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Atrial fibrillation (AF) is the most common arrhythmia that leads to thrombus formation,

mostly in the left atrial appendage (LAA). The current standard of stratifying stroke

risk, based on the CHA2DS2-VASc score, does not consider LAA morphology, and

the clinically accepted LAA morphology-based classification is highly subjective. The

aim of this study was to determine whether LAA blood-borne particle residence

time distribution and the proposed quantitative index of LAA 3D geometry can add

independent information to the CHA2DS2-VASc score. Data were collected from 16 AF

subjects. Subject-specific measurements included left atrial (LA) and LAA 3D geometry

obtained by cardiac computed tomography, cardiac output, and heart rate. We quantified

3D LAA appearance in terms of a novel LAA appearance complexity index (LAA-ACI).

We employed computational fluid dynamics analysis and a systems-based approach

to quantify residence time distribution and associated calculated variable (LAA mean

residence time, tm) in each subject. The LAA-ACI captured the subject-specific LAA 3D

geometry in terms of a single number. LAA tm varied significantly within a given LAA

morphology as defined by the current subjective method and it was not simply a reflection

of LAA geometry/appearance. In addition, LAA-ACI and LAA tm varied significantly for a

given CHA2DS2-VASc score, indicating that these two indices of stasis are not simply

a reflection of the subjects’ clinical status. We conclude that LAA-ACI and LAA tm add

independent information to the CHA2DS2-VASc score about stasis risk and thereby can

potentially enhance its ability to stratify stroke risk in AF patients.

Keywords: computational fluid dynamics, mean residence time, 3D shape analysis, indices of stasis risk, passive

tracer transport

INTRODUCTION

Atrial fibrillation (AF) is the most common arrhythmia, affecting three to six million US patients
a year. This number is rapidly increasing with 12.1 million AF patients expected by 2030 (Virani
et al., 2020). Due to the complex morphology of the left atrial appendage (LAA), as compared with
the relatively smooth-walled left atrium (LA), the LAA is a favored location for thrombus formation
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(Reddy et al., 2013). These thrombi are known to cause
stroke in AF patients. The CHA2DS2-VASc score is the most
commonly used index for making clinical decisions regarding the
management of AF patients. While this index is based on clinical
data, it does not incorporate the role of LA–LAA geometry or
local hemodynamics in the thromboembolic risk assessment.

The hypothesis that there is a correlation between the LAA
morphology and stroke risk has been tested in several studies.
Many indices have been examined in this context: LAA orifice
diameter; number of branches and twigs; degree of coverage
with fine structures (Ernst et al., 1995); LAA volume, depth, and
number of lobes (Beinart et al., 2011); LAA takeoff from mitral
valve (Nedios et al., 2014); and existence of a bend in LAAwith an
acute angle (Yaghi et al., 2020). Di Biase et al. (2012) categorized
LAA shapes into four groups: chicken wing, windsock, cactus,
and cauliflower shapes (Figure 1A). They concluded that patients
with the chicken wing morphology are less likely to have a
stroke. Although these results are promising, there is a large
variability in stroke occurrence within a given LAA shape
category (Khurram et al., 2013; Nedios et al., 2014; Sanatkhani
and Menon, 2017; Yaghi et al., 2018). The subjective nature
of LAA shape categorization may contribute to this variability.
In an effort to objectify this, a recent study from our group
has quantified LAA morphologies using principal component
analysis (Sanatkhani and Menon, 2018). This approach uses
the entire three-dimensional cardiac computed tomography
(CCT) image, as opposed to isolated measurements of LAA
dimensions, and therefore is more objective and comprehensive
in quantifying LAA appearance.

Several surrogates of thrombus-promoting flow patterns have
been used to relate blood flow in vascular structures (including
LA and LAA) to probability of clot formation: wall shear stress,
shear strain rate, time-averaged wall shear stress, oscillatory
shear index (Koizumi et al., 2015), time-averaged velocity, mean
resident time (Rayz et al., 2010), local residence time (Esmaily-
Moghadam et al., 2013), residual virtual contrast agent (Otani
et al., 2016; Bosi et al., 2018), and vortex structure (Masci
et al., 2019a,b). The most realistic solution to simulate clot
formation is to model the transport of blood cells (i.e., platelets,
red blood cells, etc.) in a geometry. A Lagrangian approach
can be used for this purpose (Bernsdorf et al., 2006), which
requires tracking of a large number of particles and a very
fine mesh to resolve the flow field for particle tracking, making
it computationally expensive (Rayz et al., 2010). A Eulerian
approach, which approximates particle tracking, has been used

Abbreviations: AF, atrial fibrillation; LAA, left atrial appendage; LA, left atrium;
RTD, residence time distribution; CCT, cardiac computed tomography; DICOM,
digital imaging and communications in medicine; PV, pulmonary vein; PC,
principal component; RE(i), residual error; RSS(i), residual sum of squares; TSS,
total sum of squares; ACI, appearance complexity index; dPV1, dPV2, dPV3, and
dPV4, distance from the center of the LAA ostium to the four inlets (i.e., pulmonary
veins), respectively; dMitral, distance from the center of the LAA ostium to
the mitral valve; VLA, LA volume; VLAA, LAA volume; C′(t), concentration of
tracer while exiting the LAA; C(t), tracer concentration inside the LAA; E(t),
residence time distribution function; tm, mean residence time; C∞, asymptotic
concentration remaining inside LAA; Q(t), volumetric flow exiting the LAA; β ,
multiple linear regression coefficient; CI, confidence interval; M(t), outflow of
tracer material from LAA at the LAA ostium; Mtotal , total amount of tracer that
will leave the LAA over the period 0 to infinity.

with reasonable success for quantifying indices correlated with
thrombus formation (Rayz et al., 2010; Esmaily-Moghadam et al.,
2013; Otani et al., 2016; Bosi et al., 2018; Sanatkhani et al., 2018;
Masci et al., 2019b). However, the Eulerian approach has not been
employed alongside a systems model approach to correlate the
patient-specific LAA geometries with the residence time in LAA
and consequently thrombus formation probability.

The present study has two aims: (1) to introduce a Eulerian
approach for calculating the blood-borne particles residence time
distribution (RTD) in patient-specific LAA and (2) to evaluate
the correlation between RTD and known physical (e.g., LAA
appearance and location) or clinical (e.g., CHA2DS2-VASc score)
indices. This patient-specific morphology and hemodynamics-
based approach of calculating RTD may add novel value to
the current methodology of stratifying stroke risk and therefore
enhance AF management-related decisions.

MATERIALS AND METHODS

Data Acquisition
We performed CCT in a cohort of 16 AF subjects prior to an AF
catheter ablation procedure. CCT images were obtained using
a multidetector 64-row helical system (Brilliance 64, Philips,
Netherlands). Image acquisition was ECG-gated when possible
with the following parameters: 70–120 kV, 850mA s, 0.6mm
beam collimation, 0.625–1.25mm thickness, and 20–30 cm field-
of-view. During an end-inspiratory breath-hold of 20 s and
following a timing bolus-chase injection (20ml at 5ml s−1), 90ml
of an iodinated contrast medium (Ultravist 370, Bayer Vital,
Cologne, Germany) was administered. Furthermore, subject-
specific cardiac output and heart rate were measured. Heart
rate and cardiac output data were used to scale (both the time
and flow axes) a template LA inlet flow waveform (pulmonary
vein flow) to generate a subject-specific LA inlet flow waveform
(Figure 1B).

Image Segmentation
Contrast-enhanced CCT DICOM images were cropped and
then smoothed using a median filter with a kernel of 5 ×

5 × 5. Images were segmented in ParaView (version 5.9.0,
Kitware, Inc., Albuquerque, NM, USA) using the marching
cubes method to create an iso-surface, representing the LA
surface. The extracted surface included pulmonary veins (PV),
the LA and LAA walls, and the mitral valve plane (excluding the
valves themselves; Figure 1C). Extracted surfaces were smoothed
out for computational fluid dynamics mesh (Figure 1D) by
removing spikes and reducing noise (i.e., simplifying polygons)
in Geomagic Studio (version 10, Geomagic, Inc., Research
Triangle Park, NC, USA) and ANSYS SpaceClaim (version
2020 R2, ANSYS Inc., Canonsburg, PA, USA). A more detailed
flowchart of LAA segmentation is presented in Sanatkhani and
Menon (2018).

LAA Appearance, LAA Location, and
LAA–LA Size
LAA appearance was quantified according to the methodology
described in Sanatkhani and Menon (2018). Briefly, principal
component analysis was used to generate the eigenvectors of

Frontiers in Physiology | www.frontiersin.org 2 May 2021 | Volume 12 | Article 633135

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Sanatkhani et al. LAA Residence Time in AF

FIGURE 1 | (A) One representative 3D reconstructed left atrial appendage (LAA) surface geometry from our cohort from each of the four categories proposed by Di

Biase et al. (2012). (B) Generic flow waveform over one cardiac cycle used to generate subject-specific waveforms based on subject’s cardiac output and heart rate

(adapted from Smiseth et al., 1999). To avoid tracers exiting left atrial inlets, the waveform is shifted such that the backflow occurs at the end of the cardiac cycle

around t = 0.6 s. (C) Sample geometry with LAA filled with tracer (colored red). All inlets (four pulmonary veins), the outlet (mitral valve), and the location of LAA are

displayed. (D) A representative left atrium and LAA geometry meshed with tetrahedrons. A section through the appendage region shows a finer mesh inside the

appendage. Furthermore, it shows the use of prismatic layers at the wall boundary.

the LAA appearance of each LAA in our study cohort. Next,
we reconstructed each subject-specific LAA using a successively
increasing number of principal components (PCs) and calculated
a normalized residual error in appearance reconstruction for each
step, RE(i), as follows (Equation 1):

RE(i) = SQRT

[

RSS (i)

TSS

]

(1)

where RSS(i) is the residual sum of squares for the ith step (i.e.,
i PCs used in the reconstruction) and TSS is the total sum of
squares. RE(i) decreases with increasing i because the more PCs
we use to reconstruct an image, the more information is available

to describe the details of the original image. Using all PCs would
result in the original LAA image with zero residual error [RE(16)
= 0].We have defined the area under the curve ofRE(i) vs. i as the
LAA appearance complexity index (LAA-ACI); a larger area under
the curve would correspond to a more complex appearance (e.g.,
see Figure 2A).

The LAA location with respect to the LA inlet and LA outlet
was characterized by the distance from the center of the LAA
ostium to the four inlets (i.e., pulmonary veins; dPV1, dPV2, dPV3,
and dPV4) and the outlet (i.e., mitral valve; dMitral). LAA volume
(VLAA) and LA volume (VLA) were calculated using the 3D
reconstructed CCT images. Distances are reported in centimeters
and volumes in milliliters.
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FIGURE 2 | (A) Normalized residual error, RE(i), plotted as a function of the number of principal components (i) used to reconstruct the LAA appearance for three

subjects. As i increases, RE(i) decreases, reaching a value of zero when i = 16, corresponding to a perfect reconstruction. LAA appearance complexity index

(LAA-ACI) is defined as the area the area under the RE(i)–i curve; larger LAA-ACI corresponds to a more complex LAA appearance. (B) Geometrical features of these

three LAAs, including LAA ostium, tip of the LAA, LAA lobes (shown by circles), and LAA centerline bend (shown by curved arrows). The rank ordering of these three

LAAs based on the LAA-ACI (most complex to simplest) is subject #3, subject #1, and subject #2.
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Computational Fluid Dynamics
The prepared geometries were meshed in ANSYS Meshing.
The maximum length for the tetrahedron edge was considered
3.5mm for the whole geometry (including LA and LAA). Then,
mesh was refined based on surface curvature to capture the
topology. For instance, mesh at the tip of the LAA is finer than
at the center of LA. Five prismatic layers at wall boundaries
were used to resolve the boundary layer flow (Figure 1D). We
used these settings for our course mesh. Next, we incrementally
increased the number of elements until the changes in averaged
wall shear stress in LAA were <5%. The number of mesh
elements was chosen based on our mesh independency study.
Based on the size and tortuosity of each subject, the number of
mesh elements varied between 300,000 and 500,000 tetrahedrons,
which was considered acceptable according to the literature
(Otani et al., 2016; Aguado et al., 2019). LA and LAA walls
were assumed to be rigid, impermeable, and with no-slip
boundary conditions. Furthermore, for simplicity and lowering
the computational costs, the mitral valve was assumed to be open
throughout the simulation with both gauge pressure and velocity
gradient set to zero. To prevent outlet backflow divergence, we
extended the outlet in our geometries (Figure 1C) to develop
a uniform with zero gradient velocity and pressure at the
outlets. A velocity profile was prescribed at PV inlet boundaries.
The PV waveform was generated by modifying a template
normal waveform (Figure 1B) based on subject-specific cardiac
output and heart rate. Blood was treated as an incompressible,
Newtonian fluid with a density of ρ = 1, 060 kg m−3 and
dynamic viscosity of µ = 0.00371 Pa s (Formaggia et al., 2009).

We first ran the fluid dynamics simulations until a
hemodynamic steady-state was reached (after 25 cycles), as
defined by the steady state of wall shear stress averaged over
the LAA surface area of each subject. Thereafter, we performed
simulations to analyze the transport of virtual tracer [i.e., passive
scalar, representative of blood-borne particles (cells) that are
neutrally buoyant in plasma] out of LAA. These tracer transport-
related simulations were initialized with the LAA filled with the
tracer concentration, C(t), of unity (representing an impulse
filling of LAA with the tracer) (Figure 1C). Tracer advection
was simulated using fluid dynamic analysis where the tracer
concentration of each cell was calculated in the transport
equation coupled with themomentum equations. The volumetric
average of tracer concentration inside the LAA was recorded as
C(t) for 150 s (Figure 3A). Based on the decay characteristics of
C(t), we fitted a triple exponential model to C(t) that included an
asymptotic term, C∞ (Equation A1).

The dynamics of the tracer clearance from LAAwas quantified
in terms of the RTD function, E(t) (Fogler, 2016):

RTD Function : E(t) =
M(t)

Mtotal
(2)

where M(t) is the outflow of tracer material (amount of tracer
material per unit time) from LAA at the LAA ostium andMtotal is
the total amount of tracer that will leave the LAA over the period
0 to infinity. Thus, E(t), with the unit per second, represents the
normalized outflow of tracer material from LAA at time t. As

shown in the Appendix, we can rewrite Equation 2 in terms of
the LAA tracer concentration, C(t), as follows:

E(t) =

[

C (t) − C(t + 1t)
]

1t(1− C∞)
(3)

where 1t and C∞ are the time increment used in the finite
difference-based estimation of M(t) (Equation A3) and the
asymptotic LAA concentration remaining in the LAA (Equation
A1), respectively. Two measures of the propensity of particles
to stay within the LAA were calculated: mean residence time,
tm, which is the first moment of E(t) (Equation A6), and C∞

[C∞ = C (t → ∞), Equation A1]. A larger value for either of
these two indices is expected to increase the clot formation risk.

The tracer transport was considered to happen with 0 m2

s−1 diffusivity, making the transport purely due to advection.
We solved the transient transport equation for a scalar (i.e.,
tracer) using a laminar solver developed from IcoFoam and
ScalarTransportFoam solvers in OpenFOAM (version 8, The
OpenFOAM Foundation Ltd, Inc., UK). A time step of 500 µs
was chosen based on a time-step independence study. We started
with a 2ms time step and decreased the value until the changes
in averaged wall shear stress in LAA were <5%. The first-order
implicit method was used for time discretization and second-
order least-square scheme was used for pressure and velocity
gradient discretization. First-order and second-order upwind
schemes were used to discretize the divergence terms in the scalar
transport equation and the convection term in Navier–Stokes
equations, respectively. Pressure, velocity, and concentration
tolerances were set to be 10−7, 10−8, and 10−8, respectively. For
these simulations, 16 cores of Intel Zeon CPUwith 2.7 GHz clock
speed and 8 GB of RAM were used and the average execution
time for each case was ∼35 h. C(t) was extracted in ParaView
from LAA and postprocessed in MATLAB R© (version R2020b,
MathWorks, Inc., Natick, MA).

Statistical Analysis
Continuous variables are expressed as mean ± standard
deviation. Correlations between variables were determined by
Spearman rank correlation. The relationship between LAA
tm (dependent variable) and several independent (predictor)
variables (e.g., LAA and LA morphological indices) was analyzed
using backward multiple linear regression, which yielded the
coefficients (β) of significant predictor variables and the
respective 95% confidence interval (CI). The threshold for
statistical significance, α, was set to 0.05. All statistical analyses
were performed in SAS software (version 9.4, SAS Institute, Inc.,
NC, USA).

RESULTS

Study Subject Characteristics
A total of 16 subjects with symptomatic AF (eight paroxysmal,
eight persistent) were studied (four samples per four LAA shapes;
11 males). The average age, heart rate, and cardiac output were
60.3 ± 11.1 years (range: 33–78 years), 71 bpm (range: 42–100
bpm), and 4.2 Lmin−1 (range 2.7–6.0 Lmin−1), respectively. The
range of CHA2DS2-VASc scores was 0 to 4 (mean= 2.2± 1.1).
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FIGURE 3 | (A) Spatially averaged LAA tracer concentration, C(t), plotted as a function of time for a representative LAA. Inset: Tracer concentration contours for

selected time, illustrating the tracer washout from most of the LAA, except for the tip of the LAA. (B) E(t), the residence time distribution function quantifying the

normalized rate of tracer washout across the LAA ostium, as a function of time for three representative subjects. Data for the first 10 s are shown to highlight the early

washout. (C) Box plots showing the mean residence time, tm, for each of the four traditional LAA shape groups. There is large variability in tm within each traditional

LAA shape group.
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LAA Appearance Complexity Index
(LAA-ACI)
The residual error for step i, RE(i), vs. i curves for three
representative subjects is shown in Figure 2A, along with the
geometry of the three LAAs (Figure 2B). Subject #3 requires
significantlymore PCs for accurate reconstruction and, therefore,
has the largest LAA-ACI (i.e., area under the curve), indicating
that this is the most complex appearance. The rank ordering
based on the LAA-ACI is subject #3, subject #1, and subject #2.
Interestingly, the rank ordering by the LAAmean residence time,
tm, is subject #1, subject #3, and subject #2, suggesting that the
LAA-ACI and tm are not conveying the same information.

Relating LAA RTD Function to Traditional
LAA Shape Classification
TheC(t) curve for a representative subject is shown in Figure 3A.
The tracer washed out from the regions close to the LAA ostium
after 2–10 s and tracer concentration continued to be high at the
tip of the LAA even at the end of the simulation (t = 150 s).

The RTD function, E(t), for three representative subjects
(same as those in Figure 2) is illustrated in Figure 3B, starting
with the instant of the tracer introduction (t = 0) and until 10 s
later. Subjects #1 and #3 started with lower initial normalized rate
of tracer washout, E(t), across the LAA ostium, and this washout
continued to remain lower as time progressed. Based on these
E(t) curves and associated tm values, the tracer exited from the
LAA of subject #2 the fastest, followed by subjects #3 and subject
#1 in that order.

The LAA appearance for each of the 16 subjects in the
present study was classified into one of four groups by an
electrophysiologist based on the study by Di Biase et al. (2012).
Group data for LAA tm (Figure 3C) indicated that LAA tm had
a large variability within each group, resulting in a significant
overlap of this index of RTD function among the four LAA
shape groups.

Relating LAA Mean Residence Time to LAA
Asymptotic Tracer Concentration
The propensity of particles to stay within the LAA was
characterized in terms of two indices: LAA mean residence time,
tm, and LAA asymptotic tracer concentration, C∞. Spearman
rank correlation analysis showed that there was a significant
positive correlation between these two indices (R2 = 0.78, P =

0.0003; Figure 4A), suggesting that only one of these indices may
be sufficient to characterize the propensity of particles to stay
within LAA; we choose LAA mean residence time, tm.

Relating LAA Mean Residence Time to LAA
Morphology and Location
Given that the calculation of LAA tm is computationally
expensive, we wanted to examine whether LAA morphological
indices (size, shape, and location) that are easier to measure can
provide the same information. The Spearman rank correlation
analysis indicated that only 56% of the variation in LAA
tm was explained by LAA-ACI (Figure 4B). We next carried
out backward multiple linear regression analysis to investigate

the relationship between LAA tm (dependent variable) and
eight independent variables: LAA-ACI, LAA location measures
(dPV1, dPV2, dPV3, and dPV4, and dMitral; see LAA Appearance,
LAA Location, and LAA–LA Size section), and LA and LAA
volumes (VLA and VLAA). Only dPV2 and VLAA were found to
be significant predictor variables for tm. Although statistically
significant, these two predictor variables could explain only 43%
of the variation in tm. Thus, the LAA morphological indices do
not provide the same information as tm.

Relating LAA Mean Residence Time and
LAA-ACI to CHA2DS2-VASc Score
Spearman rank correlation analysis was performed between
LAA-ACI and CHA2DS2-VASc score (Figure 4C) as well as
between LAA tm and CHA2DS2-VASc score (Figure 4D). Both
LAA-ACI (R2 = 0.46, P = 0.07; Figure 4C) and tm (R2 = 0.41,
P = 0.11; Figure 4D) were positively correlated with CHA2DS2-
VASc score, but all these correlations were weak and did not reach
statistical significance.

DISCUSSION

Lingering of blood cells inside the LAA could result in an
elevated risk of thrombus formation and, consequently, stroke.
In the present study, we quantify the propensity of blood cell
lingering within the LAA in terms of the RTD function, E(t), and
associated calculated variables (mean residence time of blood-
borne particles in LAA, LAA tm, and asymptotic concentration
remaining inside LAA, C∞). Both LAA and LA morphological
features and spatially distributed hemodynamicmilieu determine
the LAA tm and C∞. The key contributions of the present study
are as follows: (1) the quantitation of the overall LAA appearance
in terms of a novel index, the LAA-ACI; (2) the development
of a Eulerian and systems-based approach for quantifying the
LAA RTD function and associated calculated variable (LAA tm);
(3) the observation that LAA-ACI and LAA location and size
measures do not fully capture the information contained in LAA
tm; and (4) the observation that the LAA-ACI and LAA tm can
add independent information to the CHA2DS2-VASc score and
thereby potentially enhance its ability to stratify stroke risk in
AF patients.

The idea that the complexity of LAA geometry plays an
important role in stroke risk stratification in AF subjects is not
new. As discussed in the Introduction section, many indices
have been examined in this context, e.g., LAA orifice diameter;
number of branches and twigs; degree of coverage with fine
structure; LAA volume, depth, and number of lobes; and
existence of a bend in LAA (Ernst et al., 1995; Beinart et al.,
2011; Di Biase et al., 2012; Khurram et al., 2013; Nedios et al.,
2014). While these are isolated features of the complex LAA
geometry, our LAA-ACI utilizes the entire 3D dataset, and we
believe that this integrated index incorporates the information
provided by isolated measures. Considering the LAA-ACI values
for three representative subjects illustrated in Figure 2, the LAA-
ACI for subject #2 is the lowest, indicating that this subject has the
simplest appearance. Subject #2 has a smoother wall and its total
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FIGURE 4 | (A) Relationship between the two indices of LAA residence time distribution (RTD) function: mean residence time, tm, and aymptotic LAA concentration,

C∞. The Spearman rank correlation analysis indicates that LAA tm and C∞ are highly correlated, suggesting that only one of these indices is sufficent to characterizie

the LAA RTD function. The three representative subjects shown in Figures 2, 3 are identified. (B) Relationship between LAA appearance complexity index (LAA-ACI)

and LAA tm. The Spearman rank correlation analysis indicates a weak (although statistically significant) correlation, suggesting that these two variables do not provide

the same infoamtion. (C) Relationship between LAA-ACI and CHA2DS2-VASc score, analyzed using Spearman rank correlation analysis, showing a weak and

insignificant correlation. (D) Relationship between LAA tm and CHA2DS2-VASc score, analyzed using Spearman rank correlation analysis, showing a weak and

insignificant correlation.

length (length of the LAA centerline from the ostium to the tip) is
shorter compared with the other two. The appearance of subject
#3 is the most complex, having several lobes (circled regions
in Figure 2B). Furthermore, subject #3 has the longest length
with a bend along its centerline. Although the LAA of subject
#1 is smooth, its ACI falls in between the other two subjects
because of the large bend along its centerline. Thus, our LAA-
ACI is an objective and quantitative metric that characterizes
the complexity of LAA appearance in a holistic way. The next

question is whether this integrated index is superior from the
perspective of improving the stroke risk stratification. We cannot
answer this question at the present time; a longitudinal study will
be necessary to address this question.

Other studies have used the classification paradigm of Di
Biase et al. (2012) to characterize LAA shape. This is a very
subjective approach and even experienced cardiologists may
not always agree when classifying a LAA into specific shape
categories. In addition, there is a large variability in stroke
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occurrence within a given LAA shape category (Khurram et al.,
2013; Nedios et al., 2014; Sanatkhani and Menon, 2017; Yaghi
et al., 2018). This is consistent with the large variability of tm
(Figure 3C) and LAA-ACI (data not shown) within each shape
category and in LAA values that exist even within a given LAA
shape category (Figure 3C). The intercategorical tm (and LAA-
ACI) variability may explain the differences in the stroke risk
seen among subjects with similar overall LAA geometry. This
variability underscores the importance of considering subject-
specific LA and LAA morphologies in constructing a metric for
stroke risk stratification in AF based on hemodynamics.

A systems-based approach was used to calculate E(t) in that it
is the tracer washout response to an impulse injection of tracer
in LAA. LAA E(t) curves are depicted in Figure 3B for the same
three subjects as in Figure 2. Subject #2 and subject #1 had the
highest and lowest starting points (i.e., value at t = 0), with
subject #3 having an intermediate value. The lower values in
subjects #1 and #3 are a consequence of the flow entering the LAA
ostium that does not go all the way up to the LAA tip, resulting in
a stagnant region at the tip. Subject #2 had the LAA tm. These
data would predict that subject #1 has the highest risk of clot
formation and subject #2 has the lowest risk.

There are other studies in the literature that have utilized
more sophisticated computational fluid dynamics-based analysis
to better mimic physiological conditions such as LA and LAA
wall motion and more realistic LA outlet boundary conditions
(Otani et al., 2016; Masci et al., 2019a). However, due to the
very high computational costs associated with more complex
computational fluid dynamic analyses, these studies were limited
in terms of the number of subjects [five for Masci et al. (2019a)
and four for Otani et al. (2016)] and the number of cardiac
cycles analyzed (5 cycles). Based on our LAA mean residence
time values (Figures 4A,B,D), we believe that it is necessary to
perform the fluid dynamics simulation for at least 100 s. Our less
sophisticated computational fluid dynamic analysis took about
35 h to complete an 150 s simulation (Intel Zeon CPU, 2.7 GHz,
16 cores). We believe that the more sophisticated analyses of
Masci et al. (2019a) and Otani et al. (2016) will take at least
several fold longer to perform an 150 s simulation, limiting their
clinical application.

We have shown that the LAA tm and LAA-ACI are weakly
correlated (Figure 4B). This suggests that LAA tm, representing
a holistic measure of subject-specific LA–LAA geometry features
and hemodynamics, and LAA-ACI have a potential to contribute
independent information. The observation that dMitral and VLA

were significant predictors of LAA tm is in line with clinical
data from a recent publication (Nedios et al., 2014) showing
that a higher LAA takeoff, remote to the mitral valve plane, was
associated with an increased thromboembolic risk.

We found a weak and insignificant correlation between the
LAA-ACI and CHA2DS2-VASc score (Figure 4C) and between
LAA tm and CHA2DS2-VASc score (Figure 4D). In addition,
LAA tm varied significantly for a given CHA2DS2-VASc score
(Figure 4D). Although subject #1 has a low CHA2DS2-VASc
score (=1), this subject has the highest LAA tm (Figure 4D). We
would suggest that subject #1 has a high risk of stroke, despite
the low CHA2DS2-VASc score. In contrast, there are two other

subjects with CHA2DS2-VASc score of 1 and relatively low values
of LAA tm (Figure 4D); we would suggest that these subjects
have a very low risk of stroke. These observations suggest that
the hemodynamics-based index (i.e., LAA tm) and appearance
indices (i.e., LAA-ACI) can add independent information to the
CHA2DS2-VASc score.

LIMITATIONS

Although we used subject-specific LA and LAA geometries,
two concerns can be raised regarding the subject specificity of
the fluid dynamics-based analysis. First, for LA inlet boundary
conditions, a template (generic) LA inlet flow (pulmonary vein
flow) waveform was used instead of a subject-specific waveform
because patient-specific waveforms were not available for our
cohort. However, because our preliminary study (Sanatkhani
et al., 2020) showed that LAA tm is significantly affected by
mean LAA inlet flow (i.e., cardiac output), we scaled the template
waveform of each subject to match the subject-specific cardiac
output and heart rate. Future parametric studies will examine
whether the temporal features of LAA inlet flow affect LAA tm.
Second, for LA outlet boundary condition, the mitral valve was
assumed to be open throughout the simulation, with both gauge
pressure and velocity gradient set to zero. A better representation
of LA outlet boundary condition would be in terms of left
ventricular non-linear diastolic compliance and patient-specific
left ventricular end-diastolic or end-systolic volume. These left
ventricular diastolic compliance and volume data were not
available for our cohort. We plan to conduct parametric studies
to examine how left ventricular compliance and end-diastolic (or
end-systolic) volume affect the calculated index, LAA tm.

We used the assumption of rigid LA and LAA walls. This
assumption is an approximation for highly quivering LA and
LAA in persistent AF patients, corresponding to the loss
of coordinated contraction and consequent reduction in wall
motion. A more realistic simulation with compliant LA and
LAA walls would require the fluid–solid interaction approach
for hemodynamic simulations, which significantly increases the
complexity of the computational fluid dynamics analysis and
associated computational cost. Alternatively, one can prescribe
LA and LAA wall motions as boundary conditions; however,
such wall motion data were not available for our cohort. It
is recognized that some studies have used the prescribed wall
motion in the computational fluid dynamics analysis of LA–
LAA hemodynamics (Otani et al., 2016; Masci et al., 2019a).
However, this approach requires additional data acquisition and
significantly increases the computational costs, which may limit
the clinical applicability. It has been shown that LAA thrombus
formation is associated with both poor LAA contraction and LAA
dilation (Pollick and Taylor, 1991). Therefore, the complete loss
of wall motion may overestimate the risk of thrombus formation
inside the LAA.

Furthermore, we assumed the blood to be a Newtonian fluid
considering that LA domain is large and shear rate values are
mostly in the range that allows for this assumption (mean shear
strain rate, γ̇ = 28.3± 45.9 s−1). However, to better simulate the
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stasis regions inside the LAA, one might need to consider a non-
Newtonian model. In our ongoing study, we are investigating
the sensitivity of LAA tm to various hematocrit using a non-
Newtonian model in comparison with the Newtonian model.

Although our results indicate that LAA tm and ACI
provide additional information, a longitudinal study
with a larger number of subjects will be needed to
examine whether adding these indices to the CHA2DS2-
VASc score can indeed enhance stroke prediction
in AF.

SUMMARY AND CONCLUSIONS

We have presented a novel index for quantifying the LAA
geometry (LAA-ACI) and an approach for quantifying LAA
residence time distribution and associated calculated variables
using the subject-specific morphology, cardiac output, and
heart rate with a hemodynamic model. Both the appearance
index (i.e., LAA-ACI) and the hemodynamics-based index
(i.e., LAA tm) add independent information to the CHA2DS2-
VASc score about subject-specific stasis risk and thereby
can potentially enhance its ability to stratify stroke risk in
AF patients.
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APPENDIX

The computational fluid dynamics model yields LAA tracer
concentration, C(t), every 1 s over the entire simulation period
t = 0, 150 s (Figure 3A). The C(t) decay curve seems to
have mutiple time constants and a non-zero asymptotic value
(Figure 3A). Accordignly, a triple exponential model with non-
zero asymptote was used to characterize the C(t) curve:

C (t) = a1e
−b1t + a2e

−b2t + a3e
−b3t + C∞ (A1)

where a1, a2, a3, b1, b2, and b3 are the parameters to be estimated
by fitting the triple exponential model (Equation A1) to the
calculated C(t) data. Given that C(t = 0) = 1, C∞ = 1 − a1 −
a2 − a3.

The dynamics of the tracer clearance from LAAwas quantified
in terms of the RTD function, E(t) (Fogler, 2016):

RTD Function : E(t) =
M(t)

Mtotal
(A2)

where M(t) is the outflow of tracer material (amount of tracer
material per unit time) from LAA at the LAA ostium and Mtotal

is the total amount of tracer that will leave the LAA over the
period 0 to infinity. M(t) can be written in terms of C(t) using
the finite difference approximation:

M(t) =

[

C (t) − C(t + t)
]

VLAA

t
(A3)

where 1t and VLAA are the time increment used in the
finite difference-based estimation of M(t) and the LAA

volume, respectively. To minimize errors in the finite
difference-based estimation of M(t), we chose 1t =

10–6 s.
Given that C(t = 0) = 1 and C(t = ∞) = C∞, Mtotal is

given by:

Mtotal = (1− C∞)VLAA (A4)

Substituting Equation A3 and Equation A4 in Equation A2,
we get:

E(t) =

[

C (t) − C(t + 1t)
]

1t(1− C∞)
(A5)

E(t)1t is the fraction of fluid exiting the LAA that has spent
between time t and t + 1t inside the LAA. Thus, the LAA
mean residence time, tm, is given by the the first moment
of E(t):

tm =

∫ ∞

0
tE (t) dt =

1

1t(1− C∞)
∫ ∞

0
[tC (t) − tC (t + 1t)]dt (A6)

It should be noted that since C(t) is comprised of exponetially
decaying terms,

∫ ∞

0 tC (t) dt is finite and the result can be
written in terms of an analytical expression. For example,
∫ ∞

0 te−atdt = a−2. A custom program was developed in the
MATLAB R© (version R2020b, MathWorks, Inc., Natick, MA,
USA) environment to estiamte the six parameters (a1, a2, a3, b1,
b2, and b3) using a non-linear iterative optimization algorithm
and perform subsequent data processing to calculate LAA mean
residence time, tm.
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