',\' frontiers
in Physiology

MINI REVIEW
published: 09 February 2021
doi: 10.3389/fphys.2021.627260

OPEN ACCESS

Edited by:

George Grant,
University of Aberdeen,
United Kingdom

Reviewed by:

Ajay Pradhan,

Orebro University, Sweden

Maurizio Acampa,

Siena University Hospital, Italy
Walter Malorni,

National Institute of Health (ISS), Italy

*Correspondence:
Susan Wray
s.wray@liv.ac.uk

Specialty section:

This article was submitted to
Clinical and Translational Physiology,
a section of the journal

Frontiers in Physiology

Received: 08 November 2020
Accepted: 15 January 2021
Published: 09 February 2021

Citation:

Wray S and Arrowsmith S (2021)
The Physiological Mechanisms of the
Sex-Based Difference in Outcomes
of COVID19 Infection.

Front. Physiol. 12:627260.

doi: 10.3389/fphys.2021.627260

Check for
updates

The Physiological Mechanisms of the
Sex-Based Difference in Outcomes
of COVID19 Infection

Susan Wray* and Sarah Arrowsmith

Department of Women’s and Children’s Health, University of Liverpool, Liverpool, United Kingdom

The scale of the SARS-CoV-2 pandemic has thrust a spotlight on the sex-based
differences in response to viral diseases; morbidity and mortality are greater in men
than women. We outline the mechanisms by which being female offers a degree of
protection from COVID19, that persists even when confounders such as comorbidities
are considered. The physiological and immunological mechanisms are fascinating and
range from incomplete X chromosome inactivation of immune genes, a crucial role for
angiotensin converting enzyme 2 (ACE2), and regulation of both immune activity and
ACE2 by sex steroids. From this flows understanding of why lung and other organs are
more susceptible to COVID19 damage in men, and how their distinct immunological
landscapes need to be acknowledged to guide prognosis and treatment. Pregnancy,
menopause, and hormone replacement therapy bring changed hormonal environments
and the need for better stratification in COVID19 studies. We end by noting clinical trials
based on increasing estrogens or progesterone or anti-testosterone drugs; excellent
examples of translational physiology.
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INTRODUCTION

This short review focuses on how differences in the physiology of women and men affect the
outcome and survival of patients with COVIDI19. We first review the evidence that outcomes for
females are more favorable, before considering the mechanisms and relating them to viral infection.
We use the binary terms “male” and “female” so we can correctly report data in published studies,
which so far have not considered if COVID19 has particular effects on trans and non-binary people.

COVID19 Outcomes Are Worse in Males

At the time of writing (October 2020), it is almost a year since the first reports of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus-2019 (COVID19),
appeared. Since then, there has been concerted international effort to understand the virus, the
disease it produces and develop strategies to combat it. From the earliest findings, it emerged
that more men than women suffer severe COVID19 disease and die from it (Jin et al., 2020;
Pradhan and Olsson, 2020; Scully et al., 2020). This finding of men succumbing to more severe
disease and dying, was also a feature in the two previous, smaller coronavirus diseases, Middle East
Respiratory System (MERS-CoV) in 2012 and SARS-CoV in 2002 (Channappanavar et al., 2017;
Lu et al., 2020). For SARS-CoV-2, with its global reach and high infectivity, the continued analysis
of large global data sets of sex-disaggregated data has been possible, and the data are clear; women
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fare better with COVID19 (Raparelli et al., 2020; Williamson
et al., 2020). For updated statistical information, from ~180
countries, the “COVID19 sex-disaggregated tracker update,”
from  (https://globalhealth5050.0rg/the-sex-gender-and-covid-
19-project/) is reccommended. Figure 1A is taken from their 19th
October 2020 report and shows some clinical stages of COVID19
by sex. Examples of regional case fatality rates by sex can be seen
in Figure 1B.

Sex Differences Remain After
Accounting for Infection Rates, Age, and
Comorbidities

With the increases in available data it is possible to interrogate
the statistics further and ask whether differences such as infection
rates, age and co-morbidities can explain the sex differences in
the outcomes of COVID19, (Abate et al., 2020). It appears that
none can. Infection rates are approximately similar in women and
men throughout the world (Chakravarty et al., 2020; Williamson
etal.,, 2020)—the effects of gender and social norms, are discussed
below. The effects of COVID19, and death from it, are known
to increase with age. This is true for both sexes, and a variety
of explanations suggested, from access to hospital and intensive
care facilities, comorbidities, and immunosenescence. The latter
may be due to decline in sex hormones in both sexes (Gomez
et al.,, 2019). Menopause is specifically addressed later. When
however, COVID19 deaths rates are disaggregated by age and
sex, the disproportionate effect on males remains, see Figure 1C.
Like age, comorbidities also worsen the progress of the disease
and fatalities from it. More men die even when these factors
are adjusted for. A recent study undertaken to determine who
is most at risk of a severe outcome from SAR-CoV-2 infection,
used a health analytical platform to obtain data from >17 million
patients in the UK, within which were almost 11,000 COVID19
deaths (Williamson et al., 2020). These deaths were associated
with being male, and various medical conditions, including
asthma and diabetes. A multivariate analysis confirmed the sex
difference in deaths, even when adjusted for all other factors,
including age, obesity and diseases (diabetes, cancer, kidney,
asthma, and ten others). Although beyond the scope of this
review, a substantially higher death rate was found in South
Asian and black people compared to white people, that was only
partially attributable to comorbidities and deprivation.

While future studies will further refine our knowledge
concerning disease outcomes, sex makes a significant
contribution to outcomes; in COVIDI19, women have a
degree of protection compared to men. We are not saying that all
the aspects of COVID19 can be attributed to sex differences, but
rather, that benefits will follow from understanding the disease
better, and biological sex is a part of this. We will briefly mention
how gender may impact on these data, before a more detailed
discussion of the physiological mechanisms of the reported
sex differences.

Gender
There are many ways that gender can impact on COVID19
statistics. Compared to men, women may be more concerned

about COVIDI19 (Brooks and Saad, 2020). This may lead to
greater compliance with public health policies such as mask
wearing, hand washing, and social distancing. In addition,
globally women spend less time out of the home. These factors
may reduce their infection rates, but are countered by the
fact that they contribute significantly higher to the healthcare
work force—an analysis of 104 countries by the World Health
Organization in 2019 found that women represent around 70%
of the health workforce. Men may wait longer to seek a doctor
after infection and therefore be sicker before treatment. In
addition, more men are, or have been, smokers, drink alcohol
and have cardiovascular disease. These factors will all increase
susceptibility to COVIDI19, but as discussed earlier, cannot
explain the findings of sex differences.

MECHANISM FOR SEX DIFFERENCES
DURING COVID19

We first overview how SARS-CoV-2 infects humans as the
basis for understanding how sex-based differences can arise.
We then focus on the role of angiotensin converting enzyme 2
(ACE2) and infection, and then sex differences in immunological
responses to infection.

Overview of SARS-CoV-2

Coronaviruses are large-enveloped, single stranded, positive-
sense RNA viruses. They contain transmembrane spike
glycoproteins; composed of heads, which have host receptor
binding domains and stalks, responsible for membrane fusion
and infection of the host cell (Figure 2A). Compared to the 2003
SARS-CoV outbreak, SARS-CoV-2 is better able to evade our
immune defenses and is highly infectious, hence the current
pandemic. Both viruses use the receptor for ACE2 as their
attachment target, starting in the lungs (Li et al., 2003; Tai et al.,
2020; Figures 2B,C.'That this is essential for viral entry was
shown using ACE2 knock out mice (Kuba et al., 2005). Infection
is associated with both shedding and down-regulation of the
ACE2 receptor, which as discussed below, will have physiological
consequences (Heurich et al., 2014; Figure 2D). The SARS-
CoV-2 virus has a higher binding affinity than SARS-CoV. For
infection, the stalks must be activated, and this is achieved
by proteases, specifically the host cell’s transmembrane serine
protease 2 (TMPRSS2, see Figure 2D; Belouzard et al., 2009).
It has however been found that with SARS-CoV-2, there is an
element of self-activation performed by the viral proprotein
convertase furin. This facilitates SARS-CoV-2 entry, a property
that it exploits in those cells that have low TMPRSS2 expression
(Shang et al., 2020).

ACE2

Our knowledge of ACE2 and its relation to the classic renin-
angiotensin-aldosterone system (RAAS), is relatively recent;
(Donoghue et al., 2000; Tipnis et al., 2000) see Figure 3
for a simple scheme. It has been labeled the protective

'https://scx1.b-cdn.net/csz/news/800/2020/whatistheace.jpg
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FIGURE 1 | Sex differences and COVID19. (A) Clinical pathway from confirmed cases, intensive care unit (ICU) admissions and deaths from COVID19. Data from
countries providing sex-disaggregated data in October 2020. Redrawn from Global health 5050 at https://globalhealth5050.0rg/wp-content/uploads/October-2020-
The-COVID-19-Sex-Disaggregated-Data-Tracker-Update.pdf, accessed October 16th 2020. (B) Covid19 deaths by country and sex, in March 2020. Chart from
Statista at: https://www.statista.com/chart/21345/coronavirus-deaths-by-gender/. (C) deaths from COVID19 grouped by age and sex. Data obtained from 12
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FIGURE 2 | SARS-CoV-2 and COVID19. (A) Representation of SARS-CoV-2 virus. (B) A molecular model showing the virus with spike proteins (red) and ACE2
(angiotensin converting enzyme 2) receptor (blue) on host cell surface. From Juan Gaertner/Science Photo Library, accessed 8/11/2020. (C) Covid19 entry via
airways. (D) scheme showing TMPRSS activation of virus, followed by its internalization, processing and replication, Adapted from Ward P. et al. (2020). Available at:
https://www.fpm.org.uk/blog/covid- 19-sars-cov-2-pandemic. Accessed 8/11/2020.

TMPRSS

counter arm of RAAS as it has positive metabolic effects,
and is vasodilating, anti-proliferation, and anti-inflammatory,
balancing angiotensin II's vasoconstrictive role (White et al.,
2019; Samavati and Uhal, 2020).

ACE2 is a zinc containing, carboxy peptidase that removes
an amino acid and converts angiotensin 1 to angiotensin 1-
9 and angiotensin 11 into the vasodilator, angiotensin(1-7),
and may have additional substrates (Hamming et al, 2007;
Figure 3). Its catalytic site is extracellular. ACE2 is cleaved
from cells by metalloproteases such as ADAM10 and ADAM17
and is shed with an active catalytic site into plasma (Turner,
2015), see Figure 3). Men appear to have higher plasma ACE2
levels than women (see Salah and Mehta, 2020). Physiologically,
Ang-(1-7) has been shown to signal via a novel GPCR, Mas
(Bader et al,, 2018). As infection produces a down-regulation of
ACE2, this may contribute to the hypertension and inflammation

seen with COVID19, as the vasodilator Ang(1-7) is decreased
(Povlsen et al., 2020; Samavati and Uhal, 2020), and has led
to the suggestion that exogenous ACE2 could be therapeutic
(Verdecchia et al., 2020). ACE2 expression can be modulated
by peptides and hypoxia (Melo Junior et al., 2020), and it and
TMPRSS2 are modulated by steroid hormones (Baratchian et al.,
2020; Young et al., 2020), as described next.

ACE2, TMPRSS, and Sex

Until menopause, women are relatively protected from a
variety of cardiovascular risks, including high blood pressure
(Reckelhoff, 2018). Part of the underlying reason for this is
the effect of sex steroid hormones on RAAS, (Dalpiaz et al,
2015; Turner, 2015; Melo Junior et al., 2020). Although it seems
reasonable to anticipate sex-based differences and regulation
of ACE2, research is limited, especially on human tissues
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(Salah and Mehta, 2020; Samavati and Uhal, 2020; Song et al.,
2020). With the COVID19 pandemic, attention has focused
on ACE2 in the alveoli, but it has a wide tissue distribution.
Specifically, it is only moderately expressed in lung, compared
to kidney, heart, fat cells, and oral mucosa, and in comparable
amounts to those reported in gut, bladder, brain and adrenals
(Hamming et al., 2004; Zou et al, 2020). This tissue-wide
distribution probably contributes to the multi organ pathologies
brought on by infection. Of note with respect to COVIDI19,
greater ACE2 expression was found in pneumocytes from men
compared to women (Song et al., 2020). In differentiated human
airway epithelial cells, treated either with vehicle or estradiol,
the latter expressed lower levels of ACE2 mRNA (Stelzig et al.,
2020) (TMPRSS2 mRNA levels were not affected). Estradiol
may also positively regulates kidney, cardiac and adipose ACE2
expression (Gupte et al, 2012; Dalpiaz et al, 2015). In rats,
both sexes have age-related declines in ACE2 expression, but
to a greater extent in males (Xie et al.,, 2006). It is important
to see if ACE2 transcript are translated to protein levels on
the cell membrane, but it seems likely that there is sexual
dimorphism in the availability of a key infectivity component,
ACE2, necessary for COVID19.

TMPRSS2 is also widely distributed and highly expressed in
epithelial cells in lungs, small intestine, heart, liver, and prostate.
No significant difference in TMPRSS2 expression between males
and females in human lung were found (Song et al., 2020).
Its transcription and activity are controlled by androgens and
discussed again in the section on males and COVID19.

Both epidemiological and experimental studies have reported
sex differences in the therapeutic benefits of modulators of the
RAAS pathway. It was noted that “Despite these differences,
RAS inhibitors are the most commonly prescribed drugs for the
treatment of chronic renal disease, irrespective of sex” (Sullivan,
2008). We consider that this point remains valid for therapeutic
approaches using RAAS modulating drugs during COVID19, and

could skew findings if not considered (Furuhashi et al., 2020;
Reynolds et al., 2020; Young et al., 2020).

IMMUNOLOGICAL RESPONSES AND
SEX DIFFERENCES

Background

During COVIDI19, immune cells in the lungs produce a
“cytokine storm”; specifically, interleukin-6, interleukin-1p,
tumor necrosis factor o, along with infiltration of chemokines,
occurs. This hypercytokinemia and infiltration of monocytes and
neutrophils, produces lung injury and respiratory difficulties.
This pathological consequence of the immune response underlies
the use of blockers of these cytokines as therapeutic approaches
(Tang et al, 2020). These differences in male and female
immunological activity can be related to their differing
vulnerability to the disease.

Women and men differ in their physiological responses to
viral diseases (Klein and Flanagan, 2016). Compared to males,
females mount stronger immune responses to combat and clear
viral loads (Klein, 2012). With vaccines this can lead to females
producing over-exuberant responses, of both the innate and
adaptive immune systems, estimated to be twice as strong as
in males. This can cause increased adverse outcomes (Klein
et al., 2010), as well as the increased incidence of auto-immune
and inflammatory diseases found in females. Sex-dependent
steroid hormones and genes, have been linked to the mechanism
determining differences between the sexes in response to viral
infection (Forsyth and Anguera, 2021). Many genes associated
with immune responses are present on the X chromosome.
Although in females one copy of these should be inactivated,
there is evidence for gene imbalance, favoring females and
their immunological responses to viral infections (Wang et al.,
2016; Schurz et al,, 2019). One example is Toll-like receptor 7
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(TLR7). The gene for this receptor which senses RNA viruses
such as SARS-CoV-2, is present on the X chromosome and may
escape X cell inactivation (Souyris et al., 2018). All types of
immune cells have estrogen and progesterone receptors which
will act as transcriptional regulators. The effects of testosterone
on immune responses are not as marked as those of female
hormones and there will only be one copy of the X chromosome.
In addition, it has been speculated that microRNAs., which act
as post—transcriptional modulators of gene expression, and are
also regulated by sex hormones., may also contribute to sex-based
differences, especially as the X—chromosome has a particular
abundance of microRNAs (see e.g., for further details Pontecorvi
et al., 2020). Although too large a topic to be covered in detail
here (Channappanavar et al., 2017; Jakovac, 2020), the protective
effects of estrogen (and progesterone) have been attributed to
(and see also Figure 5): (i) their promotion of production of
anti-inflammatory cytokines (e.g., such as interleukins 4 and
10), (ii) increasing helper T cells, (iii) increasing B cells and
thereby antibodies, and (iv) suppressing production of pro-
inflammatory cytokines and migration of macrophages and
monocytes into infected tissue (Mauvais-Jarvis et al., 2020).

These protective advantages decline with age. A different but
related point concerns Vitamin D, as it has been suggested
that low levels of D3 may correlate with poorer infection
outcomes. Estrogen may enhance vitamin D’s actions, which
include reducing the cytokine storm, and in this way contribute
to sex-based differences (Pagano et al., 2020). A collection of
papers covering endocrinology and COVID19 was published
in 2020°. For a comprehensive account of the endocrinological
effects on the immune system recent reviews are recommended
(Gadi et al., 2020; Mauvais-Jarvis et al., 2020; Young et al., 2020).
Thus, we expect that the immune landscape during a SARS-CoV-
2 infection will differ between men and women and make the
former more vulnerable to COVID19.

Different inflammatory patterns are also thought to lead

to different occurrences of cardiac arrhythmias which
are also burdening patients with COVID-19. Systemic
infection and inflammatory cytokines, such as IL-6,

have been shown to prolong the QT-interval and alter

Zhttps://www.frontiersin.org/research-topics/13975/endocrinology-and- covid-
-a-cross-disciplinary-topic#articles

Childhood Reproductive Post-menopause
and Puberty years
Hormone
level
10 20 30 40 50 60 70 80 90
Age
Menstrual cycle Pregnancy  gelivery
4 .
ovulation
}
i
Hormone :
level
1
! S ;
& days 28 6 weeks 40

——— E2 Females
= « = E2 Males -

FIGURE 4 | Serum concentrations of sex steroid hormones. The hormones 17-estradiol (E2), Progesterone (P4) and Testosterone (T/DHT) in women and men
during their life course. In females, E2 and P4 are the predominant hormones. Concentrations increase at puberty, undergo cyclical changes during the menstrual
cycle and steadily increase during pregnancy. At menopause, concentrations decline to pre-puberty levels. T/DHT is the predominant male hormone which increases

at puberty and remains high until late in life when levels decline steadily.

—— P4 Females
P4 Males -

—— Testosterone Females

- Testosterone Males

Frontiers in Physiology | www.frontiersin.org

February 2021 | Volume 12 | Article 627260


https://www.frontiersin.org/research-topics/13975/endocrinology-and-covid--a-cross-disciplinary-topic#articles
https://www.frontiersin.org/research-topics/13975/endocrinology-and-covid--a-cross-disciplinary-topic#articles
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

Wray and Arrowsmith

Sex Physiology and COVID19

#

FEMALE

SEX HORMONES

X
=]

o

o . .

Macrophages

{ Proinflammatory cytokines
Y IL6,IL1B, TNFa, CCL2 * 2.,

Reduced inflammation
d o CD4+ helper cells 0 -
: e @

-A: :1* I Anti-inflammatory cytokines '-j:“
1L-4,1L-10 '

» Strongerimmune
response
» Faster viral clearance
> Less severe infection
» Reduced mortality risk

/N Th2 anti-inflammatory response
. o Regulatory T cells ° .
@ . @
4 Immune tolerance
g
- Bcells )
© oo @

¥y
A Antibody production A 7 Ja

L 5

FIGURE 5 | Hormones and COVID19. High E2 and P4 concentrations in females (even higher in pregnancy) helps to suppress proinflammatory cytokine production
by macrophages and prevent migration of monocytes and neutrophils into inflamed tissues. CD4 + helper cells are stimulated to produce anti-inflammatory
cytokines and T regulatory cells promote immune tolerance. E2 also stimulates production of antibodies. Together, this results in a stronger immune response, faster
viral clearance and less severe COVID infection in women. Androgens e.g., T/DHT and AR signaling increases expression of ACE2 and TMPRSS2 promoting viral
entry. Together, T/DHT’s immunosuppressive effects, male behavioral factors and co-morbidities can contribute to a more severe COVID infection and worse

outcome in males.

)

MALE

BEHAVIOUR
$ e [ =

> N ACE2 expression
2 6 TACE2
% ° TTMPRSS2 ﬁ

COMORBIDITIES
g 3 A Viral ﬁ_“ .
binding/entry == &
Obesity
Hypertension
immunosuppression Diabetes
hé » Higher risk of infection
/N cytokines 7 Increased viral load

> Reduced clearance
> Severeinfection
> Higher mortality risk

4 chemokines

Monocytes and
neutrophils migrate
intoinflamed
tissues

repolarizations (Lazzerini et al., 2020a,b). Hence, sex-based
differences in cytokine expression may also be attributing
to differences in mortality rates via alterations in risk of
life-threatening cardiac events.

Immune Differences With COVID19

Studies of lung injury have demonstrated increased damage
in male mice and ovariectomized females, which could be
reduced by estradiol administration (Speyer et al., 2005). Similar
protective effects of estradiol and progesterone were observed in
studies of influenza-infected animals (Robinson et al., 2011; Hall
et al.,, 2016). When considering the role of the immune system
in sex based COVID19 differences, a key question is whether
they are due to differences in viral load, antibody response or
plasma cytokines. With SARS female mice had lower viral loads,
lower inflammatory responses, reduced lung damage and death,
compared to males; this protection was lost with ovariectomy
or treatment with the estrogen receptor antagonist, fulvestrant
(Channappanavar et al.,, 2017). The detailed answers to how
women and men differ in their immune responses to COVID19
has been directly addressed in a recent comprehensive study
(Takahashi et al., 2020). Patients with a clinical diagnosis of
moderate COVID19 who were not taking immunomodulatory
medicines, were studied. No sex difference was found in viral
RNA concentrations. Follow up of these patients found, however,
that those females with higher salivary viral load deteriorated,

whereas this correlation was not found in males. Males had
higher plasma levels of immune cytokines of the innate immune
system such as IL-8 and IL-18. Women had more robust T
cell responses, which is consistent with findings during other
infections (Amadori et al., 1995). This is an important difference,
as a poor T cell response was associated with poor disease
outcome in men but not in women. In women but not men,
worse outcome was associated with high levels of innate immune
cytokines. There were some innate immune factors, such as
II-15 that increased only in females who progressed to worse
disease, an association not found in males. Women could benefit
more from therapies that that dampened their innate immunity
responses during initial infection period.

Thus, by disaggregating patient data by sex, key differences in
the immune landscapes have been identified. This heterogeneity
in immune capabilities and responses helps understanding of the
distinct COVID19 progression in women and men, and may be
used to guide disease prognosis and sex-specific treatments (Tang
et al., 2020; Ursin et al., 2020). Of relevance here also is the use
of COVID19 convalescent plasma donor therapy. As males tend
to have more severe COVID19, their enhanced inflammatory
responses and higher B cell recruitment, and antibodies, suggests
that older males may be more useful plasma donors (Klein et al.,
2020). As described below, the protective effects of estrogen and
progesterone (or anti-testosterone treatments) have stimulated
novel treatment trials.
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PREGNANCY

Pregnancy presents a unique and complex immunological
scenario; the maternal immune system needs to be able to
tolerate a “foreign” developing fetus whilst also protecting the
mother against infections and favoring the transfer of maternal
antibodies to the fetus. Elements of host defense and innate and
adaptive immunity are altered during pregnancy to provide this
co-operation (Racicot et al., 2014). Whilst protecting the fetus,
this immune modulation could predispose pregnant women to
increased susceptibility to infection from pathogens such as
viruses (Robinson and Klein, 2012). Indeed, pregnant women
have been shown to be disproportionately affected by respiratory
illnesses, e.g., influenza (Robinson and Klein, 2012). During the
MERS and SARS outbreaks, increased morbidity and higher
maternal mortality rates were found (Wong et al., 2004). Hence
during the current COVID19 pandemic, higher rates of mortality
and disease severity were expected in pregnant women, and
shielding was recommended.

The potential increased seriousness of COVIDI9 in
pregnancy, however, has not been observed. So far, despite
ACE2 being highly expressed in the placenta (Levy et al., 2008),
vertical transmission to the fetus has not been seen (Chen H.
et al., 2020). There is no consensus of an effect on rates of
miscarriage, stillbirth or preterm birth in COVID19-infected
mothers (Dubey et al., 2020; Pettirosso et al.,, 2020). In terms
of maternal morbidity and mortality, despite the heightened
severity experienced in other viral diseases (Siston et al., 2010),
studies so far have not put pregnant women at any greater
risk of disease severity or complications from COVID19
compared to their non-pregnant counterparts (Chen L. et al,
2020; Collin et al., 2020). How these differences relate to the
specific differences between the corona viruses has not been
elucidated. Epidemics can lead to resources being removed
from obstetrics, maternity, and sexual health, and diverted to
emergency responses, and hence increasing maternal deaths,
with or without infection.

Physiological Protective Mechanisms
and COVID19 in Pregnancy

We know from sex-based studies that females mount a greater
immune response to many viral infections and this is largely due
to the protective and acute effects of estrogen (Robinson et al.,
2011). In pregnancy, the concentrations of 17f-estradiol (E2),
estriol (E3), and progesterone are significantly increased (see
Figure 4). These hormonal changes underly the immunological
changes required to provide a pregnancy-supportive immune
environment, as well as stimulating antibody production by
B cells. Both E2 and progesterone are known to alter the
number and function of multiple immune cell types producing an
immunologic switch from a pro- to an anti-inflammatory state,
with T-helper 2 cell dominance elevating IL-4, IL-10, IL-13, and
TGF-beta (Mauvais-Jarvis et al., 2020), see Figure 5).

These changes in the hormonal milieu which shift the cytokine
signature toward an anti-inflammatory state in pregnancy, may
support an early adaptive immune response which helps to blunt

early COVID19 infection and inflammation. In turn, this would
help prevent the “cytokine storm” and its associated pulmonary
pathologies, in pregnant women infected with SARS-CoV-2.

Others have suggested that folic acid supplementation during
pregnancy may provide protection (Acosta-Elias and Espinosa-
Tanguma, 2020). Computer simulation studies indicated that
folic acid can reduce viral replication by inhibiting its furin
endoprotease (Coutard et al., 2020) which is part of SARS-CoV-
2 host cell entry mechanism or inhibit the coronavirus 3C-like
protease, 3CLpy,, (Serseg et al., 2020) required for its replication
(Hsu etal., 2005). Hence the severity of infection may be inversely
proportional to the concentration of folic acid but more work is
required (Acosta-Elias and Espinosa-Tanguma, 2020).

As the data on COVID19 in pregnancy come from small
studies and sometimes lack controls including age-matching,
conclusion remains tentative but cautiously optimistic. Of note
also, pregnant women may visit care settings frequently and so
signs of infection may be detected and treated earlier.

POST-MENOPAUSAL WOMEN

That adult men of all ages and older women pose the highest risk
of developing serious complications from COVID19 infection
(Scully et al., 2020), again raises the question of the role of sex
steroid hormones on infectivity. In women the increase in risk
begins in their late 50s, see Figure 1C, around the time of the
menopause (Ding et al., 2020), which is characterized by female
sex hormone deficiency (Figure 4).

Animal studies of SARS-CoV and MERS, showed that absence
of E2 signaling following ovariectomy or estrogen receptor
antagonist treatment is associated with more severe disease in
female mice (Channappanavar et al., 2017). Moreover, hormones
associated with having a higher ovarian reserve (anti-Mullerian
hormone and E2) negatively correlate with COVID severity
(Ding et al, 2020), further suggesting that pre-menopausal
women are protected.

Large-scale self-reported data obtained from the UK
COVID19 symptom tracker application (C-19) showed a positive
association between COVID19 and menopausal status, and
a negative association with combined oral contraceptive pill
use (Costeira et al., 2020), supporting the hypothesis that E2
offers protection against disease severity. Hormone replacement
therapy (HRT) use, however, was positively associated with
COVID19 symptoms. The route of administration, dose and type
of HRT however, was not recorded and further investigations are
needed (Gargaglioni and Marques, 2020). HRT is also usually
only estrogenic and at physiological concentrations, whilst the
combined oral contraceptive pill has E2 and progesterone and at
supra-physiological concentrations.

MEN

The differences between men and women has been emphasized
throughout. A few additional points can be made. Testosterone
exerts immunosuppressive effects (Foo et al., 2017; Figure 5)
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which may contribute to a blunted antibody response in men and
result in a worse prognosis compared to females (Chanana et al.,
2020). Androgens, including testosterone, enhance expression
of TPMRSS,; facilitating viral fusion with host cell membranes
(Asselta et al., 2020; Hoffmann et al., 2020). Male sex hormones
are also thought to increase the activity of the ACE2 receptor
(Dalpiaz et al., 2015) further enabling SARS-COV-2 viral
infectivity. Men with androgenetic alopecia or male pattern
hair loss, a condition associated with genetic variations in the
androgen receptor gene and signaling (Hillmer et al., 2005), are
also thought to be at a greater risk of COVIDI19 severity: small
studies have indicated high incidence of male pattern baldness
in patients hospitalized with COVID19 (Goren et al., 2020).
Along with the gender differences and detailed immunological
differences reported in men with COVID19 disease discussed
above, it is suggested that men will benefit from treatments that
increase their T cell immune responses, and anti-testosterones.

CLINICAL TRIALS

A SARS-CoV-2 protein interaction study mapped many potential
for repurposing drugs, including sex hormones (Gordon et al.,
2020). That sex hormones can modulate inflammatory responses,
lessen the cytokine storm or impede viral entry, has added to
the suggestion that exogenous hormones could be administered
as therapies, either prophylactically or as treatment adjuncts, to

reduce COVID19 disease severity. Re-purposing of existing and
already approved therapies is particularly exciting given there is
little time to develop new ones.

In the USA, two trials are underway testing whether symptom
severity can be reduced with either a short course of estradiol,
administered by transdermal patch, in adult men and older
women with COVID19 (NCT04359329) or oral progesterone in
men (NCT04365127). In Mexico, a trial is investigating the effect
of a combined estrogen and progesterone patch (NCT04539626)
on clinical response and mortality in non-severe COVID19
patients. A trial in Iran is also testing the effect of injectable
estradiol and testosterone on recovery in male and female
COVID19 patients with respiratory, heart or kidney failure
(IRCT20150716023235N15).

Trials exploring anti-androgen therapies are also underway,
including in Sweden (NCT04475601), the USA (NCT04509999,
NCT04374279) and Brazil (NCT04446429) with a view to
reducing disease severity in older (>50 years) male and female
patients, or males presenting with male-pattern baldness, by
inhibiting the expression of androgen regulated proteins, such as
TMPRSS2. Other trials are investigating the effect of decreasing
TMPRSS2 action using TMPRSS2 inhibitors (see Table 1).

In Italy, a Phase II randomized trial is planned to assess the
efficacy of intravenous oxytocin in patients affected by COVID19
(NCT04386447). Oxytocin known for its role in augmenting
uterine contractions in labor (Arrowsmith, 2020), has also been
shown to limit excessive pro-inflammatory and oxidative stress

TABLE 1 | Clinical trial identifiers, drug class and targets.

Drug class Target Action/effect Trial identifier Sponsor/location
ER agonist Estrogen Receptor Increase estrogen and its effects NCT04359329 Stony Brook University Hospital, NY, USA
ER modulator Estrogen Receptor Decreases estrogen production NCT04389580* Kafrelsheikh University Egypt
Increases testosterone production
P4 hormone Progesterone Increase progesterone and its effects NCT04365127 Cedars Sinai Medical Center, CA, USA
Receptor
E2/P4 combined Estrogen receptor NCT04539626 Mexico
and progesterone
receptor
Anti-Androgens Androgen Receptor Decrease androgens/androgen signaling NCT04374279 Johns Hopkins, MD, USA
NCT04475601 Sweden
NCT04509999 USA
NCT04446429 Brazil
LHRH antagonist GnRH Decrease androgens NCT04397718 Los Angeles, Brooklyn, Manhattan, Seattle,
USA
TMPRSS2 inhibitor TMPRSS2 Decrease TMPRSS?2 action NCT04353284 Yale, USA
NCT04338906* Heinrich-Heine University, Germany
NCT04374019 University of Kentucky, KY, USA
NCT04321096 University of Aarhus, Denmark
NCT04355052* Sheba Medical Center, Israel
NCT04352400 University Hospital Padova, Italy
NCT04355026 General and Teaching Hospital Celje,
NCT04273763* Slovenia
NCT04340349* Wenzhou Medical University, China
Instituto Nacional de Rehabilitacion, Mexico
Aldosterone Androgen receptor Decrease androgen signaling NCT04345887 Istanbul University, Turkey
antagonist

*Denotes trial in combination with other treatment.
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reactions during infection by decreasing interleukin levels (Wang
et al., 2015), as well as aiding nitric oxide signaling which
promotes vasodilation (Thibonnier et al., 1999). Hence, oxytocin
could also be used as prospective therapy for limiting COVID19
severity (Soumier and Sirigu, 2020).

Vaccines

Passive antibody therapy for COVID19 has already been
discussed (Abraham, 2020). Many vaccines are in development,
in the hope of providing protection against SARS-CoV-2. From
all the above it is clear that sex will be important in the immune
response to such vaccines. Women will mount stronger antibody
and T-cell responses and suffer worse adverse reactions. Thus, the
dosage they may need of any vaccine will be less than for men.
Earlier studies of the influenza vaccines have reported that the
same magnitude of protective immunity is achieved by half the
dose in women compared to men (Klein, 2012). If vaccine against
SARS-CoV-2 is in short supply initially, would it be ethical to give
smaller shots to women?

CONCLUSION

Our main conclusion is that the sex-based differences in
outcomes of COVID19 infection, tentatively reported at the
beginning of the pandemic, have been reinforced by all
subsequent studies. In addition, our understanding of the
possible contributors to this is increasing but it is likely
more exciting discoveries remain to be made., especially
around the intersection of physiology, immunology and
environmental factors.

We note that, generally, more men are enrolled in clinical trials
and research in animals is often focused on males to avoid the
cyclic fluctuations in hormones. This poses a significant barrier in
understanding the sex-based differences in infection severity. The
disparity in the effects of COVID19 observed between the sexes,
and recent data in other physiological systems and pathologies,
highlights the need to include both males and females in future
research. There is clearly much more to be understood about
sex-based differences. Understanding the mechanisms behind
them may help to find appropriate and sex specific therapies
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