
cyclin-dependent kinases, CDKs (Fisher, 1997; Coller et al., 2006;
Valcourt et al., 2012; Cheung and Rando, 2013; Lim and Kaldis,
2013). CDK activation requires binding to the proper cyclin

regulatory subunit (A, B, D, and E) and together they drive
cell cycle progress (Murray, 2004; Garcia and Su, 2008; Figel
and Fenstermaker, 2018). Differential gene expression of cyclins
during specific cell cycle phases drives cell cycle progression or
arrest (Malumbres and Barbacid, 2005; Camins et al., 2013).
Cyclin-CDK complex formation is antagonized by CKIs that
competitively bind to the catalytic site of the cyclin-CDK
complex (Dai and Grant, 2003; Sánchez-Martínez et al., 2015).
Two families of CKIs exist, namely INK4 (p16INK4a, p15INK4b,
p18INK4c, p19INK4d) and CIP/KIP (p21cip1, p27kip1, p57kip2). The
balance between CDKs, cyclins and CKIs determines whether a
cell will commit to proliferation or maintains cell cycle arrest.
The major factors contributing to regulation of the cell cycle with
relevancy to quiescence or torpor are depicted in Figure 1.

Mitogen-induced signaling pathways tightly regulate cell
growth and proliferation. In the presence of plentiful nutrients,
growth factors activate transmembrane receptors, eliciting
downstream signaling cascades, including the rat sarcoma
oncogene (RAS) (Beauséjour et al., 2003), myelocytomatosis
(Myc) (Rahl et al., 2010) and the serine/threonine-protein
kinase B (PI3K/Akt) pathways. This is followed by sequential
activation of the mitogen-activated protein kinases (MAPKs),
which induce the transcription of cyclin D that binds to
cyclin-dependent kinases (CDK) 4 and 6, forming activated
complexes that initiate the downstream phosphorylation of DNA
synthesis associated proteins (Seger and Krebs, 1995; Pimienta
and Pascual, 2007; Risal et al., 2016; Seger and Wexler, 2016). The
cyclin-D-CDK(4,6) complex phosphorylates and inactivates the
tumor suppressor retinoblastoma protein (Rb) and its homologs
p107 and p130. Rb inhibition releases its inhibiting of the
E2F transcription factor, thus activating E2F-binding to DNA
promoter regions (Infante et al., 2008; Kent and Leone, 2019),
allowing the transcription of E2F-dependent genes such as cyclin
A and cyclin E. These cyclins form a complex with CDK-
2, activating its kinase activity. Cyclin(A,E)-CDK-2 complexes
further phosphorylate Rb resulting in its complete inactivation
(Dyson, 1998; Harbour and Dean, 2000; Bracken et al., 2004). The
increase in cyclins and the activated cyclin(D,E)-CDKs(2/4/6)
complexes are essential to drive cells from G1 to the S phase and
commit the cell to proliferation.

On the other hand, the absence of growth factors reduces
the activity of the RAS (MAPKs) and PI3K/Akt pathways, thus
leading to the activation of the glycogen synthase kinase 3
beta (GSK3β), which halts the cell cycle by phosphorylation
and subsequent degradation of cyclin-D (Dong et al., 2005;
Theeuwes et al., 2017; Tessier et al., 2019). Degradation of cyclin
D reduces cyclin(D)-CDK(4,6) complex formation followed by
an increase in activated Rb, leading to strong suppression of
the E2F transcription factor and downstream genes. Cyclin D
thus comprises a rate-limiting factor of cell cycle progression
through G1 (Trimarchi and Lees, 2002; Malumbres and Barbacid,
2009). Quiescent cells display low levels of activators of the
cyclin-CDK-Rb-E2F pathway, such as cyclin D, CDK 2, 4, and
6, and high levels of the pathway repressors, including Rb
protein and family homologs (p107 and p130) (Harbour and
Dean, 2000; Bracken et al., 2004; Peng et al., 2015) and the
CKIs p21 (Cheng et al., 2000) and p27 (Coats et al., 1996).
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FIGURE 1 | The complex regulation of HSC – and possibly hibernators – cell cycle entry. Cyclin-CDK complexes drive the progression of the cell cycle. Their
inhibition forces entry into quiescence from G1 into the G0 phase of the cell, mainly by the action of cyclin-dependent kinase inhibitors (CKI) from the INK and
CIP/KIP family. Various pathways converge on the CKIs, thus instituting quiescence. Low activity of the PI3K/Akt/mTOR pathway is vital to enter quiescence, mainly
through the inhibition of cyclin-D-CDK4/6 complexes and suppression of the Rb-E2F pathway. This pathway is massively regulated, primarily through inhibition by
the tumor suppressors phosphatase and tensin homolog (PTEN) and tuberous sclerosis proteins 1 and 2 (TSC1/2). Furthermore, the activity of the cyclin D-CDK4/6
complexes is inhibited both by the Ink4 and CIP/KIP CKIs. The Cyclin E-CDK2 complex regulates progression from the G1 to the S phase, and it is mainly regulated
by the CIP/KIP family of CKIs, as well as by tumor suppressors from the retinoblastoma protein family (Rb, p107, p130). Extrinsic signals activate the transcription
factors HES1, JunB and FOXO3a expression, which in turn regulate the transcription of the CIP/KIP family members. Moreover, entry into cellular quiescence is also
subject to regulation via the tumor suppressor p53, as a response to cellular damage. Solid arrows indicate direct activation pathways, solid T-lines indicate inhibitory
pathways and dashed arrows indicate transcriptional regulation activity.

However, when conditions turn favorable again, quiescent HSCs
increase Cyclin D and E abundance, thus outcompeting CKIs
and activating CDK2/4/6 (Murray, 2004; Choi and Anders, 2014;
Figel and Fenstermaker, 2018).

Cell Cycle Regulation in Cell Quiescence
Cell Cycle Arrest in Quiescence
Hematopoietic stem cells quiescence primarily results from cell
cycle arrest through inhibition of CDKs by an increase in
the abundance of CKIs. When conditions for HSCs survival
are unfavorable, intrinsic and extrinsic signals upregulate the
expression of CKIs, modulating the formation of cyclin-CDK
complexes and allowing the formation of the Rb-E2F complex,
thus effectively halting the cell cycle. Meanwhile, quiescent
HSCs ensure reversibility by upregulation of the chromatin

remodeler helix-loop-helix protein 1 (HES1), which promotes
transcriptional repression through alteration of chromatin
recruiting histone deacetylases (HDACs) (Sang and Coller, 2009),
promoting tight packaging of DNA into heterochromatin and
downregulation of p21 (Yu et al., 2006; Sang et al., 2008), p27
(Murata et al., 2005), and E2F-dependent proteins (Hartman
et al., 2004). Quiescent HSCs deploy additional mechanisms to
protect DNA integrity by raising defense mechanisms against
excessive oxidative stress to protect cells from accumulating
damage and apoptosis. Low levels of reactive oxygen species
(ROS) are tolerated by an increased antioxidant defense,
including the NADPH-dependent glutathione reductase system
(Hosokawa et al., 2006; Jang and Sharkis, 2007), FOXO3a
(Miyamoto et al., 2008; Rimmelé et al., 2015), and Sirtuin1 (Ezoe
et al., 2008; Matsui et al., 2012). Further, DNA repair systems
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are enhanced in HSCs, including non-homologous end joining
(NHEJ) and p53-mediated DNA damage response (Maynard
et al., 2008; Mohrin et al., 2010; Dannenmann et al., 2015). In
addition, increased expression of p53 serves to further enhance
quiescence in HSCs by upregulation of downstream genes,
including p21, Necdin, Gfi-1, BTG2, BAX, and PUMA (Lacorazza
et al., 2006; Liu et al., 2009; Asai et al., 2012).

Reversing Cell Cycle Arrest in Quiescence
The ability to recommence the cell cycle following reversible
arrest is crucial to the functionality of quiescent cells. Upon
sufficient extrinsic growth stimulation, MAPKs activate the
transcription factor Myc, which promotes the transcription of
several cell-cycle promoting genes, including cyclin D, cyclin
E, E2F2, and CDK4. Moreover, evidence suggests that the
upregulation of Myc (Eilers et al., 1991; Kretzner et al., 1992),
E2F (Johnson et al., 1993; Kowalik et al., 1995) and Cyclin E
(Blomen and Boonstra, 2007; Fox et al., 2011) alone can drive a
cell out of quiescence into cell cycle progression. Nevertheless,
downregulation of CKIs activity, p21 (Cheng et al., 2000;
Kippin et al., 2005) and p27 (Coats et al., 1996; Rivard et al.,
1996), and downregulation of all three retinoblastoma protein
family members (Rb, p107, p130) result in quiescence exit and
cellular proliferation (Dannenberg et al., 2000; Sage et al., 2003;
Viatour et al., 2008). Moreover, the upregulation of cell cycle
progression genes leads to a shift in energy metabolism from
lipid based oxidation (FAO) back to carbohydrate oxidation
(glycolysis). This switch is essential to supply the demand of
the ATP-expensive processes to meet the energy demand during
proliferation (Valcourt et al., 2012; Takubo et al., 2013). It is of
note that quiescent cells may resume cell proliferation only if they
express a specific group of genes. One of the genes essential to
the reversibility of quiescence is HES1. Hes1 is upregulated in
quiescent cells and prevents premature senescence or terminal
differentiation in response to specific signals (hypoxia, wnt
signaling, Hedgehog pathways) (Baek et al., 2006; Sang et al.,
2008). Although the exact mechanism by which Hes1 governs
cell quiescence is still unknown, Hes1 can bind to the DNA
enhancer site of the CKIs p21, p27, and p57 in HSCs (Yu et al.,
2006), expectedly resulting in their inhibition of cyclins, thus
arresting the cell cycle.

Cell Cycle Regulation in Hibernators
Cell Cycle Arrest in Torpor
The majority of the pathways involved in stem cell quiescence
have also been implicated in hibernators, as torpor phases
feature the molecular signature of cell cycle arrest and a
reduction of energy-consuming processes such as transcription
and translation (Biggar and Storey, 2009; Ruf et al., 2012; Wu
and Storey, 2012a; Schwartz et al., 2013; Blanco and Zehr, 2015;
Al-attar and Storey, 2020). Modulation of key players in cell
cycle arrest due to low nutrient levels is mainly effectuated
through the reduction in cellular ATP-consuming processes.
A low [ATP]:[AMP] ratio activates the energy-sensing AMP-
activated protein kinase (AMPK), initiating a signaling cascade
that minimizes energy expenditure. Many genes involved in
the cell cycle arrest are upregulated by AMPK dependent

phosphorylation, including the transcription factors Hes1, JunB,
and FOXO3a. In turn, they induce transcription of CIP/KIP
CKIs that strongly inhibit cyclin D and E, which in proliferating
cells halts the cell cycle and initiates G0 cell arrest (Coller
et al., 2006; Li and Bhatia, 2011; Valcourt et al., 2012). In line
with these molecular changes, the long term torpor molecular
profile matches suppression of cell cycle progression in the liver
of thirteen-lined ground squirrel (Ictidomys tridecemlineatus)
reflected in upregulation of CKIs (p15INK 4b and p21CIP1) and
downregulation of cyclins (D and E) and CDKs2/4/6 (Andrews,
2007). Moreover, the highly proliferative intestinal epithelial cells
of thirteen-lined ground squirrel and Caenorhabditis elegans
embryos (Nystul et al., 2003) halt their mitotic activity during
deep torpor because of arrest in the G2 phase of the cell cycle
(Matthews and Fisher, 1968; Kruman et al., 1988; Kruman,
1992). Yet, similar changes have been observed in terminally
differentiated skeletal muscle cells of Brand’s bat (Myotis brandtii)
(Wu and Storey, 2016) and brown adipose tissue of arctic
ground squirrel (Urocitellus parryii) (Zhu et al., 2005; Yan et al.,
2008). Furthermore, cellular stress such as low temperature,
UV radiation and hypoxia, upregulates the expression of the
cold-inducible RNA-binding protein (CIRP), which induces the
translation of the CKI, p27KIP1. High activity of CIRP has been
reported both in HSCs and during torpor in brain, which suggests
that this protein plays a crucial role in inducing cell cycle arrest
and in inhibiting proliferation of HSCs at low temperatures (Zhu
et al., 2016; Roilo et al., 2018).

Reversing Cell Cycle Arrest in Arousal
Changes observed in torpor are basically reversed during
interbout arousals. While HES1 constitutes an essential factor
to leave cell quiescence in HSC, there is currently limited
information about HES1 activity in hibernators, warranting
further studies to understand its role in hibernation-induced
cellular dormancy.

METABOLIC CHARACTERISTICS

With their survival depending on an inherent mechanism to
maintain adequate metabolic function even during unfavorable
environmental conditions, quiescent cells and torpid hibernators
undergo a series of interconnected adjustments in metabolism.
Key changes in relevant metabolic processes are depicted in
Figure 2.

Metabolic Characteristics of Quiescence
Metabolic Switch in Quiescence
One of the remarkable adjustments is the phenotypic switch
from glucose fueled mitochondrial OXPHOS to FAO, which
involves the differential expression of genes and changes in
metabolic processes in response to both intrinsic and extrinsic
signals (Lee, 2009; Yao, 2014). Under normal physiological
conditions, cellular proliferation requires high levels of energy in
the form of ATP, fueled mainly by glucose through mitochondrial
OXPHOS of the end product of glycolysis, pyruvate (Yang
and Sheridan, 2014). Also, mitochondrial activity, especially
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FIGURE 2 | Molecular mechanism governing cell quiescence and torpidity in contrast with cell proliferation and euthermia. Quiescent and torpid cells feature a
metabolic shift from glucose fueled OXPHOS to FAO. Low nutrient supply leads to depletion of ATP which is detected by LKB1 that in turn activates AMPK, eliciting
a downstream cascade including the activation of TSC1/2 that suppresses PI3K/Akt pathway and downstream ATP-expensive processes. AMPK further shuts down
gene expression via activation of HDACs which tightly pack histone-DNA complexes into heterochromatin. Also, AMPK promotes autophagy by activating
ULK1/ATG7, lipolysis and fatty acid oxidation via activation of OXPHOS regulator FOXOs proteins and PGC-1α. In addition, PGC-1α, a transcriptional coregulator of
PPAR target genes, promotes the upregulation of PPARδ. The PML-PPARδ-FAO further promotes β-oxidation of lipids and the metabolic shift toward FAO. HIF-1α

promotes FAO via upregulation of PDK4 and inhibition of the first step in the TCA cycle, and promotes resistance to hypoxia stress and ROS damage. HIF-1α can be
activated by its upstream regulator the Meis1 protein, which is activated by the elevation of intracellular ROS, and by low levels of O2. Dotted lines represent a
restricted generation of molecules pointed at. Solid lines represent activated pathways. T lines indicate the suppression of the pathway. AMPK, AMP-activated
protein kinase; ATG7, autophagy related 7; FOXOs, forkhead proteins; HDACs, histone deacetylases; HIF-1α, hypoxia-inducible factor 1α; HIF-2α, hypoxia-inducible
factor 2α; LKB1, liver kinase B1; OXPHOS, oxidative phosphorylation; PDK4, pyruvate dehydrogenase kinases 4; PGC-1a, peroxisome proliferator-activated
receptor-coactivator 1α; PML, promyelocyte leukemia protein; PML, promyelocyte leukemia protein; PPARs, peroxisome proliferator-activated receptors; PTEN,
phosphatase and tensin homolog; TCA, tricarboxylic acid cycle; TF, transcription factors; TSC1/2, tuberous sclerosis proteins 1 and 2.

oxidative phosphorylation, is the main cellular ROS generator,
which can damage macromolecules and organelles, including
DNA, proteins and mitochondria (Ito and Ito, 2016). Quiescent
cells thus switch from glucose to FAO (β-oxidation), anaerobic
glycolysis and autophagy, to secure a minimal energy supply,
thereby protecting them from metabolic dysregulation and
DNA-damaging ROS production (Valcourt et al., 2012; Ito
and Suda, 2014; Yao, 2014). Hypoxia-inducible factor 1α

(HIF-1α) is critically involved in this metabolic switch. HIF-
1α is a transcription factor expressed in mammalian cells
residing under hypoxic conditions, which activates transcription

factors and confers post-translational modifications that lower
oxygen consumption. HIF-1α promotes anaerobic glycolysis
by upregulating glycolytic genes and repressing glucose fueled
OXPHOS through transcription of pyruvate dehydrogenase
kinases PDK2 and PDK4 (Takubo et al., 2010, 2013). In
turn, these kinases inhibit pyruvate dehydrogenase (PDH)
(Zhang et al., 2014), which is an essential enzyme to convert
glucose derived pyruvate to acetyl-CoA. Inhibition of PDH
lowers carbohydrate use by limiting the flow of glycolysis
products toward the citric acid cycle and promoting β-oxidation
of ketones and fatty acids. At the same time, the lipolytic
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protein triacylglycerol lipase (PTL), which stimulates lipolysis
by breaking down adiposomes (fat droplets), liberates fatty
acids for FAO. As HSCs reside in a hypoxic niche in the
bone marrow, HIF-1α actively maintains the quiescent state
relying on glycolysis and β-oxidation to support low levels of
ATP generation. Consequently, inhibition of HIF-1α led to the
depletion of mice HSCs, while HIF-1α overexpression induced
their quiescence (Takubo et al., 2010). Simsek et al. (2010) showed
that HIF-1α expression in HSCs is controlled by the DNA-
binding transcription factor myeloid ecotropic viral integration
site 1 homolog (Meis1). Further, HSCs upregulate PTL to secure
the supply of fatty acids (Liu et al., 2018).

In concert with the metabolic rewiring, adaptations also
constitute mechanisms that repress energy-consuming processes
by inhibiting gene expression related to cell proliferation,
anabolic processes and oxidative phosphorylation through the
action of HDACs (Sang et al., 2010). Quiescent cells rapidly
reduce their energy expenditure by downregulating ATP-
demanding processes, such as DNA replication, macromolecular
synthesis, macromolecular turnover and ion pumping activities
(Cheung and Rando, 2013; Yao, 2014), which is a requirement for
HSC quiescence. Signer et al. showed that chemical induction of
protein synthesis leads to the loss of quiescence and promotion
of proliferation of mice HCSs (Signer et al., 2014). The switch in
energy metabolism back from FAO to glucose fueled OXPHOS is
essential to meet the energy demand for differentiation. Indeed,
inhibition of mitochondrial respiration blocks differentiation of
HSCs (Yu et al., 2013), while inhibition of FAO led to cell
proliferation (Ito et al., 2012).

Hypoxia also induces expression of the RNA binding motif
protein 3 (RBM3), a critical translation facilitator (Wellmann
et al., 2010; Zhu et al., 2019). Loss of RBM3 results in increased
damage, mitotic dysfunction and apoptosis (Sureban et al., 2008),
reduced neuronal structural plasticity (Peretti et al., 2015) and
has been postulated to increase the translational efficacy in HSCs
under hypoxic conditions. Other genes that are upregulated in
quiescent cells may enhance resistance to apoptosis (NFKB2,
MET) (Lin and Karin, 2003; Huh et al., 2004), suppress
proliferation (MXI1, TP53, FAT) (Schreiber-Agus et al., 1998;
Coller et al., 2006) and protect against accumulating oxidative
damage (FOXO, HIF-1α, LKB1, SOD3, PRDX4, EPHX1) (Kops
et al., 2002; Shen and Nathan, 2002; Serra et al., 2003; Shackelford
and Shaw, 2009; Gurumurthy et al., 2010; Takubo et al., 2010).

mTOR in Cell Quiescence
The mammalian target of rapamycin (mTOR) pathway regulates
growth and metabolism and embodies a crucial switch from high-
expensive energy state (anabolic) to hypometabolism (catabolic).
Upstream of mTOR is the highly conserved phosphatidylinositol-
3 kinase/protein kinase B (PI3K/Akt) signaling pathway, which
is activated by various signals from activated tyrosine kinase
receptors. When activated, mTOR drives cell proliferation,
growth and survival by activating cyclin-D-CDK4/6 complexes.
The Akt/mTOR pathway is regulated by the tumor suppressors
phosphatase and tensin homolog (PTEN) and tuberous sclerosis
complex (TSC1/2). PTEN and TSC1/2 regulate reversible protein
phosphorylation (RPP) of the mTOR pathway determining the

“on” or “off” state of many energy-expensive processes. PTEN
is considered a major regulator of metabolic reprogramming
and has been shown to regulate PDK1, a critical activator of
the insulin pathway. Normally, when carbohydrates and glucose
are plentiful, insulin signaling activates the PI3K/Akt pathway,
which induces glucose uptake and breakdown via glycolysis
mechanisms (Rigano et al., 2017; Jansen et al., 2019). In the
absence of nutrients, Akt/mTOR is inactivated by the action
of PTEN (Yilmaz et al., 2006) and TSC 1/2 (Chen et al.,
2008), reducing the energy-intensive processes and inducing
catabolism. In a low nutrient environment, levels of glucose are
reduced as well as insulin signaling (Martin, 2008; McCain et al.,
2013), which reduces PI3K/Akt signaling, activating the forkhead
protein (FOXO) family that lowers ROS production to protect
from oxidative damage. Quiescent HSCs show the typical changes
related to mTOR suppression, including the upregulation of
PTEN (Zhang et al., 2006; Kalaitzidis et al., 2012; Porter et al.,
2016). In HSCs, activation of the PI3K/Akt/mTOR pathway,
reversing the upregulation of PTEN, occurs when cells migrate
toward a more oxygen-rich microenvironment, which induces
a switch from FAO to glucose fueled OXPHOS and promotes
cellular respiration, in turn increasing the levels of ROS and cell
cycle progression.

Mitochondria in Cell Quiescence
Mitochondrial respiration and production of ROS are
strictly regulated by the activity of FOXOs and HIF-1α.
Following their activation by growth-repressive signals in the
PI3/Akt/mTOR pathway, FOXO proteins repress a large number
of mitochondrial genes, inhibiting not only mitochondrial
activity, but also biogenesis. Consistent with HSCs’ low
dependency on mitochondrial respiration as a source of energy,
HSCs are characterized by a low number of mitochondria, which
are immature and display underdeveloped cristae with globular
morphology (Piccoli et al., 2005). Because of their low metabolic
activity, quiescent stem cells produce low levels of ROS (Eckers
et al., 2014), yet deploy unique mechanisms protecting them
against DNA-damaging ROS (Wanet et al., 2015). The role
of Meis1 in counteracting oxidative stress is well established
(Kocabas et al., 2012; Unnisa et al., 2012; Papa et al., 2019),
by serving as an upstream regulator in response to high ROS
levels through activation of HIF-1α and HIF-2α (Simsek et al.,
2010; Kocabas et al., 2012; Simonetti et al., 2016). In addition
to Meis1, FOXO proteins are essential regulators of oxidative
stress and deemed essential to maintain quiescence in long
term HSCs. FOXOs inhibit mitochondrial respiratory chain
protein expression and transcriptionally activate antioxidant
enzymes such as catalases, sestrins, and superoxide dismutase
2 (SOD2). FOXO proteins, notably FOXO3a but also FOXO1,
FOXO4, and FOXO6, inhibit mitochondrial gene expression
(Tothova et al., 2007; Rimmelé et al., 2015). FOXO3a is highly
expressed in HSCs and is also a main transcriptional regulator
of antioxidants enzymes (Yalcin et al., 2010; Liang et al., 2016).
Conditional deletion of FOXO 1/2/3/4, especially FOXO3a,
results in a reduction of the HSC pool (Tothova et al., 2007;
Liang et al., 2016; Bigarella et al., 2017). Apart from regulating
mitochondrial ROS production and biogenesis, FOXOs also
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induce the expression of CKIs of the CIP/KIP family (Kops et al.,
2002; Camperio et al., 2012), thereby inducing HSC cell cycle
arrest. FOXOs are activated by the tumor suppressor liver kinase
B1 kinase (LKB1), which also activates AMPK (Shackelford and
Shaw, 2009). LKB1 regulates AMPK activity and downstream
promotion of ATP production. A relatively high AMP level is
indicative of an energy-depleted state and leads to the activation
of LKB1, a master kinase that in turn activates the downstream
AMPK and 12 other related kinases (Lizcano et al., 2004;
Shackelford and Shaw, 2009). Conditional deletion of LKB1 led
to loss of quiescence and increased the number of hematopoietic
progenitor cells, while depleting HSCs in mice (Gan et al., 2010;
Nakada et al., 2010). In addition, LKB1 is an upstream regulator
of the peroxisome proliferator-activated receptor-coactivator
1α (PGC-1α), a central regulator of mitochondrial biogenesis
and oxidative metabolism, and the deletion of LKB1 in HSCs
led to a downregulation of PGC-1α resulting in mitochondrial
dysfunction (Gan et al., 2010). On the other hand, the knockout
of PGC-1α in early subsets of HSCs showed that hematopoiesis
is minimally affected in these cells. Nevertheless, knockout of
PGC-1α lead to susceptibility to oxidative stress and modulation
of long-term HSC re-population (Basu et al., 2013).

When HSCs commit to proliferation by moving to the
high oxygen osteoblastic niche, there is a rapid increase in
mitochondrial biogenesis and activity (Jang and Sharkis, 2007;
Chen et al., 2008; Valcourt et al., 2012; Nakamura-Ishizu et al.,
2014). Proliferating HSCs face high ROS levels and upregulate
p38 mitogen-activated protein kinase (MAPK) and mTOR,
compatible with the proliferative and differentiation phenotype
(Kopp et al., 2005; Parmar et al., 2007). Recent investigation
suggests that FOXO3a regulates mitochondrial biogenesis gene
transcription, and loss of FOXO3a leads to a dysfunctional
metabolic shift and impaired OXPHOS (Rimmelé et al., 2015;
Menon and Ghaffari, 2018). However, the mechanism of this
regulation remains unknown.

Fatty Acid Oxidation in Cell Quiescence
Inhibition of mTOR increases PPARs signaling in HSCs, which
has the function of nutrient sensing and transcriptional control
of metabolic pathways (Desvergne and Wahli, 1999), especially
fatty acid transport and FAO (Braissant et al., 1996; Takahashi
et al., 2007). HSC fate and self-renewal decisions are critically
dependent on the PML-PPARδ pathway. Promyelocyte leukemia
protein (PML) nuclear bodies maintain quiescence in HSC by
activating peroxisome proliferator-activated receptors (PPARs),
which in turn reprogram cellular metabolism by suppressing the
Akt/mTOR pathway. The deletion of PML led to the loss of HSCs
quiescence and subsequent exhaustion. Further investigation
showed that PPAR signaling and FAO were significantly reduced
during HSCs differentiation, while induction of PPARδ by a
PML-targeting compound induced quiescence (Ito et al., 2012).
The depletion of PML and inhibition of mitochondrial FAO
in HSC resulted in symmetric division (two committed HSC
daughter cells, i.e., cells with a progressive differentiation toward
a particular type of red or white blood cell) both in vitro
and in vivo. Conversely, pharmacological activation of PPARδ

increased asymmetric division (one daughter committed, the

other for self-renewal) (Ito et al., 2012; Ito and Ito, 2013). Hence,
PML and PPARδ activation play an essential role in maintaining
the stem cell pool (Lallemand-Breitenbach and de Thé, 2010;
Ito and Suda, 2014).

Autophagy in Cell Quiescence
Autophagy is a conserved mechanism by which cytoplasmic
proteins and organelles are engulfed within autophagosomes
and degraded in lysosomes, providing ATP and metabolites.
Autophagy is governed by the activation of AMPK in response
to nutritional deprivation, leading to phosphorylation of TSC1/2,
which in turn inhibits mTORC1 (Yang and Klionsky, 2010).
Low levels of mTORC1 activate Unc-51 like autophagy activating
kinase, ULK1 (Kim et al., 2008; Mizushima, 2010), which
recruits additional proteins to form a complex that promotes
autophagosome formation and autophagy. Autophagy related
7 (Atg7) is consistently upregulated in quiescent cells, and
deletion of Atg7 in mice decreased the number of HSCs and
progenitors cells of various lineages and increased the number of
abnormal mitochondria and ROS levels (Mortensen et al., 2011).
Furthermore, a mutation in the autophagy gene Atg12 increased
levels of ROS, protein synthesis and glucose fueled OXPHOS in
mouse HSCs (Vessoni et al., 2012; Revuelta and Matheu, 2017).
These results suggest that disruption of autophagy induces a loss
of quiescence and a switch back to the proliferating phenotype in
HSCs, consistent with the idea that autophagy influences cell fate
decisions through metabolic reprogramming of HSC.

Metabolic Characteristics of Hibernation
Metabolic Switch in Hibernation
Hibernators have implemented metabolic adaptations very
similar to those found in quiescence. Mammalian hibernators
also switch from carbohydrate fueled OXPHOS to lipid-based
metabolism (FAO) during torpor (Vermillion et al., 2015). This
is reflected in the respiratory quotient (RQ: the quotient of CO2
production over O2 use), which reflects carbohydrate (RQ ∼
1.0) versus lipid oxidation (RQ ∼ 0.7). During torpor, European
hedgehog (Erinaceus europaeus) and Arctic ground squirrel
show RQ values of 0.7 indicating an exclusive use of FAO.
However, during arousals, RQ rises to values > 0.85 suggesting
a partial return to glucose fueled OXPHOS metabolism
(Tähti, 1978; Buck and Barnes, 2000). Hibernator cells also
readily suppress most ATP-consuming processes, including
transcription and translation responsible for an estimated 20–
30% of cellular energy consumption (Frerichs et al., 1998;
Wieser and Krumschnabel, 2001; Armitage et al., 2003). This
is thought to be only one of the mechanisms contributing to
the metabolic reduction in hibernation, since the metabolic
rate reduction during hibernation is much larger (∼83%)
(Armitage et al., 2003; Storey and Storey, 2004). Although
global transcription inhibition during hibernation is still debated
(Carey and Martin, 1996; Hittel D. and Storey, 2002), there
is increasing evidence that transcription modulation is tissue-
dependent during torpor (Soukri et al., 1996; Van Breukelen
and Martin, 2002). For example, thirteen-lined ground squirrels
suppress DNA transcription and replication by a twofold
decrease in transcriptional initiation, reducing elongation during
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torpor (Storey, 2003; Tsiouris, 2005; Tessier and Storey, 2014). To
avoid energy expenditure by transcription of genes unnecessary
in torpor, histone deacetylases (HDACs) silence genes through
chromatin remodeling. Protein levels of HDAC1 and HDAC4
are significantly upregulated, and RNA polymerase II activity is
downregulated by 57% in thirteen-lined ground squirrels during
torpor (Morin and Storey, 2006), suggesting a tight regulation of
energy-consuming gene transcription by chromatin remodeling
and protein synthesis due to low temperature and low levels of
mRNA turnover in hibernation. Given that protein synthesis is
even more energetically expensive than transcription, expectedly,
most of protein synthesis is actively repressed during torpor.
Global mRNA translation is inhibited in torpid golden-mantled
ground squirrels (Zhegunov et al., 1988) and Syrian hamsters
(Osborne et al., 2004), even though some proteins are tissue-
specifically synthesized at low rate during torpor. Conversely,
very high rates of protein synthesis and cell proliferation are
observed shortly after interbout arousal compared to squirrels
that had been active for 1–2 days after hibernation, suggesting an
initial compensatory mechanism to replenish proteins lost during
torpor (Zhegunov et al., 1988).

Although the mechanistic control of the switch from glucose
to fat combustion during hibernation has not been fully
elucidated, it seems to be similar to mechanisms observed in
starvation (Pilegaard et al., 2003), diabetes (Wu et al., 1999;
Kim et al., 2006), and caloric restriction (Lee C. K. et al., 2002).
Animals tested in these conditions show upregulation of the
transcriptional targets of HIF-1α, including PDK4, PTL, and
repression of PDH. However, HIF-1α was not investigated in
these studies. Similarly, hibernating ground squirrels showed
upregulation of PDK4 and PTL in heart, skeletal muscle and
white adipose tissue (Andrews et al., 1998; Buck et al., 2002;
Brauch et al., 2005). PTL shows high lipolytic activity at low
ambient temperatures as an intrinsic feature of the protein
across all mammal lineages. Yet, during torpor, PTL is further
upregulated, which is an unique feature observed only in
hibernators (Squire et al., 2004). While regulation of PDK4 and
PTL only suggests involvement of HIF-1α, direct evidence for its
upregulation in torpor comes from two studies. Maistrovski et al.
(2012) found increased HIF-1α protein levels in skeletal muscle
of 13-lined squirrels and little brown bat (Myotis lucifugus),
and in liver of little brown bat during hibernation. Previously,
HIF-1α protein levels were shown to increase by 60–70% in
brown adipose tissue in 13-lined squirrels (Morin and Storey,
2005). Moreover, a recent study using fasting-induced daily
torpor in B6N and B6J mice showed that the promoters of the
HIF-1α signaling pathway are highly activated during torpidity
(Sunagawa et al., 2018). On the other hand, some species such
as Arctic ground squirrels (AGS) show significantly higher
levels of HIF-1α during late-arousal and euthermic conditions
compared to torpor (Ma et al., 2005). These contrasting findings
could be due to species differences and/or differences in timing
of sample collection. For example, normalization of oxygen
consumption rate (OCR) in the brain upon arousal differs greatly
among species, taking ∼60 min in Horseshoe bats (Rhinolophus
ferrumequinum) (Lee M. et al., 2002), while taking ∼4 h in AGS
(Zhu et al., 2005). Since the expression and activity of HIF-1α is

also regulated by oxygen-independent mechanisms such as ROS
levels, mechanical stress, and growth factors (Chun et al., 2002),
HIF-1α expression during hibernation might be tissue-specific
with differential expression associated with species differences.

In addition to HIF-1α, the hypoxia related RBM3 provides
cytoprotection in hibernators by maintaining protein
homeostasis under low metabolic conditions (Fedorov et al.,
2009). Moreover, several of the genes offering protection in
quiescent cell are reported upregulated in hibernating 13-lined
ground squirrels, including FOXOs, HIF-1α, SOD3, p21, and
p27, as discussed above.

mTOR in Hibernation
Hibernation also features changes in expression of the negative
regulators of mTOR, i.e., PTEN and TSC1/2. PTEN levels are
significantly elevated (1.4 fold) in late torpor in skeletal muscle
of thirteen-lined squirrels compared to summer euthermic
controls (Wu et al., 2013a, 2015). Activation and inhibition
of the Akt/mTOR pathway are paramount for cell cycle arrest
during torpor and proliferation during arousal (Huang and
Manning, 2008; Wu and Storey, 2012b). Moreover, hibernators
re-activate the mTOR pathway upon arousal by supporting the
switch from FAO to glucose fueled OXPHOS, increasing oxygen
consumption and mitochondrial biogenesis (Wilson et al., 2008;
Foudi et al., 2009).

Mitochondria in Hibernation
Hibernating thirteen-lined squirrels reduce their O2
consumption by 98% from basal levels and increase it by
300% during arousals (Boyer and Barnes, 1999). In addition,
an increase in mitochondrial ROS production also activates
HIF-1α via the oxidative stress-sensitive transcription factor
nuclear factor erythroid 2-related factor 2 (NRF2) (Hawkins
et al., 2016; Lacher et al., 2018), which inhibits mitochondrial
respiration and sequentially activates LKB1/AMPK (Simsek
et al., 2010). However, the underlying mechanism of these
molecular processes are not fully understood (Hwang et al., 2014;
Li et al., 2015). Recent reports showed a significant upregulation
of HIF-1α in the heart and skeletal muscle tissue of thirteen-lined
squirrels during hibernation, suggesting that it confers protection
against mitochondrial hyperpolarization as a possible mechanism
against cellular stress (Maistrovski et al., 2012; Wu et al., 2013b).
Mitochondrial hyperpolarization results from the disruption of
their electrochemical gradient by the blockade of ATP-synthase,
which may ultimately lead to Fas-induced apoptosis (Gergely
et al., 2002; Perl et al., 2004). Recently, Ou et al. (2018) reported
that exposure of human induced pluripotent stem cell-derived
neurons (iPSC-neurons) to low temperature (4◦C) produced
mitochondrial hyperpolarization and accumulation of ROS,
while mitochondrial from iPSC-neurons from thirteen-lined
squirrels were depolarized and produced significant less ROS (Ou
et al., 2018). High levels of ROS also induced accumulation of
HIF-1α in brown adipose tissue (BAT), while HIF-1α knockdown
in mice BAT led to reduced levels of glucose consumption, lactate
export and glycolytic capacity (Choudhry and Harris, 2018). This
suggests that glycolysis is dependent on HIF-1α regulation under
hypoxic conditions, which maximizes metabolism in BAT.
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Mitochondrial numbers and activity are differentially
regulated between torpor and interbout arousal (Martin et al.,
1999; Staples, 2014). Mitochondrial activity during hibernation
of the 13-lined ground squirrel is tissue-specifically regulated and
significantly increases in BAT and brain cortex (Ballinger et al.,
2016), while mitochondria number was reported unchanged
in ground squirrel liver (Brown et al., 2012), skeletal muscle
(Hittel D. S. and Storey, 2002), and heart muscle (Staples and
Brown, 2008) during hibernation. Yet, mitochondrial respiration
exhibited no apparent suppression in heart muscle, moderate
suppression in skeletal muscle and significant suppression
in liver. Suppression of the uptake, transport or synthesis of
specific substrates of OXPHOS may be a possible mechanism
conferring suppression of mitochondrial respiration in liver cells
(Brown et al., 2012). This possibility is in line with the decreased
succinate dehydrogenase levels during hibernation reported
previously (Gehnrich and Aprille, 1988; Cho, 2018).

While LKB1 is considered a master regulator of cellular
metabolism in quiescent cells by inhibiting mitochondrial
function and biogenesis through activation of FOXO and PGC-
1α proteins, its relevance in torpor is still unknown. Nevertheless,
in thirteen-lined ground squirrels, AMPK levels in white adipose
tissue (WAT) were three times higher than those of summer
animals (Horman et al., 2005). The activity of AMPK and LKB1
might be regulated by sex hormones, as dihydrotestosterone
(DHT) inhibits AMPK activation, while androgens and estrogens
inhibit LKB1 activation (McInnes et al., 2012) and declines
in steroid hormone production seem to be a precondition for
males to enter hibernation. As such, high levels of testosterone
inhibit entrance into torpor in hamster (Hall and Goldman,
1980), hedgehog (Webb and Ellison, 1998), and Belding’s
ground squirrel (Lee et al., 1990; Boonstra et al., 2001). Also,
transcription of mtDNA and mitochondrial proteins such as
PGC-1α, uncoupling proteins (UCP1, UCP3) and AMPK is 4-
fold higher in BAT than in other tissues during hibernation
(Boyer et al., 1998; Xu et al., 2013; Ballinger et al., 2016). PGC-1α

is a central regulator of mitochondrial biogenesis and respiration
and it induces the transcription of nuclear respiratory factors
(NRF1 and NRF2) that activate the replication of mtDNA.

Fatty Acid Oxidation in Hibernation
The crucial role of PML in HSCs quiescence (Ishida, 2009; Ito
et al., 2012) would suggest that a similar mechanism is present
during mammalian torpor (Lee et al., 2007). However, to the best
of our knowledge, there are no reports about the specific role of
PML during hibernation, although increasing evidence suggests
downstream PPARs to constitute the master transcriptional
regulators of changes in lipid metabolism. For example, both
protein and mRNA of PPARα were upregulated in WAT, heart,
kidney and liver of six species of hibernating bats (Han et al.,
2015), jerboa (Jaculus orientalis) (Kabine et al., 2004) and 13-
lined squirrels (Eddy et al., 2005). PPARα not only induces the
activation of genes involved in lipid metabolism, but also induces
the expression of uncoupling proteins (UCPs), which pump
protons back into the mitochondrial matrix generating heat
without synthesizing ATP. The high uncoupled thermogenesis
activity of mitochondrial respiration in BAT plays an essential

role in thermoregulation and contributes significantly to the
rewarming of the organism during arousal from hibernation.
Further, PML was also reported to be highly active in thirteen-
lined ground squirrels brain during torpor and is associated with
massive SUMOylation and increased tolerance to brain ischemia
(Lee et al., 2007; Lee and Hallenbeck, 2013).

Autophagy in Hibernation
Autophagy is poorly examined in hibernators. In the heart of
hibernating Syrian hamster, autophagy seems already initiated
during (late) torpor and executed during early arousal, reflected
by the gradual increase in active autophagosomes during torpor
followed by a peak at early arousal, returning to normal late in
arousal (Wiersma et al., 2018). This might be due to the build-up
of damaged or misfolded proteins being gradually formed during
torpor, since there is an accumulation of cells in the G2 phase
during torpor (Matthews and Fisher, 1968; Kruman et al., 1988).
While autophagy is an essential mechanism to sustain quiescence
in HSC, its role in maintaining cell dormancy in hibernators is
poorly understood. More research into autophagy in hibernators
may unclose relevant knowledge on the preservation of life under
stress conditions.

RADIATION RESISTANCE

Under normal physiological conditions, the body has stem cells
in all phases of the cell cycle (Lyle and Moore, 2011). Radiation
generates high levels of ROS, which increases cellular stress
and causes irreversible cellular damage leading to senescence
and apoptosis. Particular stem cells are resistant to radiation:
cancer stem cells (CSC). Not surprisingly, HIF-1α is significantly
upregulated in cancerous cells due to the hypoxic environment
created by the rapidly proliferating cells (Majmundar et al.,
2010). HIF-1α regulates the switch from glucose to fatty acid
combustion, a characteristic of quiescent cells, indicating that
HIF-1α might play an important role in conferring radiation
resistance in dormant cells. Other mechanisms, including the
reduction in histone acetylation because of increased activity of
HDACs, lead to a tighter packing of DNA into heterochromatin,
which plays a significant role in the radiation resistance of
quiescent cells (Diehn and Clarke, 2006). Quiescent cells,
especially human stem cells, significantly upregulate antioxidant
gene expression, creating an environment where the cells can
resist ROS production by radiation (Oberley et al., 1995). In
cancer cells, this appears under the control of a particular gene
from the FOXO family, FOXM1. FOXM1 downregulation in
quiescent cells elevated expression of antioxidant genes such as
manganese superoxide dismutase (MnSOD), catalase (CAT), and
peroxiredoxin (PRDX3) (Eckers et al., 2014). Radiotherapy is
usually administered when treating cancer cells, but quiescent
CSCs are resistant to this therapy designed to eliminate
proliferating cells (Luk et al., 1986). Knockdown of FOXM1
increases sensitivity to radiation therapy in quiescent and cancer
stem cells. The amount of therapeutic radiation is still restricted
by its toxicity to normal tissue. For example, multiple metastases
cannot be treated without exceeding the tolerance of the healthy
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organ nearby. By putting specific tissues or organs of patients into
dormancy, cells may potentially tolerate higher doses of radiation
(Cerri et al., 2016).

Studies conducted in hibernators have shown that torpor
limits radiation-induced DNA damage in squirrels, hamsters,
and mice (Ghosh et al., 2017; Tinganelli et al., 2019), which
has awakened the interest of its utility in cancer therapies
and long-haul space missions. The mechanisms that mediate
radioprotection during torpor are not known. Likely, they parallel
those found in quiescent cells, as torpid animals upregulate
antioxidant genes and activate HDACs. Recent studies indicate
that radiation resistance in torpor may also relate to the
hypothermia, as cell cooling limits DNA damage and leads to a
different dynamics in DNA damage repair (Baird et al., 2011).

SHARED MOLECULAR MECHANISMS
OF CELLULAR QUIESCENCE AND
ANIMAL DORMANCY

Main Mechanisms Involved
Quiescent (hematopoietic stem) cells and torpor share many
similarities (Table 1). First, these include activation of molecular
mechanisms that stall the cell cycle of proliferating cells including
a major overlap in regulation of essential cell cycle genes
and proteins associated with the maintenance of quiescence in
HSCs and torpidity during hibernation. In both cases, the entry
into dormancy is associated with differential gene expression
of proteins that includes cyclins, CDKs and CKIs. Yet the
molecular mechanism conferring cellular quiescence in stem
cells are described in great detail, whereas this is not the case
for hibernators. Moreover, it is evident that induction of HES1
during stem cell quiescence is a prerequisite to enable reversal
from cell arrest. However, there is a marked paucity of data
on Hes1 activity in hibernators, warranting further studies to
understand its role in torpor. HSC may provide a blueprint to
disclose mechanisms used by hibernators that govern activation
of the molecular machinery of cell cycle arrest in response
to environmental changes, even though hibernator cells largely
represent terminally differentiated cells.

Secondly, cell quiescence and torpor share a similar metabolic
rewiring. Both in quiescent and torpid cells, energy conservation
is brought about by the reduction in metabolic rate and the switch
from glucose fueled OXPHOS to FAO as the primary mechanism
to supply ATP, supported by the radical suppression of anabolic
processes, such as DNA replication, transcription and protein
synthesis. HIF-1α coordinates the cellular adaptation to restore
the balance between oxygen supply and metabolic demand,
leading to a reduction in the consumption of oxygen. Under
ATP-deprived conditions resulting from nutrient deprivation or
hypoxia, activation of the energy-sensing liver kinase B1 (LKB1)
and the downstream AMP-activated protein kinase (AMPK)
precede the upregulation of HIF-1α (Hudson et al., 2002; Lee
et al., 2003). Moreover, the activation of LKB1 and AMPK
stimulates autophagy through phosphorylation of ULK1 and
inhibits the mTOR pathway (Hudson et al., 2002; Li et al., 2015;

Mohammad et al., 2019). The Akt/mTOR pathway regulates
many energy-expensive processes and is inhibited in quiescence
and hibernation by the action of PTEN and TSC1/2 coupled
with downstream RPP signaling. High levels of PTEN and
TSCs both in HSCs and during hibernation suggest that these
proteins are essential to maintain quiescence and torpor. Several
of these pathways need further study in hibernators to define
their contribution to metabolic suppression, including HIF-1α

TABLE 1 | Comparison of key events driving quiescence in cells to those found in
torpid cells.

Mechanisms in quiescent
cells

Main effects Torpid cells

Upregulation of CKIs � Cell cycle block
√

Downregulation of cyclins and
CDKs

� Cell cycle block
√

Upregulation of CIRP � Upregulates CKIs
√

Upregulation of HES1 � Reversibility of quiescence ?

Upregulation of HIF-1α � Lowers mitochondrial activity
� Shift from glucose to fatty acid

combustion
� Activates FOXOs
� Activates LKB1/AMPK
� Upregulates PDK4
� Activates HDACs

√

Repression of Akt/mTOR � Inhibits transcription and
translation

� Limits mitochondrial activity and
biogenesis through PGC-1α

� Activates FOXOs

√

Activation of LKB1/AMPK � Inhibits Akt/mTOR
� Activates FOXOs
� Activates autophagy

?/
√

Upregulation of HDACs � Inhibits transcription
� Radioprotection

√

Upregulation of PDK4 � Inhibits pyruvate dehydrogenase
(PDH)

√

Inhibition of PDH � Inhibits OXPHOS by limiting use
of glycolysis end products

√

Upregulation of FOXOs � Inhibits mitochondrial activity
Induces antioxidant gene
expression

√

Upregulation of PTL � Liberates fatty acids
√

Upregulation of PTEN and
TSC1/2

� Inhibits of Akt/mTOR
√

Upregulation of PML-PPARδ � Inhibit Akt/mTOR
√

Downregulation of FOXM1 � Transcription of antioxidant
genes

√

Upregulation of ATG7 � Activates autophagy ?
√

indicates that the mechanism has been observed in hibernating animals. ?
indicates that there is paucity of data in hibernating animals. ?/

√
indicates that the

mechanism has been observed incompletely and/or only in one tissue of 1 species.
AMPK, AMP-activated protein kinase; ATG7, autophagy related 7; CDKs, cyclin-
dependent kinases; CIRP, cold-inducible RNA-binding protein; CKIs, cyclin-
dependent kinase inhibitors; FOXM1, Forkhead Box M1; FOXOs, forkhead proteins;
HDACs, histone deacetylases; HES1, helix-loop-helix protein 1; HIF-1α, hypoxia-
inducible factor 1α; LKB1, liver kinase B1; OXPHOS, oxidative phosphorylation;
PDH, pyruvate dehydrogenase; PDK4, pyruvate dehydrogenase kinases 4; PGC-
1a, peroxisome proliferator-activated receptor-coactivator 1α; PML, promyelocyte
leukemia protein; PPARs, peroxisome proliferator-activated receptors; PTEN,
phosphatase and tensin homolog; PTL, lipolytic protein triacylglycerol lipase;
TSC1/2, tuberous sclerosis proteins 1 and 2.
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and autophagy. Further, the PML-PPARδ-FAO pathway appears
to play a vital role in the maintenance of HSC quiescence
and plays a critical role in its cell fate and self-renewal
decisions. However, very little is known about the function
and activity of PML during hibernation. Also, quiescent cells
and hibernators share the upregulation of cell protective, anti-
apoptotic pathways, suggesting that a similar mechanisms is
activated during quiescence and mammalian torpor (Heldmaier
et al., 2000; Hefler et al., 2015; Zhang et al., 2016).

Thirdly, both quiescent cells and hibernators share radiation
resistance, which seems conferred by the combination of
upregulation of antioxidant defense and heterochromatin
formation. In addition to the antioxidant environment, HIF-1α

recruits HDACs to tightly pack the DNA into heterochromatin
resulting in resistance to radiation. FOXM1 appears to be
a master regulator of antioxidants, and its downregulation
resulted in lower radiation sensitivity of cancer stem cells.
While strict control over oxidation is crucial for hibernators
to survive torpor/arousal switches, there is no literature of
the activity and function of FOXM1 in hibernators available.
Consequently, mechanisms of radiation resistance in both
stem cells and torpor are still ill-defined. At present, it
is unclear whether radiation resistance merely exists as a
bystander effect of metabolic suppression and antioxidant
defense, including a tighter packaging of DNA, or whether
it is conferred by specific mechanisms; a question not so
easily addressed.

As outlined, the three phenomena discussed above show
substantial crosstalk, with the one activating or promoting the
other. Although processes are quite similar in HSC and torpor,
there may be a clear distinction in their order. For instance,
in HSC the regulation of cell cycle and metabolism seems
tightly integrated, as interventions in both drive cells out of
quiescence. Whether this is true for hibernators is unclear.
Possibly, the inhibition of the cell cycle of the differentiated
cells in hibernators is merely a consequence of strong metabolic
suppression, including the inhibition of DNA synthesis and
transcription. To explore differences in orchestration, an accurate
delineation of the critical factors and their sequence of events
during entry into torpor is warranted.

Reversible Protein Phosphorylation
Reversible protein phosphorylation (RPP) is a crucial post-
translational modifier of proteins and regulator of cell
homeostasis. In HSCs and hibernators, RPP is especially
important to support the exit from and re-entering of
the cell cycle without spending much energy on anabolic
processes. While the LKB1-AMPK route plays a crucial role
in inactivating many anabolic processes such as protein
synthesis, RPP signaling seems of crucial importance to
inactivate ion channels. The preponderance of cellular
processes that expend energy is directly or indirectly affiliated
with membranes preserving concentration gradients. Thus,
suppression of membrane-associated (ion channels) proteins
by RPP has a profound impact on metabolic reduction and
ATP turnover reduction. For example, phosphorylation of
sodium-potassium pump (Na+/K+-ATPase) led to a decrease

in activity by up to 60% in golden-mantled squirrels (Storey
and Storey, 2004). Therefore, RPP could be responsible for
not only maintaining lipid-based metabolism but also to
initiate the metabolic repression in hibernation preparation
through AMPK signaling.

Future Directions
The large overlap between quiescent (hematopoietic stem) cells
and hibernator adaptations may have some future implications.
First, studies on (stem) cell quiescence have identified a
number of crucial genes/pathways, of which the relevance
in hibernation has been insufficiently explored, in particular
LKB1, HES1, HIF-1α, and PML. One study explored the effects
of LKB1 knockout in Caenorhabditis elegans (Narbonne and
Roy, 2009). Interestingly, the LKB1 knockout worms entered
Dauer state, a survival mechanism that arrests feeding while
retaining activity, motility and acquiring stress-resistance, but
rapidly consumed their stored energy leading to failure of
vital organs and death. Although C. elegans is not a true
hibernator nor a mammal, the phenotype is similar to LKB1
knockout in HSC. LKB1 might thus also be an essential protein
in hibernators under energetically unfavorable conditions to
maintain energy and oxidative stress homeostasis. PML-PPARδ

regulation of FAO is essential to maintain HSC quiescence and
acts as a negative regulator of Akt/mTOR, a crucial element
in the metabolic shift. In hibernators, there is only a single
study reporting increased PML-PPARδ activity in thirteen-
lined squirrel. Given its critical role in FAO and metabolic
reprogramming, PML is an interesting target to address in
hibernation. Given the activation of the machinery governing
cell cycle block during torpidity, it is of great importance to
study HES-1, the factor that retains the option for stem cells
to re-enter cell cycle, in particular in relation to arousals.
Finally, although upregulation of HIF-1α has been documented
in hibernators, details of its regulation and effects need a
deeper understanding.

Nevertheless, exploring the relevance of these and other
proteins in hibernation is not a trivial task. The main
limitation to infer causality in factors contributing to
hibernation, is the absence of (conditional) knock-out
models in true hibernators. Generation of such models
would require genetic modification of hibernator blastocyst
stem cells to introduce LoxP sites into genes of interest and
generation of Cre expressing lines, preferable harboring
inducible promotors, like the tamoxifen-induced CRE-ERT2
system. Such developments may be accelerated by the recent
advancements of CRISPR/Cas9 technology, but will still require
considerable effort and funding, and specialized knowledge.
An alternative approach may be to use inducible knockouts
of genes in the house mouse (Mus musculus), a species long
known to be capable of serial daily torpor (Hudson and
Scott, 1979). Conditional knockout mouse lines of a number
of factors discussed are readily available. Moreover, the
present variety of Cre mouse lines and the superior toolbox
to introduce LoxP sites, signify that making the appropriate
knockout in mouse is far easier compared to true hibernators.
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However, it is unclear to date to what extent the molecular
mechanisms of mouse daily torpor resemble those of torpor
found in true hibernators. The first step should therefore
consist of exploring the molecular footprint of cell cycle arrest
and metabolic rewiring in mouse torpor. A third option to
explore specific genes might be the use of induced pluripotent
stem cells (iPSCs) from hibernators (Takahashi and Yamanaka,
2006). These iPSCs can be differentiated into any cell type to
study molecular biology in vitro. Also, if the selected cell type
does not depend on a heterotypic, complex environment, but
represents an autonomous cell, it can be further maturated
into engineered 3D tissue or organoids to mimic physiological
behavior. A recent study showed that iPSC-derived neurons from
thirteen-lined squirrel behaved differently than human neurons
with higher resistance to cold (Ou et al., 2018). Knocking out
genes in iPSC-derived hibernator cells may at least explore the
important question whether some of the mechanism present in
HSC quiescence may be induced in a cell autonomous way by
starvation or hypoxia.

Most cells in a mammal, whether or not a hibernator,
are capable of quiescence. The similarity between molecular
mechanisms conferring quiescence in HSC and hibernation may
signify that there is a unifying (epi)genetic-metabolic program
governing the both states. If true, it may mean that all non-
hibernator species could be capable of hibernation, provided that
cellular quiescence is induced in high energy consuming organs.
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