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The present study aimed to investigate the effects of a 12-week concurrent
training intervention on cardiometabolic health in obese men. Twelve obese men
(42.5 ± 5.3 years old) participated in the current 12−week randomized controlled
trial with a parallel group design. The participants were randomly assigned to a
concurrent training group or to a no-exercise control group. Anthropometry and body
composition assessment were determined by electrical bio-impedance. Blood samples
were obtained and a cardiometabolic risk Z-Score was calculated. Energy metabolism-
related parameters [i.e., resting metabolic rate (RMR), respiratory quotient (RQ), and
substrate oxidation in both resting conditions and during exercise] were determined
by indirect calorimetry. Echocardiographic studies were performed using an ultrasound
system equipped with a transducer to measure cardiac function. A significant decrease
of weight (1 = −4.21 kg; i.e., primary outcome), body mass index (1 = −1.32 kg/m2),
fat mass (FM; 1 = −3.27 kg), blood pressure (BP; 1 = −10.81 mmHg), and
cardiometabolic risk Z-Score (1 =−0.39) was observed in the exercise group compared
with the control group (all P < 0.05), while no significant changes were noted in waist
circumference (WC), lean mass (LM), bone mineral content, glycemic and lipid profiles,
liver function, nor in energy metabolism-related parameters (all P > 0.1). Moreover, a
significant increment of left ventricular (LV) end diastolic diameter (1 = −4.35 mm) was
observed in the exercise group compared with the control group (P = 0.02). A 12-week
concurrent training intervention is an effective strategy to induce weight and fat loss with
simultaneous reductions of BP and cardiometabolic risk, and improving cardiac function
in obese men.
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INTRODUCTION

Globally, obesity has reached epidemic proportions in the
current 21st century and is associated with higher risk of
premature mortality (Lavie et al., 2018b). Indeed, obesity is
an independent risk factor for cardiovascular (CV) disease
(CVD, including hypertension, coronary heart disease, heart
failure, and sudden cardiac death) (Go et al., 2014; Ng
et al., 2014; Jaacks et al., 2019; Jiménez-Pavón et al., 2019),
and has been connected with several comorbidities, including
dyslipidemia, insulin resistance, diabetes mellitus (DM), low
metabolic flexibility, or left ventricular (LV) hypertrophy, among
others (Perumareddi, 2019). Health care spending derived from
obesity-related diseases has exponentially increased during the
last decade and is expected to continue rising (Lavie et al.,
2018a). Therefore, the application of cost-effective measures to
reduce obesity and its related health burden are of clinical and
scientific interest.

Over the past years, different strategies have been found
to improve cardiometabolic health in individuals with obesity.
Physical activity (PA) is considered an integral approach for
obese individuals, not only for weight loss goals but also
for reducing the risk of CVD, type 2 DM, and all-cause
mortality (Petridou et al., 2018). World Health Organization
has recently updated a consensus statement regarding the global
recommendations on PA for health promotion (i.e., 150 or 75 min
per week of moderate or vigorous intensity aerobic PA/exercise,
respectively, plus resistance exercise twice per week; World
Health Organization [WHO], 2015; Piercy et al., 2018). The
combination of aerobic and resistance training (i.e., concurrent
training) has been positioned as a promising tool to improve
CV and metabolic profiles in both healthy individuals (Bennie
et al., 2018) and patients with cardiometabolic diseases (Álvarez
et al., 2019). Concretely, previous studies have reported that
concurrent training is an effective antihypertensive (Corso et al.,
2016) and anti-inflammatory therapy (Libardi et al., 2012),
improving in turn the glycemic and lipid profiles (Braga de
Mello et al., 2019) as well as hepatic function (Monteiro
et al., 2015). Nevertheless, these previous studies included
individuals with different biological characteristics making it
necessary for further investigations attaining patients with
cardiometabolic disturbances.

To the best of our knowledge, there is a lack of studies in
obese persons investigating not only the effects of concurrent
training on body composition and cardiometabolic profile, but
also on liver function, energy metabolism, or CV function,
all of them involved in further obesity-related complications.
Concretely, metabolic flexibility (i.e., the ability to respond
or adapt to conditional changes in metabolic demand) has
been propagated to explain insulin resistance and mechanisms
governing fuel selection between glucose and fatty acids,
highlighting that patients with obesity and type 2 diabetes
suffer from metabolic inflexibility. Similarly, liver function
alterations such as non-alcoholic fatty liver disease are usually
present in patients with metabolic syndrome and central
abdominal obesity (Milić et al., 2014). Considering obesity
as a multifactorial disease, it would be of clinical interest

to understand the specific effects of concurrent training on
those parameters which are altered in obese persons. Therefore,
the present study aimed to investigate the effects of a 12-
week concurrent training intervention on cardiometabolic
health (i.e., body composition, glycemic and lipid profiles,
liver function, energy metabolism, and cardiac function) in
obese men.

MATERIALS AND METHODS

Research Design and Subjects
A 12-week intervention study with a parallel-group design
was conducted following the Consolidated Standards of
Reporting Trials guidelines (Welch et al., 2017). After the
baseline assessment, participants were randomly assigned
into two different groups using computer-generated simple
randomization: (i) the control group (no exercise—maintaining
their habitual lifestyle) and (ii) the concurrent training group.
The participant’ allocation was blinded to the assessment
staff. Participants were instructed to maintain their dietary
and PA habits. The same exercise intervention was offered
to the participants of the control group after completing
the intervention.

Participants were obese sedentary men (35–55 years) with no
comorbidities. The experimental design and study protocols were
conducted strictly following the last revised ethical guidelines
of the Declaration of Helsinki. The current pilot study was
approved by the Ethics Committee on Human Research at the
University of Leon and all participants signed an informed
consent. The participants were recruited from the province of
Cadiz (Spain) using social networks and local media. Inclusion
criteria were: (i) to have a BMI > 30 kg/m2; (ii) to be sedentary
[less than 150 min/week of moderate-intensity PA (i.e., self-
reported) over the last 6 months]; (iii) to present a stable
weight over the last 12 weeks; (iv) to be free of any chronic
disease that could be aggravated by exercise training; and (v)
not to consume any chronic mediation (i.e., self-reported) over
the last 6 months. Baseline and follow-up assessment were
performed at the same setting (Physical Activity and Exercise
physiology Laboratory at the Faculty of Education Sciences,
University of Cádiz).

Concurrent Training Intervention
The participants included in the concurrent training group
performed a 12-week intervention based on the updated PA
recommendations provided by the World Health Organization
(World Health Organization [WHO], 2015). All sessions were
conducted under the supervision of an accredited exercise
physiologist. A training frequency of three sessions/week was
selected. Each training session lasted 60 min and consisted of a
combination of aerobic and resistance exercises. Aerobic training
intensity was fixed at 60–70% of the heart rate reserve, while
resistance training intensity was set at 6–7 of their subjective
rates of perceived exertion. The participants were instructed to
complete three to four sets which included a total of six to
eight aerobic and resistance exercises following a circuit training
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methodology. The rest between sets was 60–120 s. Treadmill
and cycle-ergometer were used to complete the aerobic training,
whereas weight bearing and free-weights exercises (i.e., using
both dumbbells and bars) were used to perform the resistance
training involving the main upper and lower body muscle
groups (i.e., lateral pull down, dips, deadlift, squat, or bench
press among others). A dynamic standardized warm-up was
performed before the beginning of the main part based on
mobility and activation exercises, and a cooling-down protocol
(i.e., stretching exercises) was conducted at the end of the
training session. Exercise’ intensity was continuously monitored
during all sessions using a Polar team 2 system (Polar Team
2 system, Polar Electro Oy, Kempele, Finland). No adverse
events were observed.

Procedures
The baseline and post-intervention measurement were organized
on 2 days: (i) day 1: medical examination and fasting blood
determinations and (ii) day 2: anthropometry and body
composition, blood pressure (BP), energy metabolism-
related parameters, cardiorespiratory fitness (CRF), and
echocardiography. We also used accelerometers to objectively
measure PA and we controlled the dietary intake by
three 24 h recalls.

Anthropometry and Body Composition
Anthropometry and body composition assessments were
conducted before and after the intervention program. Weight
(primary outcome) and height were determined using a
validated scale and stadiometer (SECA 225, Hamburg, Germany)
without shoes and with light clothing. Subsequently, the
BMI was calculated as weight divided by height2. Waist
circumference (WC) was measured at the mid-point between
the bottom of the rib cage and the iliac crest at the end of a
normal expiration.

Electrical bio-impedance (TANITA-MC780MA, Barcelona,
Spain) was used to estimate fat mass (FM), lean mass (LM),
and bone mineral content (g) following the manufacturer’s
recommendations.

Blood Samples
Venous blood samples were obtained from the antecubital vein
and collected in ethylenediamine tetra-acetic acid-containing
tubes in fasting conditions. All samples were centrifuged at
4000 r/min for 10 min at 4◦C, and subsequently stored at
−80◦C until further analysis. Plasma glucose, insulin, total
cholesterol, high-density lipoprotein cholesterol (HDL-C),
triglycerides (TGs), glutamic oxaloacetic transaminase (GOT),
glutamic-pyruvic transaminase (GPT), γ-glutamyl transferase
(γ-GT), C-reactive protein (CRP), and leptin were determined
using conventional methods (i.e., spectrophotometry,
chemiluminescence assay, and enzyme-linked immunosorbent
assay). The homeostatic model assessment of insulin
resistance (HOMA-IR) index was then calculated as (plasma
insulin) × plasma glucose/22.5 (Ascaso et al., 2001). Low-
density lipoprotein cholesterol (LDL-C) was determined as
(total cholesterol) – (HDL-C) – 0.45 × (TGs). Fatty liver index

was also calculated using a previously validated equation
(Bedogni et al., 2006):

Fatty Liver Index (FLI) =(
e0.953 ∗ loge(TGs)+0.139 ∗ BMI+0.718 ∗ loge(γ−GT)+0.053 ∗ WC−15.745)

)
∗ 100

A cardiometabolic risk Z-score was determined considering
the clinical parameters proposed by the International Diabetes
Federation to diagnose metabolic syndrome (Carracher et al.,
2018) (i.e., WC, BP, plasma glucose, HDL-C, and TGs).
These outcomes were standardized as (value – mean)/standard
deviation. HDL-C standardized value was multiplied by−1 since
we aimed to reflect a high cardiometabolic risk with higher values.
The mean of the five standardized values was considered the
cardiometabolic risk Z-score obtaining a standard deviation of 1
and a mean of 0 by definition.

BP
Participants were sitting in a chair, relaxed with their feet
firmly on the floor. After 5 min, systolic and diastolic
BPs were assessed using an automatic monitor Omron M3
intelligence advice (HEM-7051-E, Kyoto, Japan), which has been
previously validated, on the non-dominant arm following the
recommendations of the European Heart Society (Whelton and
Williams, 2018). A minimum of three measurements were taken
1 min apart, and the mean value was subsequently calculated as:

Mean arterial BP (MAP) =
Systolic BP + (2 ∗ Dyastolic BP)

3

Energy Metabolism
Resting metabolic rate (RMR) was assessed in the morning
after an overnight fast. We instructed the participants to
avoid any exertion after waking up the testing day, to refrain
from any moderate or vigorous PA before the testing (i.e., 24
and 48 h, respectively), to sleep as usual, to maintain their
usual diet and to avoid the intake of alcohol and caffeine
the day before. The environmental conditions were strictly
controlled (temperature 20–22◦C, humidity 60–65%). After
their lab arrival, the participants were instructed to lie on a
comfortable bed in a supine position for 5 min before the
beginning of the RMR test that lasted 30 min (Fullmer et al.,
2015). Oxygen consumption and carbon dioxide production were
obtained by indirect calorimetry methods using a metabolic
cart Jaeger MasterScreen CPX R© (CareFusion, San Diego, CA,
United States) which was previously calibrated following the
manufacturer’s guidelines (i.e., gas and volume calibrations).
The participants were asked not to sleep, talk, or fidget,
and to breath normally. For the calculation of the RMR, we
averaged the ventilatory parameters every 20 s. The first 10 min
was discarded (Fullmer et al., 2015), and we calculated the
coefficients of variance (CV) for oxygen consumption, carbon
dioxide production, respiratory quotient (RQ), and minute
ventilation every 5 min period (Fullmer et al., 2015; Sanchez-
Delgado et al., 2018). Then, the periods that met the steady-
state criteria for the ventilatory parameters (i.e., CV < 10%
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for oxygen consumption, CV < 10% for carbon dioxide
production, CV < 5% for RQ, and CV < 10% for minute
ventilation) were chosen, considering the period with the lowest
average CV for these ventilatory outcomes for further analysis
(Fullmer et al., 2015; Sanchez-Delgado et al., 2018). RMR and
substrates oxidation (i.e., fat and carbohydrate oxidation) were
determined through the stoichiometry equations of Weir and
Frayn, respectively.

Maximal fat oxidation (MFO) and the intensity that
elicits MFO (Fatmax) were determined through a graded
exercise test on cycloergometer (Lode Excalibur, Groningen,
Netherlands). This test consisted on cycling at 15 W keeping
a constant cadence of 60–80 r/min for 3 min increasing
the workload 15 W every step until reaching an RQ of 1.0
(Tsujimoto et al., 2011). Oxygen consumption and carbon
dioxide production were determined by indirect calorimetry
during the exercise protocol, using a metabolic cart Jaeger
MasterScreen CPX R© (CareFusion, San Diego, CA, United States),
previously calibrated as explained above, and employing a face
mask equipped with a metabolic flow sensor (CareFusion, San
Diego, CA, United States) for gas data collection. We averaged
the ventilatory parameters every 20 s, and fat oxidation values
were estimated considering oxygen consumption and carbon
dioxide production values averaged over the final 1 min of
each 3-min stage (Amaro-Gahete et al., 2019c), using the Frayn
stoichiometric equation and considering the urinary nitrogen
excretion as negligible. MFO and Fatmax were calculated using
a third polynomial regression curve with an intersection at
0;0, plotting fat oxidation values obtained in each period of
the graded exercise test against the relative exercise intensity
(Amaro-Gahete et al., 2019c).

Dietary Intake
Dietary intake was determined by a qualified and trained
researcher on diet assessments through three non-consecutive
24 h recalls (including one weekend day). Food consumption was
obtained by the DIAL R© software for Windows, version 3.7.1.0.
Subsequently, food consumption was transformed into energy
and macronutrient intakes.

PA and Sedentary Behavior (SB)
Levels of PA and sedentary behavior (SB) were measured
with a hip-worn ActiGraph GT3X + accelerometer (ActiGraph,
Pensacola, FL, United States). The participants were asked
to wear the accelerometer for seven consecutive days during
the 24 h. After data collection, the ActiLife v.6.2.2 software
(ActiGraph, Pensacola, FL, United States) was used to their
processing, excluding those participants that did not wear the
accelerometer for at least 16 h/day during at least 4 days
(including at least one weekend day).

CRF
Maximum oxygen uptake (VO2max) was determined just after the
MFO and Fatmax determination. After a short break (≈3 min), the
second phase of the graded exercise test was initiated starting with
the last step’ intensity of the previous phase and increasing the
load 15 W each minute. The participants were asked to maintain

a constant cadence of 60–80 r/min until they reached voluntary
exhaustion. Oxygen consumption and carbon dioxide production
were also obtained via indirect calorimetry, gathering data as for
MFO and Fatmax testing (see above). The criteria for achieving
VO2max were: (i) to attain an RQ higher than 1.1, (ii) to reach a
plateau in oxygen consumption (change lower than 100 mL/min
in the last 30-s stages), and (iii) to show a heart rate between
10 beats/min of the age-predicted maximal heart rate (Midgley
et al., 2007; Amaro-Gahete et al., 2019a). We considered the peak
oxygen uptake value during the exercise test when these criteria
were not met (Midgley et al., 2007; Amaro-Gahete et al., 2019a).

Echocardiography
Echocardiographic studies were performed by single experienced
cardiologist (blinded to the participants’ assignment group)
using an ultrasound system (Sonosite-Edge, Amsterdam,
Netherlands) equipped with a transducer. Cardiac mass,
volumes, and dimensions were measured according to the
current recommendations. Mitral inflow velocities were
determined using pulsed-wave Doppler recording velocities end-
expiration. LV diastolic function was measured following the
EAE/ASE consensus guidelines (Nagueh et al., 2008) obtaining E
wave, A wave, E/A ratio, and E wave deceleration time.

Statistical Analysis
Descriptive and exploratory analyses of all the study outcomes
were conducted to check statistical assumptions, distributions,
and imbalances between the study groups. Student’s t-tests for
unpaired values were applied to determine intergroup differences
(i.e., control vs. intervention group) at the baseline in the study’
outcomes. The intervention effects on primary and secondary
parameters were assessed through linear mixed-effects models
considering individual measures of growth as the function
of randomly assigned group, time, and its interaction. We
conducted these estimations using the restricted maximum-
likelihood method which includes an unstructured covariance
matrix to adjust for within-participant clustering resulting
from the repeated-measures design. We adjusted the model
for the baseline values of each outcome analyzed. Lastly, we
also calculated the standardized effect sizes using Cohen’s d
coefficients. The Statistical Package for the Social Sciences v.22.0,
(IBM Corporation, Chicago, IL, United States) was used to
perform the analyses.

RESULTS

Twelve obese sedentary men (mean age = 42.5 years) were
participated in this trial. Participants attended to ≥ 86% (31 of
36 sessions) of their supervised exercise from baseline to week
12 and they showed a percentage of compliance of ∼90% for
exercise’ intensity and 100% for exercise’ volume. There were
no significant differences between groups in any variable at the
baseline (all P ≥ 0.09).

A significant decrease of weight, BMI, and FM was observed in
the concurrent training group compared with the control group
(all P < 0.049; Table 1), while no significant changes were noted
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TABLE 1 | Changes in cardiometabolic health outcomes after 12-week intervention among control and concurrent training group.

Control group (n = 6) Concurrent training group (n = 6) Net effect

Baseline Mean
(SD)

After 12 weeks
Mean (SD)

1 (SE) Baseline Mean
(SD)

After 12 weeks
Mean (SD)

1 (SE) Mean
difference (95% CI)

Standardized mean
difference (95% CI)

Age (years) 43.7 (6.1) 41.3 (4.4)

Anthropometry and body composition

Weight (kg) 101.4 (12.9) 103.5 (14.4) 2.13 (0.88) 97.5 (15.4) 95.4 (12.9) −2.08 (1.33) 4.21 (0.45, 8.37) 1.23 (0.01, 2.45)*

Body mass index (kg/m2) 32.5 (3.0) 33.2 (3.3) 0.65 (0.26) 32.1 (3.6) 31.4 (2.7) −0.67 (0.42) 1.32 (0.01, 2.63) 1.23 (0.01, 2.45)*

Waist circumference (cm) 108.0 (6.1) 107.9 (8.0) −0.05 (1.52) 105.4 (9.4) 104.1 (8.3) −1.23 (0.98) 1.18 (− 2.79, 5.15) 0.46 (− 1.08, 1.99)

Fat mass (kg) 28.5 (7.3) 30.7 (7.6) 2.15 (0.70) 27.8 (6.6) 26.6 (4.8) −1.12 (0.83) 3.27 (0.56, 5.97) 1.36 (0.23, 2.48)*

Lean mass (kg) 69.3 (6.9) 69.3 (7.4) 0.00 (0.71) 66.3 (9.3) 65.3 (8.4) −0.93 (0.51) 0.93 (− 0.69, 2.56) 0.82 (− 0.61, 2.25)

Bone mineral content (kg) 3.60 (0.32) 3.58 (0.36) −0.03 (0.03) 3.43 (0.46) 3.40 (0.41) −0.03 (0.33) 0.01 (− 0.98, 0.11) 0.12 (− 1.45, 1.70)

Blood pressure

Systolic blood pressure (mm Hg) 131.5 (16.9) 130.0 (18.6) −1.50 (1.21) 131.4 (22.0) 120.2 (14.8) −11.22 (3.63) 9.72 (0.38, 19.07) 1.15 (0.04, 2.26)*

Diastolic blood pressure (mm Hg) 83.2 (6.3) 86.9 (8.1) 3.75 (1.80) 86.6 (13.9) 79.0 (8.8) −7.61 (3.40) 11.36 (1.02, 21.70) 1.29 (0.12, 2.47)*

Mean blood pressure (mm Hg) 99.3 (9.2) 101.3 (11.4) 2.00 (1.58) 101.5 (16.5) 92.7 (10.4) −8.81 (3.45) 10.81 (1.79, 19.84) 1.26 (0.21, 2.30)*

Glycemic profile

Plasma glucose (mg/dL) 101.5 (3.9) 100.3 (3.8) −1.25 (2.21) 94.8 (9.1) 93.8 (8.5) −1.00 (1.52) −0.25 (− 6.39, 5.89) −0.07 (− 1.76, 1.63)

Plasma insulin (UI/mL) 13.9 (4.2) 19.6 (11.1) 5.71 (4.00) 8.6 (2.0) 8.3 (3.8) −0.26 (2.38) 5.97 (− 4.50, 16.44) 0.86 (− 0.65, 2.37)

HOMA-IR 3.47 (1.02) 4.84 (2.75) 1.37 (1.05) 2.00 (0.52) 1.96 (0.98) −0.04 (0.55) 1.42 (− 1.22, 4.05) 0.82 (− 0.71, 2.35)

Lipid profile

Total cholesterol (mg/dL) 216.0 (59.8) 212.5 (47.2) −3.50 (15.09) 198.0 (22.6) 211.8 (42.5) 13.80 (13.4) −17.30 (− 65.02, 30.42) 0.58 (− 2.19, 1.03)

HDL-C (mg/dL) 48.8 (9.6) 46.8 (1.7) −2.00 (5.35) 40.8 (5.0) 43.8 (4.9) 3.00 (0.45) −5.00 (− 16.18, 6.18) −0.70 (− 2.28, 0.87)

LDL-C (mg/dL) 145.0 (50.3) 142.3 (41.5) −2.75 (9.29) 130.8 (22.0) 147.6 (37.7) 16.80 (9.07) −19.55 (− 50.60, 11.50) −0.93 (− 2.41, 0.55)

Triglycerides (mg/dL) 112.0 (53.9) 118.5 (44.6) 6.50 (16.98) 131.4 (70.5) 102.0 (56.5) −29.40 (30.55) 35.90 (− 53.28, 125.08) 0.64 (− 0.95, 2.24)

Liver function

GOT (IU/L) 29.3 (8.5) 33.0 (2.8) 3.75 (2.93) 21.6 (8.1) 21.2 (7.6) −0.40 (0.68) 4.15 (− 2.19, 10.49) 0.96 (− 0.51, 2.42)

GPT (IU/L) 44.0 (27.5) 46.5 (21.6) 2.50 (3.12) 22.0 (7.2) 23.8 (13.4) 1.80 (3.76) 0.70 (− 11.29, 12.69) 0.10 (− 1.59, 1.79)

γ-GT (IU/L) 68.5 (75.2) 73.3 (62.7) 4.75 (11.28) 27.2 (8.23) 27.2 (13.3) 0.00 (3.56) 4.75 (− 20.55, 30.05) 0.31 (− 1.36, 1.99)

Fatty liver index 90.8 (6.9) 93.6 (5.0) 2.77 (8.40) 67.9 (62.2) 62.2 (16.5) −5.64 (7.39) 8.42 (− 25.51, 42.34) 0.63 (− 1.91, 3.17)

Cardiovascular risk Z-Score 0.023 (0.525) 0.203 (0.416) 0.180 (0.089) 0.084 (0.506) −0.136 (0.358) −0.220 (0.148) 0.39 (0.04, 0.83) 1.30 (0.12, 2.51)*

Other biochemical parameters

Protein C reactive (mg/dL) 11.7 (18.1) 8.2 (9.4) −3.53 (4.47) 1.6 (0.8) 1.8 (1.0) 0.18 (0.17) −3.71 (− 13.01, 5.60) −0.64 (− 2.23, 0.96)

Leptin (ng/mL) 19.8 (5.1) 21.0 (6.4) 1.18 (1.00) 23.3 (12.1) 15.7 (3.0) −7.58 (5.03) 8.76 (− 4.89, 22.40) 0.94 (− 0.52, 2.41)

(Continued)
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TABLE 1 | Continued

Control group (n = 6) Exercise group (n = 6) Net effect

Baseline
Mean (SD)

After 12 weeks
Mean (SD)

1 (SE) Baseline
Mean (SD)

After 12 weeks
Mean (SD)

1 (SE) Mean
difference (95% CI)

Standardized mean
difference (95% CI)

Energy metabolism

RMR (kcal/kg/day) 18.78 (1.00) 20.24 (1.75) 1.46 (1.72) 20.13 (2.53) 20.55 (1.77) 0.41 (1.98) −1.09 (− 2.02, 4.19) 0.57 (− 0.59, 1.72)

RQ 0.867 (0.172) 0.861 (0.173) −0.006 (0.021) 0.831 (0.194) 0.824 (0.188) −0.007 (0.028) −0.001 (− 0.018, 0.014) −0.04 (− 1.17, 1.09)

RFox (g/min) 0.084 (0.026) 0.102 (0.044) 0.018 (0.014) 0.081 (0.027) 0.082 (0.023) 0.001 (0.008) 0.02 (− 0.02, 0.05) 0.71 (− 0.76, 2.18)

RFox (% RMR) 50.8 (19.3) 60.6 (25.8) 9.76 (11.95) 51.5 (16.6) 50.7 (12.5) −0.75 (4.92) 10.50 (− 25.27, 46.26) 0.61 (− 1.46, 2.67)

RCHox (g/min) 0.148 (0.065) 0.131 (0.086) −0.017 (0.045) 0.154 (0.049) 0.153 (0.035) −0.001 (0.017) −0.02 (− 0.15, 0.12) −0.27 (− 2.48, 1.95)

RCHox (% RMR) 46.4 (17.3) 38.8 (25.4) −7.66 (10.98) 49.1 (17.2) 48.0 (12.5) −1.12 (4.95) −6.53 (− 39.24, 26.18) −0.41 (− 2.46, 1.64)

MFO (g/min) 0.24 (0.03) 0.26 (0.07) 0.019 (0.037) 0.24 (0.05) 0.25 (0.03) 0.010 (0.020) 0.01 (− 0.08, 0.10) 0.17 (− 1.39, 1.75)

Fatmax (% VO2max) 48.8 (9.5) 54.6 (6.9) 5.85 (3.91) 51.5 (6.8) 53.1 (7.3) 1.58 (3.75) 4.28 (− 8.67, 17.24) 0.50 (− 1.02, 2.03)

Dietary intake

Energy intake (kcal/day) 2868 (972) 2796 (680) −71.5 (370.9) 2911 (518) 2436 (408) −474.7 (272.7) 403.2 (− 633.6, 1439.9) 0.59 (− 0.91, 2.09)

Carbohydrate intake (g/day) 281.0 (81.1) 277.8 (121.7) −3.25 (47.53) 238.3 (47.9) 284.0 (42.6) 45.67 (30.27) 48.92 (− 74.04, 171.88) 0.60 (− 0.90, 2.10)

Sugar intake (g/day) 114.6 (32.6) 84.7 (22.4) −29.83 (21.31) 111.1 (20.0) 91.5 (19.1) −19.63 (8.91) −10.19 (− 73.91, 53.53) −0.34 (− 2.47, 1.79)

Far intake (g/day) 103.3 (56.1) 116.2 (37.6) 2.93 (25.34) 126.7 (23.8) 104.3 (26.7) −22.35 (15.95) 25.28 (− 39.91, 90.46) 0.58 (− 0.92, 2.09)

Protein intake (g/day) 130.2 (39.4) 121.6 (38.4) −8.55 (14.33) 110.5 (23.4) 107.5 (15.2) −2.97 (8.96) −5.58 (− 48.26, 37.09) −0.24 (− 1.80, 1.33)

Alcohol intake (g/day) 13.4 (11.6) 14.1 (13.5) −0.70 (6.02) 19.3 (23.8) 10.9 (7.6) −8.40 (10.13) 9.10 (− 22.11, 40.31) 0.45 (− 1.09, 1.98)

Physical activity and sedentary behavior

Sedentary time (min/day) 7122.5 (1694.2) 6834.3 (1018.9)−288.25 (754.93) 7323.4 (478.5) 7291.2 (855.9) −32.20 (205.50) −256.1 (− 1917.9, 1405.8) −0.26 (− 1.94, 1.42)

LPA (min/day) 9807.0 (268.9) 9782.5 (89.2) −24.50 (147.99) 9864.8 (118.6) 9833.4 (47.3) −31.40 (66.08) 6.90 (− 347.87, 361.67) 0.03 (− 1.66, 1.73)

MPA (min/day) 272.8 (268.9) 296.3 (88.8) 23.50 (147.81) 188.8 (92.9) 239.4 (43.6) 50.60 (45.83) −27.10 (− 357.76, 303.56) −0.14 (− 1.83, 1.55)

VPA (min/day) 0.3 (0.5) 0.3 (0.5) 0.00 (0.41) 3.4 (3.1) 25.8 (57.1) 22.40 (25.94) 22.40 (− 47.16, 91.96) 0.52 (− 1.10, 2.15)

MVPA (min/day) 273.0 (268.9) 296.5 (89.2) 23.50 (147.99) 215.2 (118.6) 145.6 (47.27) 30.40 (66.08) −6.90 (− 361.67, 347.87) −0.03 (− 1.73, 1.66)

Cardiorespiratory fitness

VO2max (mL/min) 2596.3 (472.2) 2876.0 (524.4) 279.75 (95.79) 2620.3 (573.3) 2913.5 (561.4) 293.17 (299.34) −13.42 (− 893.75, 866.92) −0.24 (− 1.60, 1.55)

VO2max (mL/kg/min) 25.6 (2.3) 27.7 (2.6) 2.19 (0.88) 27.4 (7.4) 30.7 (5.5) 3.31 (2.97) −1.11 (− 8.74, 6.51) −0.20 (− 1.57, 1.17)

Echocardiography

Cardiac mass (g) 207.4 (32.0) 181.8 (42.3) −25.57 (7.08) 192.6 (27.8) 197.5 (21.9) 4.88 (15.3) −30.45 (− 72.41, 11.51) −1.01 (− 2.39, 0.38)

Ejection fraction (%) 65.8 (6.2) 61.0 (1.8) −4.75 (2.69) 66.2 (5.7) 61.6 (7.4) −4.60 (3.87) −0.15 (− 11.93, 11.63) −0.02 (− 1.72, 1.67)

LV end diastolic diameter (mm) 52.5 (5.2) 50.8 (3.5) −1.75 (1.25) 52.6 (3.2) 55.2 (0.4) 2.60 (1.54) −4.35 (− 9.22,−0.52) −1.28 (− 2.50,−0.14)*

LV end systolic diameter (mm) 26.3 (4.0) 30.5 (2.6) 4.25 (1.89) 33.4 (3.6) 34.2 (3.7) 0.80 (0.80) 3.45 (− 2.20, 9.10) 1.08 (0.69, 2.84)

LV end systolic volume (mL) 21.5 (10.3) 28.0 (15.3) 6.50 (5.33) 22.4 (2.4) 34.6 (10.6) 12.20 (4.62) −5.70 (− 22.31, 10.91) −0.56 (− 2.18, 1.06)

E wave (cm/s) 87.3 (12.5) 81.8 (23.7) −5.50 (8.93) 70.2 (20.8) 67.6 (16.3) −2.60 (6.17) −2.90 (− 27.75, 21.95) −0.20 (− 1.88, 1.49)

A wave (cm/s) 55.8 (3.7) 59.8 (2.6) 4.00 (3.16) 65.8 (17.4) 61.8 (8.4) −4.00 (8.61) 8.00 (− 15.51, 31.51) −0.55 (− 1.08, 2.18)

E/A 1.57 (0.26) 1.37 (0.38) −0.20 (0.08) 1.07 (0.13) 1.10 (0.26) 0.04 (0.16) 0.24 (− 0.69, 0.21) 0.81 (− 2.34, 0.71)

E wave deceleration time (ms) 205.0 (20.4) 212.5 (24.7) 7.50 (21.26) 261.0 (43.8) 223.0 (31.3) −38.00 (25.62) 45.50 (− 36.17, 127.17) 0.85 (− 0.67, 2.36)

Abbreviations: SD, standard deviation; SE, standard error; CI; confidence interval; HOMA, homeostasis model assessment; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; GOT,
Glutamic oxaloacetic transaminase; GPT, glutamic-pyruvic transaminase; γ-GT, γ-glutamyl transferase; RMR, resting metabolic rate; RFox, resting fat oxidation; RCHox, resting carbohydrate oxidation; MFO, maximal
fat oxidation during exercise; Fatmax, intensity that elicits MFO; LPA, physical activity levels at light intensity; MPA, physical activity levels at moderate intensity; VPA, physical activity levels at vigorous intensity; MVPA,
physical activity levels at moderate-vigorous intensity; VO2max, maximal oxygen uptake; LV, left ventricle.
Analyses were performed using multilevel mixed analysis including group as a fixed variable (control group vs. exercise).
*Significant differences between groups (P < 0.05).
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in height, WC, LM, and bone mineral content (all P > 0.1;
Table 1).

Multi-level mixed analyses, adjusting for baseline values,
revealed a significant reduction of BP (i.e., systolic, diastolic, and
MAP) and CV risk Z-Score in the concurrent training group
compared with the control group (all P< 0.044; Table 1), whereas
no significant differences were seen between groups with respect
to the change in both glycemic (i.e., plasma glucose, plasma
insulin, and HOMA-IR) and lipid profiles (i.e., total cholesterol,
HDL-C, LDL-C, and TGs), as well as in liver function (i.e., GOT,
GPT, γ-GT, and FLI) and other biochemical parameters, such as
CRP and leptin (all P > 0.17; Table 1).

There were no differences between groups neither in energy
metabolism-related parameters (i.e., RMR, RQ, resting substrates
oxidation, MFO, and Fatmax), dietary intake (i.e., energy,
macronutrients, and alcohol intake) and PA levels, and sedentary
time nor in VO2max (all P > 0.2; Table 1).

We observed a significant increment of LV end diastolic
diameter in the concurrent training group compared with the
control group (P = 0.02; Table 1), while no significant differences
were noted in cardiac mass, ejection fraction, LV end systolic
diameter, LV end systolic volume, E wave, A wave, E/A, and E
wave deceleration time (all P > 0.2; Table 1).

DISCUSSION

The current study sought to elucidate whether a 12-week
concurrent training intervention improves cardiometabolic
health in obese men. As we expected, the main findings of the
present work were that compared to the control group, the
participants included in the exercise group benefited from a
significant improvement in weight management, FM loss, BP,
cardiometabolic risk, and cardiac function, while no significant
changes were noted in neither liver function nor energy
metabolism-related parameters.

Previous studies have reported that concurrent training is
an efficient tool to reduce weight and FM while increasing
LM (Ferreira et al., 2010; Michell et al., 2014; Amaro-Gahete
et al., 2019). Michell et al. (2014) showed an increment
of LM and a decrement of FM in response to 24-week
concurrent training intervention which consisted of three 40-
min sessions/week combining aerobic training (i.e., 55–70%
of maximum oxygen uptake intensity) and resistance training
(65–85% of one maximum repetition intensity) in sedentary
men. Ferreira et al. (2010) found that a 10-week concurrent
intervention characterized by three 60-min sessions/week of
aerobic and resistance training at moderate intensity also induces
FM loss and LM gain in sedentary women. Similarly, a recent
study conducted in our laboratory (Amaro-Gahete et al., 2019)
revealed a significant decrease of FM and an increase of LM
after a 12-week concurrent training intervention based on the
minimum PA recommended by the World Health Organization
(World Health Organization [WHO], 2015; Piercy et al., 2018)
in middle-aged sedentary adults. These results partially concur
with those obtained in the current study, since we also observed a
significant decrease of both weight and FM in the current cohort.

However, we did not observe significant changes in LM after the
exercise intervention compared with the control group. The main
reasons that could explain this discrepancy among studies are the
different duration of the above-mentioned concurrent training
intervention (i.e., ranged from 10 to 24 weeks) and the different
initial weight status of the participants (i.e., normal-weight vs.
obese), which could imply different metabolic, hormonal, and
molecular responses to a similar exercise stimulus.

Concurrent training has also been proposed as an excellent
method to improve cardiometabolic health through the
management of glycemic and lipid profile as well as BP (Kelley
and Kelley, 2009; Cornelissen et al., 2011; Umpierre et al., 2011;
Greene et al., 2012; Mann et al., 2014; Álvarez et al., 2019;
Amaro-Gahete et al., 2019b). In the present study, BP and the
CV risk Z-Score decreased in the concurrent training group,
which concurs with the results of other studies involving similar
concurrent training interventions (Kelley and Kelley, 2009;
Cornelissen et al., 2011; Umpierre et al., 2011; Greene et al.,
2012; Mann et al., 2014; Álvarez et al., 2019; Amaro-Gahete et al.,
2019b). However, our study findings partially disagree with those
previously mentioned (Kelley and Kelley, 2009; Cornelissen et al.,
2011; Umpierre et al., 2011; Greene et al., 2012; Mann et al., 2014;
Álvarez et al., 2019; Amaro-Gahete et al., 2019b) since we showed
no significant differences between the concurrent training group
and the control group with respect to the change in the glycemic
(i.e., plasma glucose and insulin concentration and HOMA-IR)
and lipid (total cholesterol, HDL-C, LDL-C, and TGs) profiles, as
well as in hepatic function. The different intervention durations
could be a potential reason for these discrepancies (i.e., ranged
from 8 to 24 weeks). But certainly, the most plausible explanation
is that the low sample size of the present study is not enough to
detect statistical differences between groups. Further studies with
more statistic power are needed to confirm the current results.

The influence of concurrent training on energy metabolism-
related parameters has been previously investigated obtaining
controversial findings. On the one hand, a significant increase
of RMR was observed after a 10-week concurrent training
program in physically active men (Dolezal and Potteiger, 1998),
whereas no significant changes were noted neither in RMR nor
in resting substrates oxidation in response to both a 20- and
12-week concurrent training interventions in sedentary middle-
aged women (Byrne and Wilmore, 2001) and in middle-aged
sedentary adults (Amaro-Gahete et al., 2020), respectively. On
the other hand, there is also controversy regarding the effects
of both aerobic and resistance training on MFO. While no
change in MFO was observed after either 4 weeks of aerobic
training or 12 weeks of concurrent training in middle-aged
adults with (Venables and Jeukendrup, 2008) and without
obesity (Amaro-Gahete et al., 2020), a significant increase
of MFO was reported in overweight men after a 3-month
aerobic training intervention (Rosenkilde et al., 2015), and in
middle-aged untrained adults after a 1-year aerobic training
intervention (Scharhag-Rosenberger et al., 2010). The present
results showed no significant differences in RMR, resting
nutrients oxidation, and MFO after 12 weeks of concurrent
training compared with a no-exercise control group. These
findings could be explained by the lack of changes in LM
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since this outcome is the most important determinant of
RMR (i.e., skeletal muscle is the most metabolically active
tissue) (Blundell et al., 2015), and its optimization could
improve mitochondrial function/activity and insulin sensitivity
modulating in turn substrate oxidation during both resting
and exercise conditions (Goodpaster and Sparks, 2017). It is
therefore plausible that an increase of LM could be mandatory
or determinant to induce changes in energy metabolism-related
parameters. In the same line, it is possible that the required
exercise duration to guarantee LM and RMR improvements
would be longer than 12 weeks.

In the current study, a significant increase of the LV end
diastolic diameter was observed following a 12-week concurrent
training intervention, which seems logical because this type
of exercise training induces subsequent increments of pressure
overload to volume overload, as a consequent of the exercise
duration and intensity (Hosseini et al., 2012). These findings
concurred with those reported by previous studies that revealed
LV morphologic adaptations in response to (i) an 8-week
concurrent training program in young women (Hosseini et al.,
2012), (ii) a 10-week concurrent training intervention in trained
men (duManoir et al., 2007), and (iii) a 5-month concurrent
training program in rowers (Cavallaro et al., 1993). However,
no further changes were observed in other cardiac parameters
when both exercise and control groups were compared. This
finding could be explained by the relatively short duration of
our intervention since previous studies have suggested longer
exercise programs to improve cardiac function (Voulgari et al.,
2013). Despite the positive changes found only in LV end
diastolic diameter, these findings are very relevant due to the
particular characteristic of the participants (i.e., obese rather than
trained or healthy population) who could especially benefit of
the improvement in this morphologic parameter which is known
as an indicator of CV health and a risk factor for mortality
(Narayanan et al., 2014).

LIMITATIONS

This study had some important limitations that should be noted,
and therefore findings of this work should be interpreted with
caution. First, the small sample size limits the generalization of
the results and might limit the detection of statistical significance.
Regardless, the effect size for all outcome measures has been
reported. Second, this intervention was conducted in obese
men, thus we cannot extrapolate the findings to their women
counterparts. Insulin resistance was not assessed by the gold
standard method (i.e., the hyperinsulinemic euglycemic glucose
clamp technique). However, HOMA (Ascaso et al., 2001) method
has been previously validated for assessing insulin resistance.
Finally, we observed a reduction of energy intake in the
exercise group which could explain the body weight loss of
such participants. Nevertheless, it has been suggested in previous
studies that the compensatory effect of exercise intervention may
be on behavior parameters (e.g., diet and PA) (Stubbs et al., 2004).
This phenomenon may have affected our participants but further
studies are needed to confirm these findings.

CONCLUSION

In conclusion, the present study shows that a 12-week
concurrent training intervention is an effective strategy to induce
weight and FM loss with simultaneous reductions of BP and
cardiometabolic risk, and improving CV function in obese
men. These findings could have important clinical implications
since, despite its inherent limitations, they suggest that a
combination of aerobic and resistance training intervention
is an effective and cost-efficient strategy for the management
of obesity and its related complications. Further studies
should be conducted to confirm these results with a higher
sample size, and to determine whether the same holds
true for women and whether longer duration would imply
additional benefits.
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