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LPS is frequently used to induce experimental endotoxic shock, representing a standard

model of acute inflammation in mice. The resulting inflammatory response leads to

hypothermia of the experimental animals, which in turn can be used as surrogate for the

severity of systemic inflammation. Although increasingly applied as a humane endpoint

in murine studies, differences between obtained temperature-time curves are typically

evaluated at a single time point with t-tests or ANOVA analyses. We hypothesized that

analyses of the entire temperature-time curves using a kinetic response model could fit

the data, which show a temperature decrease followed by a tendency to return to normal

temperature, and could increase the statistical power. Using temperature-time curves

obtained from LPS stimulated mice, we derived a biologically motivated kinetic response

model based on a differential equation. The kinetic model includes four parameters:

(i) normal body temperature (Tn), (ii) a coefficient related to the force of temperature

autoregulation (r), (iii) damage strength (p0), and (iv) clearance rate (k). Kinetic modeling

of temperature-time curves obtained from LPS stimulated mice is feasible and leads to

a high goodness-of-fit. Here, modifying key enzymes of inflammatory cascades induced

a dominant impact of genotypes on the damage strength and a weak impact on the

clearance rate. Using a likelihood-ratio test to compare modeled curves of different

experimental groups yields strongly enhanced statistical power compared to pairwise

t-tests of single temperature time points. Taken together, the kinetic model presented in

this study has several advantages compared to simple analysis of individual time points

and therefore may be used as a standard method for assessing inflammation-triggered

hypothermic response curves in mice.

Keywords: kinetic response model, mathematical modeling, systems biology, caspase-1 signaling, inflammation,
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1. INTRODUCTION

Inflammation is a complex reaction of the immune system,
typically induced by damage- or pathogen associated molecular
patterns (DAMPs and PAMPs) and orchestrated by different
signaling pathways. Physiologically, inflammation contributes
to pathogen clearance and tissue repair. As inflammation is
potentially detrimental to the host, pro-inflammatory signaling
is controlled by various checkpoints of the respective signaling

pathways. Besides its physiological role, dysregulated pro-
inflammatory signaling is known to contribute to common
diseases like atherosclerosis, rheumatoid arthritis or sepsis,
and an increasing number of rare diseases such as periodic
fever syndromes (Berghe et al., 2014). In order to unveil
new therapeutic targets against inflammation-driven diseases,
detailed understanding of inflammatory pathways involved
is crucial.

Transgenic mice are a powerful tool to study pro-

inflammatory signaling pathways and potential therapeutic
interventions in a model organism. The LPS shock model is
frequently used in mice to analyze acute inflammation in vivo
and historically, uses mortality of animals as experimental

endpoint. High LPS doses (around 50mg/kg) typically induce
early death of WT animals within 24 h (Kayagaki et al., 2011;
Orning et al., 2018), while lower LPS doses may also lead
to substantial mortality, but typically at later time points of
24–120 h (Saito et al., 2003; Vandendriessche et al., 2014; Mei
et al., 2018). LPS-induced hypothermia is also a well-known
surrogate for the severity of systemic inflammation and illness
in mice which has been used extensively as endpoint for LPS
shock models (Ochalski et al., 1993; Vlach et al., 2000; Saito et al.,
2003; Nold et al., 2010; Cauwels et al., 2013; Berghe et al., 2014;
Vandendriessche et al., 2014; Mei et al., 2018; Reinke et al., 2020).
If the LPS dose is titrated precisely, recovery of the animals from
hypothermia—and therefore from systemic inflammation—can
be analyzed as well. Additionally, this approach allows the
investigation of secondary outcomes like serum cytokines or
histological analysis of organs at predefined time points. In order
to investigate potential differences of systemic inflammatory
responses between experimental groups, most published
studies favor single time point comparisons although entire
temperature-time series would be available (Vlach et al., 2000;
Saito et al., 2003; Nold et al., 2010; Cauwels et al., 2013).
This approach, however, leaves substantial information aside.
If the body temperature is repeatedly measured over time,
the resulting temperature-time curve can be analyzed using
mathematical modeling.

The caspase-1 pathway plays a pivotal role in pro-
inflammatory signaling induced by the innate immune
system (Winkler and Rösen-Wolff, 2015). Activation of
caspase-1 itself is initiated by a large multi-protein complex
called the inflammasome. When activated following LPS
stimulation in vivo, this pathway—besides others—leads to
systemic inflammation and hypothermia of the experimental
animals. Enzymatically active caspase-1-induced inflammation
is mainly based on the secretion of the pro-inflammatory
cytokines IL−1β and IL-18. This pathway is missing in

Casp1 KO and enzymatically inactive Casp1 C284A mice.
Interestingly, enzymatically inactive Casp1 C284A mutant
activates inflammation via a non-canonical, RIP2-dependent
and TNFα mediated pathway (Reinke et al., 2020). The
genotypes analyzed in this study were selected from a larger
set of experiments from our group (Reinke et al., 2020). As
these genotypes modify the LPS-dependent inflammatory and
hypothermic response we exemplarily used the corresponding
datasets to test our novel kinetic response model.

Here, we introduce a novel kinetic response model based on a
dynamic differential equation accurately fitting tomeasured body
temperature-time courses resulting from LPS-induced acute
inflammation. The kinetic model is composed of biologically
interpretable components, leads to a high goodness-of-fit and
provides enhanced statistical power compared to single time
point comparisons. Therefore, it may be established as a standard
kinetic model for assessing inflammation-triggered hypothermic
response curves in mice.

2. METHODS

2.1. Experimental Model
2.1.1. Mice
Wild-type C57BL/6N (Casp1 WT) mice were purchased from
Charles River and bred in-house. Casp1 KO and Rip2 KO
mice were described previously (Ruefli-Brasse et al., 2004;
Case et al., 2013). Casp1 C284A mice were generated using
conditional gene targeting (see Reinke et al., 2020 for details).
Male and female mice 9–14 weeks of age were used for
the in vivo experiments. The following 6 genotypes were
analyzed (genotype : n): Casp1 WT : 56, Casp1 WT/Rip2 KO : 17,
Casp1 KO : 57, Casp1 KO/Rip2 KO : 14, Casp1 C284A : 64,
Casp1 C284A/Rip2 KO : 29. All animal procedures were
performed according to institutional guidelines and in
accordance with the Landesdirektion Sachsen.

2.1.2. In vivo LPS Application
10mg/kg LPS (E.coli 0111:B4, Invivogen) was injected
intraperitoneally. The ambient temperature was actively
controlled and set to Ta = 23◦C for all experiments. Body
temperature of mice was measured every 6 h for 24 h using a
rodent rectal temperature probe (t ∈ {0, 6, 12, 18, 24 h}). For all
in vivo studies age and sex matched animals of the designated
genotypes were used (see Reinke et al., 2020 for details).

2.2. Kinetic Model
To adequately model the observed temperature-time courses
T(t), two mechanisms have to be considered. Firstly, LPS
stimulation, approximately in form of a bolus, induces
inflammation thereby leading to a perturbation from normal
body temperature, Tn. Secondly, a repair process regulates the
temperature back to Tn.

2.2.1. Temperature Autoregulation
Temperature autoregulation asymptotically adjusts temperature
to a stable body temperature, Tn. Specifically, it is assumed
that in absence of LPS treatment a self-regulatory process
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in form of a logistic dynamics maintains an asymptotically
stable temperature:

dT(t)

dt
= rT(t)

(

1−
T(t)

Tn

)

. (1)

This logistic dynamics is considered as an adequate
phenomenological description to an effective process of
autoregulation. The two free parameters, r and Tn are kinetically
interpretable: Tn is the asymptotically stable normal body
temperature and r quantifies the stabilizing force. This approach
is in line with recent findings that the classical way of modeling
thermal regulation in form of a linear dynamics appears to be
oversimplified (Boldrini et al., 2018). In comparison to the linear
dynamics, the logistic dynamics adds an inflection point in
the hypothermic case, i.e., for a drop of temperature below Tn.
Figure 1A shows an exemplary time course (blue curve).

2.2.2. Hypothermic Response Upon LPS Stimulation
In sub-thermoneutral ambient temperatures, mice respond to
LPS with hypothermia, which can be used as surrogate for the
severity of systemic inflammation (Rudaya et al., 2005; Steiner
et al., 2011). Thus, the perturbation process, p(t), gives rise to a
temperature drop−p(t)T(t) yielding the combined dynamics

dT(t)

dt
= rT(t)

(

1−
T(t)

Tn

)

− p(t)T(t). (2)

In a first approximation, we assume that injection of LPS during
a very short time period (bolus) leads to an initial maximum
perturbation p0 and a subsequent linear clearance dynamics with
kinetic parameter k, thus

dp(t)

dt
= −kp(t) with p(t = 0) = p0k. (3)

Using the explicit solution of Equation (3), i.e., an exponential
decay function, leads to the model for the hypothermic process
given by,

dT(t)

dt
= rT(t)

(

1−
T(t)

Tn

)

− p0k exp(−kt)T(t). (4)

2.2.3. Clearance Dynamics
The clearance dynamics in form of an exponential function
p0k exp(−kt) can be interpreted as a process with exponentially
distributed clearance times with median (half life) given by
ln(2)/k. Thus, rate constant k has dimension [ 1t ], whereas
parameter p0 is a dimension-free multiplier which defines the
initial strength of perturbation. The spatial extensions of real
physiological systems are often modeled in form of s serially
connected transition compartments, each characterized by
an exponential decay, finally leading to gamma-distributed
residence times (Sun and Jusko, 1998). Therefore, a Gamma

distribution function f (t, s, k) = ksts−1

(s−1)!
exp(−kt) with

shape parameter s may be substituted for the exponential
distribution, i.e.,

dT(t)

dt
= rT(t)

(

1−
T(t)

Tn

)

− p0 f (t, s, k)T(t). (5)

The original exponential distribution can then be reproduced
by setting s = 1. An exemplary time course of the damage
dynamics alone (red curve) in comparison to the full dynamical
behavior (black curve) is illustrated in Figure 1A. Without
the first temperature autoregulation term in Equation (5) the
body temperature would asymptotically reach a stable deviation
from Tn. Such a decoupled dynamics is not observed under
physiological conditions and mentioned here merely to clarify
the contributions of the two superimposed mechanisms.

2.2.4. Dynamic Features of the Model
After the LPS stimulation, the temperature drops in a sigmoidal
manner. This deviation is increasingly balanced by an impact
of autoregulation and a simultaneously decaying force of
perturbation. We refer to the period from the initiation of
inflammation up to the time tmin when temperature is minimum
as the damage phase. The period from tmin onwards is referred to
as the repair phase.

An illustration of the dynamic behavior is depicted in
Figure 1B. By solely changing the value of p0 in Equation (5)
while keeping all other parameters at a constant value, leaves
the time point, tmin, of maximum deflection, Tmin, invariant
but modulates Tmin (illustrated by the red arrows in Figure 1).
In contrast, changing the value of k only, essentially shifts the
time point, tmin, of maximum deflection, Tmin, and, in addition,
changes the maximum deflection (illustrated by the blue arrows
in Figure 1). Thus, the temperature perturbation related to
the magnitude of damage is mainly determined by parameter
p0, whereas clearance parameter k crucially determines the
duration of the perturbation, which corresponds to an intuitive
understanding of “clearance.”

It should be noted that a reliable estimation of all involved
parameters requires a time series recorded beyond the minimum
point tmin. Otherwise, when using records only up to tmin, the
effective summary process hampers an independent estimation
of r, p0 and k. The damage phase is most informative for the
evaluation of p0 and k, whereas the repair phase is most relevant
for the estimation of r (and Tn, if necessary).

The kinetic parameters, particularly the parameters p0 and
k, may actually depend on the LPS dosage. LPS-induced
inflammation triggers a cascade of pro-inflammatory and
inhibitory signaling via cytokine production, which gives
rise to complex physiological regulation processes (Dobreva
et al., 2021). Therefore, our model has to be conceived as
a phenomenological “summary process” with different kinetic
processes aggregated into a manageable number of parameters.

2.3. Regression and Model Selection
The kinetic model introduced in the previous section is
numerically integrated using the deSolve-package (Soetaert et al.,
2010) and fitted to the observed temperature-time courses using
the package drc (Ritz et al., 2015) of the statistical programming
language R (R Core Team, 2021). This package allows to handle
prediction models in a straightforward way. For each of the
4 parameters, r, Tn, p0, and k, it is possible to independently
define whether or not it depends on a predictor such as the
genotype or an administered inhibitor (as in Reinke et al., 2020),
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FIGURE 1 | Illustration of parameter impact. (A) The black curve shows the time course of the full dynamics given by Equation (5) with s = 3, Tn = 37.5◦C,

r = 0.04 1
h
, k = 0.4 1

h
, p0 = 0.25, T (t = 0) = Tn. The red curve results from the damage part alone, i.e., r = 0.0 and all other parameters as for the full dynamics. The

blue curve results from setting p0 = 0 when the point of minimum temperature is reached in the full dynamics model, and shows the effect of temperature regulation

alone. (B) Black curve as in the left panel (full dynamics). The red curves result upon changing the value of p0, i.e., a larger p0 = 0.35 yields the dashed red curve, a

smaller p0 = 0.15 yields the dotted red curve, thus, changing p0 leads to a vertical shift of the temperature minimum (see red arrows). The blue curves result upon

changing the value of k, i.e., a larger k = 1.2 1
h
gives the dashed blue curve and a smaller k = 0.2 1

h
leads to the dotted blue curve. Increasing the value of k lowers the

minimum and shifts the minimum to an earlier time (see blue arrows).

respectively. The drc-package allows for a pairwise comparison
of levels of the predictor per parameter in a comfortable way.
The routine is based on the least squares method. Since the
logarithms of the repeated measurements of the response values
(temperature) appear to be approximately normally distributed,
we used logarithmized temperature values for the least squares
fits. In addition, parameter estimates have been accomplished
at the log-level. This is crucial when assessing the reported
confidence intervals supplied by the drc-routine for the de-
logarithmized estimates. The model selection process is based on
likelihood ratio tests. In order to demonstrate the discriminative
power and superior goodness-of-fit of the kinetic model-based
approach, comparisons with common statistical methods as t-
tests (applied to temperature measurements at single time-points
or to the area under the curve, respectively) and with an analysis
of variance (ANOVA) were conducted.

2.4. Comparison Across Genotypes
Pairwise comparisons of genotypes are performed as following.
Firstly, the likelihood (goodness of fit) from fitting the model to
data with full degrees of freedom is calculated. Secondly, after
treating a pair of genotypes as if they were one and the same
genotype, i.e., after identification of two levels of the predictor,
the new likelihood with correspondingly reduced degrees of
freedom is calculated. Finally, a likelihood ratio test decides
whether to keep the null hypothesis of indistinguishability (with

respect to hypothermia) of the two genotypes or to opt for a
significant difference (Azzalini, 1996).

3. RESULTS

3.1. Model Selection
Following LPS stimulation, body temperature-time courses have
been measured for six different experimental groups, represented
by six levels of the predictor. The model predictions depicted
in Figure 2 result from fitting model (Equation 5) to the data,
whereby the Gamma distribution shape parameter has been set to
s = 3. Furthermore, two of the four free parameters, i.e., k and p0,
have been stratified for the predictor. Parameters Tn and r, to the
contrary, have been estimated as averages over the six levels of the
predictor. Therefore, 14 kinetic parameters have been estimated.
This model is the result of a stepwise model selection procedure:

In a first step, model (Equation 5) with shape parameter
s = 1 has been fitted to the data with all parameters
fully stratified for the predictor, thus, 24 parameters have
been estimated. In a common notation the corresponding
prediction formula reads pred0 = (Tn ∼ genotype, r ∼

genotype, k ∼ genotype, p0 ∼ genotype).
In the second step, an average value for Tn was estimated

(pred1 = (Tn ∼ 1, r ∼ genotype, k ∼ genotype, p0 ∼ genotype)),
thereby reducing the degrees of freedom by 5. A likelihood
ratio test (pred1 vs. pred0) gives p = 0.82. As expected, the
asymptotically stable body temperature Tn does not depend on
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FIGURE 2 | Observed and predicted temperature-time courses. Modeling of temperature-time curves was performed using model Equation (5) with s = 3, estimating

k and p0 as group specific. (A–C) Temperature-time courses (observations plus model predictions) of the respective genotypes Casp1 WT, Casp1 C284A and

Casp1 KO (each on Rip2 WT or Rip2 KO background). (D) All 6 predicted temperature-time courses are shown.

the genotype. An additional reduction of 5 degrees of freedom by
averaging r over the 6 genotypes (pred2 = (Tn ∼ 1, r ∼ 1, k ∼

genotype, p0 ∼ genotype)) yields p = 0.98 (pred2 against pred0).
Thus, the stabilizing force r of temperature autoregulation does
not depend on the genotype if s = 1.

Proceeding with the reduction of degrees of freedom by
application of the above scheme to parameters k (pred3 = (Tn ∼

1, r ∼ 1, k ∼ 1, p0 ∼ genotype) vs. pred0, p = 0.0028) and
p0 (pred4 = (Tn ∼ 1, r ∼ 1, k ∼ genotype, p0 ∼ 1) vs.
pred0, p ≃ 10−12), indicated that the genotype-dependence of
the temperature-time curves is largely determined by parameter
p0 and only slightly by k.

Next, we set shape parameter s = 2 and run through the
same procedure of parameter reduction as before. This leads to
the following series of p-values: pred1 vs. pred0 : p = 0.86; pred2
vs. pred0 : p = 0.77; pred3 vs. pred0 : p = 0.0003; and pred4
vs. pred0 : p ≃ 0. Models pred0 through pred3 with s = 2 fit

substantially better compared to the corresponding model using
s = 1. Specifically, a comparison of models (pred2, s = 1)
and (pred2, s = 2) yields deviation 2 log(LR) = 54.8 which
corresponds to p = 6.9 · 10−14 of the χ2(DF = 1)−distribution
as an ad hoc precision criterion for the shape parameter in favor
of s = 2. Model pred4 is neither for s = 1 nor for s = 2 a
relevant option.

A further improvement of the goodness-of-fit can be achieved
by setting s = 3. The same procedure of parameter reduction as
before leads to: pred1 vs. pred0 : p = 0.85; pred2 vs. pred0 : p =

0.031; pred3 vs. pred0 : p = 8 · 10−6; and pred4 vs. pred0 : p ≃ 0.
A comparison of models (pred1, s = 3) and (pred1, s = 2) yields
deviation 2 log(LR) = 7.2 corresponding to ad hoc p = 0.004
in favor of s = 3. Parameter r, which determines the strength
of temperature autoregulation, significantly depended on the
genotype. However, due to the correlation of k and r, this weak
significance is kinetically irrelevant. Thus, we kept the model
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with prediction formula pred2 and shape parameter s = 3 as
reference for the following analyses. The predicted temperature-
time courses resulting from this reference model are depicted
in Figure 2.

Choosing a shape parameter s = 4 yields a slightly worse
fit in terms of the likelihood, although not significant (ad hoc
p = 0.2), for the full parameter model leaving s = 3 as
an optimal choice for the shape parameter. Furthermore, the
shape parameter s = 3 represents the optimal choice for
the majority of experimental settings examined in the study of
Reinke et al. (2020) (data not shown). Since shape parameter s
is integer, neither a profile likelihood nor a Hessian (covariance)
matrix can be used to estimate confidence intervals. Therefore,
the chosen ad hoc likelihood ratio test based on one degree
of freedom is here conceived as an alternative assessment of
precision of the estimated integer value of s. It has been found in
a different context (see Ganusov and Auerbach, 2014; Ganusov
and Tomura, 2018) that fitting gamma distribution functions
with shape parameters s > 1 to transition processes exhibiting
delays may indeed slightly improve the goodness of fit, however
leading to unreliable estimates of average transit times whenever
there is evidence that the distribution of transit times deviates
from exponential or gamma. Although this result has to be kept
in mind, it is not a strong limitation in the given context for
two reasons. Firstly, we observe an overwhelming improvement
of goodness-of-fit by switching from exponential to gamma,
secondly, for the comparisons of pairs of temperature time
courses, the goodness-of-fit has priority over the precision of
kinetic parameters. The usage of a Gamma distribution with
s = 3 leads to a delayed start of the damage phase with a roughly
2 h long “plateau” of the curve at the beginning (see Figure 2)
and a narrower subsequent temperature “valley” when compared
to the pure exponential clearance function. For a better visual
assessment of how observed individual time series relate to the
prediction curve, we refer to Supplementary Figure 1.

3.2. Parameter Estimations: p0 and k Are
Genotype-Dependent
For the given experimental setting, the differences of the
temperature-time courses are mainly determined by the
genotype-dependent damage strength p0, although the
impact of genotype-dependent clearance rate k cannot be
neglected completely. The significances resulting from pairwise
comparisons of genotype-dependent values of p0 (see Figure 3)
confirm the assessment from a visual inspection of the
predicted time courses shown in Figure 2. Experimental settings
investigated in the study of Reinke and colleagues (Reinke et al.,
2020) lead to clearance rates which are even less dependent on the
genotype (data not shown). In these cases the overall distinction
of temperature-time courses solely depends on the differences
in genotype-dependent damage strength p0. However, for the
data analyzed in this study a moderate impact of the genotype
on the clearance parameter k is detectable (see Figure 3).
Although there is no difference in the parameter p0 (which
affects the maximum temperature drop) between Casp1 WT
and Casp1 WT/Rip2 KO animals, differences in parameter

k (related to LPS clearance) lead to a shift of the time at
minimum temperature (see Figure 2), thereby contributing with
p = 0.0034 to the global difference of these temperature-time
curves (see Table 1, column 2). Thus, the weak global difference
of these WT−mouse lines can now specifically be attributed to
a difference in the clearance rates. The Casp1 WT mice offer
lower clearance parameter k and require noticeably longer time
to restore temperature homeostasis compared to other mouse
models. This effect is enhanced in Casp1 WT/Rip2 KO when
compared to Casp1 WT/Rip2 WT animals. The asymptotically
stable normal body temperature Tn and the parameter r,
related to the force of temperature autoregulation, seems
to be genotype independent and have been estimated to be
Tn = 37.15 (36.87, 37.43) ◦C and r = 0.065 (0.049, 0.081) 1

h
(95% CI in parentheses). Since only temperature records up
to 24 h are available, an extrapolation of the model prediction
beyond this time point has to be done with caution. Assuming
an asymptotic temperature Tn is an approximation necessary to
avoid an introduction of additional parameters.

3.3. Total Curve Comparisons of Body
Temperature-Time Courses
Comparison of kinetic parameters between experimental
groups can allow quantification of biological mechanisms
contributing to differences between groups. However, if more
than one kinetic parameter strongly depend on the genotype
or experimental setting, the overall assessment of experimental
groups has to be based on comparisons of entire curves rather
than single kinetic parameters. Data resulting from repeated
observations or measurements at subsequent time points are
often analyzed based on statistical methods that either account
for the occurrence of repeated measurements or within-subject
dependence. The most important methods are “repeated
measures ANOVA,” “generalized estimating equations (GEE),”
“Mixed effects model” and “generalized least squares (GLS)”
(Harrell, 2001). However, none of these methods allow for a
straightforward extension to dynamic models (Harrell, 2001).

Here, two approaches of total curve comparisons are
presented. First, a comparative analysis can be performed using
the kinetic response model followed by pairwise comparison of
experimental groups with measures of differences in goodness-
of-fit such as results from likelihood ratio tests (see Table 1,
column 2). The second approach consists in choosing an
appropriate summary statistic, e.g., area under the curve (AUC)
over time, assuming that “the summary measure is an adequate
summary of the time profile and assesses the relevant treatment
[group] effect” (cf. Klein et al., 2007). The AUC is of particular
importance in our case since it serves as a surrogate for
an accumulated effect caused by an inflammation-triggered
sustained deviation from normal body temperature.

3.3.1. Likelihood-Ratio-Tests Allow to Accurately

Distinguish Body Temperature-Time Courses but

Disregard Identical Cumulative Measures
The likelihood-ratio-test procedure, as applied here, corresponds
to a pairwise comparison of entire curves. The results of all
pairwise comparisons (see Table 1) confirmed what we predicted
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FIGURE 3 | Group-specific estimates of parameters k and p0. Estimation of the parameters k
[

1
h

]

and p0 (dimension-less number) was performed using model

(Equation 5) with s = 3. Data are presented as mean (±95% confidence intervals). Statistical analysis was performed using two-sided, pairwise t-tests. All p-values

are adjusted for multiple testing using the Benjamini-Hochberg algorithm. Only the 6 significant differences for k (0 < ∗∗∗ ≤ 0.001 ≤ ∗∗ ≤ 0.01 ≤ ∗ ≤ 0.05) and the 4

non-significant differences for p0 are marked.

from both: (i) a visual inspection of temperature-time curves
(Figure 2) and (ii) the reported genotype-dependent differences
in p0 (see Figure 3). However, LPS stimulation of Casp1 WT
and Casp1 WT/Rip2 KO lead to visually rather similar, but
temporally shifted temperature-time curves (see Figure 2). Based
on a likelihood ratio test, the difference of these two curves
is statistically significant (see Table 1). However, the relative
effects of inflammation in the two cases are unclear. Therefore,
analyzing the area under the curve (AUC) based on the solutions
of the mathematical models might be more suitable to reflect the
overall strength of inflammation.

3.3.2. Area Under the Curve as an Index of

Inflammation
Here, an appropriate definition for the AUC is the area between
the line representing the constant normal body temperature,
Tn and the predicted temperature curve, T(t) resulting from
LPS stimulation

AUC =

tmax
∫

0

Tn − T(t) dt. (6)

The upper limit is chosen to be the final observation time

point tmax = 24 h in the sequel but any value 0 < tmax <

∞ is principally allowed and might be appropriate in other

cases since the prediction T(t) can be extrapolated beyond t =

tmax. In practice, since a closed solution T(t) is not available,

a numeric solution approximating T(t) with a tiny integration
time step is used to numerically compute the AUC based on an
approximately smooth fine-stepped linear interpolation. Of note,

for a statistical analysis of group differences based on the AUC, it

is necessary to compute the prediction curves on the subject level,
i.e., for each individual temperature-time course. All n = 237
individual fits are shown in the Supplementary Figure 2 along
with a plot of the residuals (Supplementary Figure 3). Group-
wise differences in AUC can then be tested by means of an
ANOVA along with subsequent post-hoc pairwise t-tests. This
leads to (Benjamini-Hochberg adjusted) p-values for the pairwise
comparisons as listed in Table 1 (last column). Explicitly, group
level mean AUCs were calculated as AUC = 166.62 ◦C h (sd=
57.94 ◦C h) for Casp1 WT and AUC = 161.78 ◦C h (sd=
30.22 ◦C h) for Casp1 WT/Rip2KO genotypes leading to a non-
significant difference (p = 0.6986) in contrast to the inference
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TABLE 1 | Statistical analysis of pairwise comparisons of temperature-time courses.

p-value (NONLIN) / Chisq // p-value ANOVA p-value

Comparison likelihood ratio test t-test 24h t-test AUC

all n = 6 n = 6 n = 6 all all

Casp1 C284A

– Casp1 C284A/Rip2 KO

< 10−4/ 71.0 < 10−4/ 41.9//

0.0002

< 10−4/ 47.3//

0.0001

< 10−4/ 47.4//

< 10−4

0.0002 0.0001

Casp1 C284A

– Casp1 KO

< 10−4/

101.5

0.0057/ 13.2//

0.1343

< 10−4/ 66.3//

< 10−4

< 10−4/ 38.7//

0.0003

0.0002 < 10−4

Casp1 C284A

– Casp1 KO/Rip2 KO

< 10−4/ 29.5 0.0025/ 15.6//

0.0723

< 10−4/ 36.5//

0.0008

< 10−4/ 35.2//

0.0008

0.0135 0.0001

Casp1 C284A

– Casp1 WT

< 10−4/

176.8

0.0098/ 11.9//

0.1343

< 10−4/ 44.8//

0.0009

0.0003/ 19.4//

0.0338

< 10−4 0.0001

Casp1 C284A

– Casp1 WT/Rip2 KO

< 10−4/ 85.1 0.0052/ 13.6//

0.1343

< 10−4/ 66.9//

< 10−4

0.0005/ 18.3//

0.0334

< 10−4 0.0005

Casp1 C284A/Rip2 KO

– Casp1 KO

0.7042/ 1.4 0.0052/ 13.7//

0.0587

0.3161/ 3.7//

0.5607

0.9257/ 0.5//

0.7943

0.5706 0.7411

Casp1 C284A/Rip2 KO

– Casp1 KO/Rip2 KO

0.6900/ 1.7 0.0607/ 7.7//

0.1511

0.3861/ 3.0//

0.5723

0.5320/ 2.6//

0.5793

0.8069 0.5764

Casp1 C284A/Rip2 KO

– Casp1 WT

< 10−4/

323.1

< 10−4/ 75.2//

< 10−4

< 10−4/ 134.9//

< 10−4

< 10−4/ 95.0//

< 10−4

< 10−4 < 10−4

Casp1 C284A/Rip2 KO

– Casp1 WT/Rip2 KO

< 10−4/

180.6

< 10−4/ 69.9//

< 10−4

< 10−4/ 156.8//

< 10−4

< 10−4/ 102.9//

< 10−4

< 10−4 < 10−4

Casp1 KO

– Casp1 KO/Rip2 KO

0.3626/ 3.6 0.4429/ 2.9//

0.2736

0.0183/ 10.3//

0.1198

0.9257/ 0.7//

0.5944

0.8575 0.6223

Casp1 KO

– Casp1 WT

< 10−4/

435.4

< 10−4/ 32.3//

0.0010

< 10−4/ 157.1//

< 10−4

< 10−4/ 83.6//

< 10−4

< 10−4 < 10−4

Casp1 KO

– Casp1 WT/Rip2 KO

< 10−4/

205.2

< 10−4/ 27.9//

0.0030

< 10−4/ 176.5//

< 10−4

< 10−4/ 92.2//

< 10−4

< 10−4 < 10−4

Casp1 KO/Rip2 KO

– Casp1 WT

< 10−4/

176.8

< 10−4/ 43.4//

0.0001

< 10−4/ 118.6//

< 10−4

< 10−4/ 75.7//

< 10−4

< 10−4 < 10−4

Casp1 KO/Rip2 KO

– Casp1 WT/Rip2 KO

< 10−4/

120.4

< 10−4/ 40.6//

0.0001

< 10−4/ 148.6//

< 10−4

< 10−4/ 87.0//

< 10−4

< 10−4 < 10−4

Casp1 WT

– Casp1 WT/Rip2 KO

0.0034/ 14.1 0.6651/ 1.6//

0.7500

< 10−4/ 33.1//

0.1932

0.0576/ 8.0//

0.4833

0.3094 0.6986

Likelihood ratio (LR) tests are either based on nonlinear regression (NONLIN) using model (Equation 5) with predref = (Tn ∼ 1, r ∼ genotype, k ∼ genotype,p0 ∼ genotype) and s = 3, or

an ANOVA with interacting independent variables genotype and time. For the LR tests, either the full data set (all) has been used or three reduced data sets with randomly assorted time

series (n = 6 per genotype). All effective degrees of freedom for the LR tests are DF = 3. Shown are p-values and the corresponding χ2−values [= 2 log(LR)]. Analysis of temperature

differences at the time point t = 24 h or based on the AUC were performed using two-sided, pairwise t-tests (full data set). All p-values are adjusted for multiple testing using the

Benjamini-Hochberg algorithm.

from the likelihood ratio (cf. Table 1). The mutual horizontal
shift of the two curves, which does not substantially contribute
to the overall damage, is related to a difference in clearance rate
k, as we have discussed in section 3.2.Worth of note, a calculation
of the AUCs for the “averaged” (group level) curves of these two
genotypes yields 167.70 ◦C h and 159.26 ◦C h, respectively, fully
consistent with the mean AUCs resulting from the individual
(subject level) curves.

3.4. The Kinetic Response Model Shifts the
Focus From Between-Subjects to
Within-Subject Variability and Offers
Superior Statistical Power
In contrast to the application of pairwise t-tests at only
one time point, a single temperature-time series from one
experimental animal per group may theoretically contain enough

information to compare the body temperature between groups
based on fitted curves. In other words, like any other repeated
measures regression model, the kinetic response model shifts the
focus from between-subject to within-subject variability upon
increasing the number of repetitions. However, the idealized
experiment allowing group-comparisons based on only one
mouse per genotype, assumes a sufficiently dense sampling of
the temperature-time course and a moderate impact of intra-
group variability. The most important practical consequence
is obvious and has eminent ethical relevance: Shifting the
calculation of a proper sample size needed to significantly
distinguish a hypothesized effect with sufficient power, from the
necessary number of subjects (here mice) to a sufficient number
of within-subject repetitions (here within-mouse temporal
sampling frequency). Consequently, an optimal assessment, i.e.,
a power analysis along with a proper sample size calculation,
should be based on a mixed effects model in order to account for
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possible differences and impacts of the contributing variabilities.
However, such an analysis is beyond the scope of this study but
the superior statistical power of analyses based on the kinetic
response model compared to analyses of single time points can
be shown.

Based on the genotypes Casp1 KO (n1 = 57) and
Casp1 C284A (n2 = 64), we used the observed mean temperature
difference, 1T = 1.81◦C, at t = 24h and the corresponding
pooled standard deviation, SDT = 2.03◦C, to calculate Cohen’s
effect size as 1T = 1T

SDT
= 0.89. Assuming a two-sided t-

test, a power of 80% and a significance level of 0.05 led to a
minimal sample size of n = 21 mice per group necessary to
detect this effect. Applying the same procedure to the AUCs
resulting from the kinetic model (1AUC = 49.9◦Ch, SDAUC =

37.16◦Ch), we calculated Cohen’s effect size as 1AUC = 1.34.
Again assuming a two-sided t-test with a power of 80% and
a significance level of 0.05, led to a minimal sample size of
n = 10 mice per group for the AUC-based analysis. To further
illustrate the superiority of our biologically motivated kinetic
model in comparison to simple t-tests, we randomly picked 6
observed time series per experimental group and repeated the
pairwise comparison of entire body temperature curves using
the likelihood ratio test. Despite using this dramatically reduced
sample size we were able to verify the inferences drawn from t-
tests applied to measurements at t = 24h or the likelihood ratio
tests based on the full sample size (Table 1). For an illustration of
the observed time series obtained from two of the three reduced
data sets we refer to Supplementary Figure 1.

To compare our kinetic model with a standard statistical
method taking all time-points into account, we performed
pairwise likelihood ratio tests based on standard linear models
(ANOVAs) with genotype and time as predictors including the
interaction between these two independent variables. We applied
the same three reduced data sets consisting of only 6 time series
per experimental group (see Table 1). The ANOVA analysis was
able to verify the inferences drawn from t-tests applied to the
full dataset at t = 24h for most, but not all reduced datasets. A
direct comparison of the ANOVA and the kinetic model applied
to these reduced datasets uncovered the ANOVA to be less
discriminative. However, since the ANOVA approach assumes a
linear dependence on time, whereas in fact the data are clearly
very nonlinear in time, it is not surprising that this test would
not perform as well as a test from a model that is suited to fit the
data curves.

4. DISCUSSION

Here, we demonstrate a mathematical modeling approach
capable of fitting and analyzing temperature time curves
observed in experimental animals. In sub-thermoneutral ambient
temperatures, mice respond to LPS with hypothermia, which can
be used as surrogate for the severity of systemic inflammation.
The used model parameters are kinetically and mechanistically
interpretable. In contrast to a purely data-driven approach
to analyze the observed curves, the mathematical modeling
approach offers the ability to compare entire body temperature

curves on a deterministic basis and adds additional information
by introducing the interpretable parameters normal body
temperature (Tn), a coefficient related to the force of temperature
autoregulation (r), damage strength (p0) and clearance rate
(k). Therefore, the kinetic model is also a theoretical result
(Goldstein, 2018).

The normal body temperature Tn and the parameter r, related
to the force of thermal autoregulation, showed no dependence
on the genotypes analyzed. Both parameters together affect the
minimum body temperature and the temporal progression of the
recovery. For the data analyzed in this study, differences between
groups depend mainly on the damage strength p0. However, the
difference between Casp1 WT and Casp1 WT/Rip2 KO solely
depends on a difference in clearance parameter k. The onset and
the clearance of inflammation is mediated through a complex
network of cells and pro- and anti-inflammatory mediators,
but the phenomenological mathematical model presented here
subsumes pro-inflammatory mechanisms mainly reflected by
damage strength p0 and anti-inflammatory mechanisms mainly
as clearance rate k. Therefore, detailed biological interpretation
on the cellular and molecular level of these parameters is not
feasible, whereas it allows an approximate estimation of both
mechanisms contributing to the inflammatory response. This is
consistent with hypothermia conceived as surrogate for systemic
inflammation because hypothermia also represents a sum signal
of pro- and anti-inflammatory mechanisms.

Although differences in LPS-induced inflammation are
mainly introduced by genotypes (Casp1 WT > Casp1 C284A >

Casp1 KO), differences can be found also within experimental
groups: Nearly all animals began to restore their body
temperature within 24 h of observation, but some animals did
not (see Supplementary Figure 2). For these animals, the host’s
limit of tolerable systemic inflammation might be exceeded,
and the animals are suspected to die subsequently. We believe
that these differences in systemic inflammation are based on
interindividual variability.

The mathematical model is able to sufficiently predict
the temperature-time curve of the experimental animals,
and therefore it is applicable to compare overall systemic
inflammation between experimental groups as well. Pairwise
comparisons of modeled temperature-time curves can be
performed using likelihood-ratio tests or the AUC as a summary
measure. Although some pairs of modeled temperature-time
curves may exhibit statistically significant differences when
analyzed using a likelihood-ratio test, these differences might
be caused rather by temporal delays of the curves (Casp1 WT
vs. Casp1 WT/Rip2 KO in our data set) than by differences in
the severity of systemic inflammation. Therefore, it is important
to define whether the temporal course of inflammation or the
overall inflammation is of main interest. The likelihood-ratio test
sensitively detects differences in the temporal course, whereas
the AUC-based tests detect differences in overall systemic
inflammation only. Hence, AUCs are insensitive for detecting
differences in kinetic clearance and regulation parameters k and
r. If a temporal delay of the dynamics becomes important, e.g.,
for the estimation of appropriate time points for interventions,
the explicit group-dependent evaluations of kinetic parameters
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turned out to be superior. In this case, goodness-of-fit of the
dynamical model offers an adequate basis for comparisons.When
interested in overall systemic inflammation mainly, performing
likelihood ratio tests for group comparisons as discussed above
while keeping the parameters Tn, r and k group-independent (i.e.,
constant over all experimental groups), and estimating only p0
as group-specific, is a further option. Of note, the reduction of
degrees of freedom also reduces general test power (Makin and
Orban de Xivry, 2019). Thus, a knowledge-driven (not merely
dominated by the p-value or by the power) reduction of degrees
of freedom allows to focus on biologically important parameters
while keeping the power to detect relevant effects related to these
parameters as high as possible.

Analyzing the AUC typically requires a sufficient duration
of temperature measurements until approximately returning to
the normal body temperature. The kinetic modeling approach
allows for inter- and extrapolations, respectively. Therefore, it
is legitimate to follow-up the time courses beyond the final
observation time to observe the asymptotic process of stabilizing
the temperature back to its normal body temperature. However,
such an extrapolation may increase the coefficient of variation
of the AUCs. Applying the AUC analysis to our data set using
tmax = 24 h, corresponding to the terminal observation time of
the experimental measurements, turns out to be a good strategy
in estimating the effective systemic inflammation as basis for
comparisons of the experimental groups. In principle, the AUC
could be calculated based on the actual observations when using
a linear or more complex interpolation as, e.g., a cubic spline.
Due to the large temporal gaps between the observations in our
data set, a linear interpolation is obviously not advantageous.
A spline approximation is smooth but incompatible with any
biological interpretation.

Experimental animals in LPS shock models suffer from
systemic inflammation. Whenever possible, the 3R principle
(Replacement, Reduction, Refinement) should be addressed
in order to improve the animal welfare. Using hypothermia
instead of animal death as endpoint and applying mathematical
modeling of the resulting time temperature data strongly
applies to the 3R principle. First, using hypothermia reduces
animals suffering from death (Refinement) and additionally
allows the analysis of recovery from inflammation as well as
measuring serum cytokines at specific time points from the
same animals (Reduction). Second, the mathematical-statistical
approach presented in this study shifts the source for its power
from sample size of experimental groups to within-subject
repeated measurements and provides enhanced overall-statistical
power when compared to the analysis of single time points using
t-tests or ANOVA analysis. Therefore, a strong reduction in
the required group size can be achieved (Reduction). Moreover,
the essential disadvantage of single time point analyses can
be resolved: The difference between two group-specific curves
substantially differing in themagnitude ofminimum temperature
but converging at time t = 24 h is detected when using the
modeling approach, whereas it is missed when analyzing the
curves at t = 24 h only. In this context, using the entire
curves or the AUCs as integral measures of the curves to
compare groups, implies a different conception of effect size in

comparison with the analysis of a single time point. Unique
mutual transformations of these effect sizes do not exist.

From the epistemological point of view, it has been
emphasized as early as 1961 by Turner et al. (1961) that “the
biometrician must be concerned not only with the efficiency
of his estimation procedures but also with the adequacy of his
descriptive model. [. . . ] In some cases it is possible to derive
rather sophisticated theoretical models on the basis of acquired
knowledge and intelligent hypothesizing. These models are often
conveniently found as solutions of differential equations.” Only if
nothing is known about the mechanisms that drive the observed
dynamics “one may resort to polynomial models [. . . ]” or a
simple repeated-measures analysis of (co-)variance. The strength
of the mathematical model presented here is the capability to
capture the mechanistic basis of the response kinetics on a
surrogate level by means of a biologically interpretable dynamical
model rather than purely statistical improvements of an arbitrary
non-linear regression. Thus, the theory-driven approach offers
a better understanding of involved biological processes via the
evaluation of the kinetic parameters rather than just detecting
differences that do not allow proper interpretation on the basis
of mainly data-driven approaches.

The kinetic response model presented in this study was tested
using LPS stimulated C57BL/6N mice. However, as different
mouse strains and rats share similar hypothermic responses to
LPS (Vlach et al., 2000; Dogan et al., 2002; Steiner et al., 2011), the
model might be applicable to analyze these experimental animals
as well. Models of sterile endotoxemia like the intraperitoneal
LPS model typically lead to acute temporary inflammation
due to the rapid rise of the endotoxin concentration and
its short half-life in the circulation. Interestingly, systemic
application of TNFα leads to hypothermic responses comparable
to those found after LPS stimulation (Cauwels et al., 2009;
Huys et al., 2009). Therefore, the mathematical model might be
reliably equipped to analyze body temperature curves following
systemic application of other sterile PAMPs or DAMPs as well.
Furthermore, temperature-time curves obtained from murine
models of bacterial septic or anaphylactic shock are also
comparable to those obtained from sterile endotoxin shock
(Hox et al., 2016; Li et al., 2018; Vandewalle et al., 2019).
However, shock models using viable bacteria might additionally
lead to prolonged inflammation and late death of animals despite
regaining normal body temperature. Therefore, the kinetic model
proposed here may be applicable only for the quantification of
the early acute inflammatory response unless the set of kinetic
parameters is extended in order to account for mortality or
other state transitions. Anyhow, the application of the proposed
mathematical model might require optimization of the distinct
shock protocol in order to avoid early animal death for all
experimental groups. Besides hypothermia, febrile responses can
be induced in mouse models as well. In order to induce fever,
lower LPS doses and thermoneutral ambient temperatures are
needed (Rudaya et al., 2005). The mathematical model was not
adapted for febrile responses. As the modeling idea—aberration
from a normal temperature—fits to the febrile response as well,
changing to negative p0 may allow a straightforward adaption of
the kinetic model.

Frontiers in Physiology | www.frontiersin.org 10 August 2021 | Volume 12 | Article 634510

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Diebner et al. Kinetic Model for LPS-Induced Hypothermia

Some limitations of the study should be noted. Firstly,

lacking knowledge about mathematical modeling might prevent
researchers from using this approach. However, the complexity

of our modeling approach is comparable to pharmaco-kinetic
and dose-response models, which are used for the quantitative

assessment of clearance dynamics and receptor-ligand affinities.

For example, a dose-response analysis tool comparable to the
drc-package introduced in Ritz et al. (2015) is suitable to foster
standardized and good-practice applications of our modeling
framework. Secondly, a rigorous power analysis based on a
statistical mixed-effects model, which adequately considers the
different involved random effects and allows to identify an
optimal balance between within-subject repeated measurement
and the number of subjects remains to be done. Unfortunately,
the implementation of mixed-effect modeling in statistical
software in combination with dynamical modeling has not yet
found an acceptable standard. The availablemixed-effects version
medrc of the drc-package is not able to include differential
equation based models (Gerhard and Ritz, 2017) but is a step
in the right direction. Thirdly, we tested in an explorative way
whether a less complex homeostatic control in form of dT/dt =
r(Tn − T) will suffice. This form has been previously used
(Hammel et al., 1963) and is often referred to as “proportional
control.” Although this simpler regulation performs well in many
cases, we opted for the nonlinear logistic regulation due to its
flexibility. Moreover, it has been recently shown that the classical
linear approach is over-simplified and a nonlinear form is needed
(Boldrini et al., 2018). Close to the equilibrium, the simplermodel
corresponds to a Taylor approximation of the nonlinear model.
However, we did not test robustness of our model against other
models of similar complexity, which remains to be investigated.
Finally, experimental animals were not systematically habituated
to handling procedures. It is known that stressful procedures like
intraperitoneal injections and temperature measurements using
rectal probes can confound body temperature data and block or
induce early febrile responses (Kozak et al., 1994; Rudaya et al.,
2005). Since temperature data was obtained until t = 24 h only,
we cannot exclude late febrile responses as well. Therefore, the
LPS protocol used for this study does not represent the best
practice approach and may introduce at least some experimental
bias. However, we aimed for the analysis of themain hypothermic
response which is known to represent a surrogate of systemic
inflammation and treated all experimental groups identically.
The LPS stimulation—as performed in our study—is widely used
in the scientific literature and we were able to detect differences in
hypothermic responses between experimental groups using this
approach (Ochalski et al., 1993; Saito et al., 2003; Nold et al.,
2010; Cauwels et al., 2013; Berghe et al., 2014; Vandendriessche
et al., 2014; Mei et al., 2018; Reinke et al., 2020). We believe that
this LPS protocol is suitable to analyze hypothermic response
curves and hence, systemic inflammation in mice. Therefore, the
mathematical model fitted to temperature-time series resulting
from this approach provides an additional analysis strategy to the
scientific field.

Taken together, knowledge-driven kinetic modeling
combined with data-driven statistical modeling offers
the possibility to increase the accuracy of assessing body
temperature-time courses and to substantially reduce the
minimum number of experimental animals needed to
reveal relevant effects in the context of experiments on pro-
inflammatory signaling. The kinetic model is composed
of biologically interpretable components and allows to
estimate onset and clearance of inflammation in whole
organisms. Using likelihood ratio- or AUC-based analyses,
the model supports the sensitive analysis of inter-group
differences in the temporal course or overall inflammation.
The proposed dynamic model has moderate complexity and
might be used as a standard method for assessing hypothermic
response curves.
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