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Background: Power-oriented resistance training (PRT) is one of the most effective
exercise programs to counteract neuromuscular and physical function age-related
declines. However, the optimal load that maximizes these outcomes or the load-specific
adaptations induced on muscle power determinants remain to be better understood.
Furthermore, to investigate whether these adaptations are potentially transferred to an
untrained limb (i.e., cross-education phenomenon) could be especially relevant during
limb-immobilization frequently observed in older people (e.g., after hip fracture).

Methods: At least 30 well-functioning older participants (>65 years) will participate in
a within-person randomized controlled trial. After an 8-week control period, the effects
of two 12-week PRT programs using light vs. heavy loads will be compared using an
unilateral exercise model through three study arms (light-load PRT vs. non-exercise;
heavy-load PRT vs. non-exercise; and light- vs. heavy- load PRT). Muscle-tendon
function, muscle excitation and morphology and physical function will be evaluated to
analyze the load-specific effects of PRT in older people. Additionally, the effects of PRT
will be examined on a non-exercised contralateral limb.

Discussion: Tailored exercise programs are largely demanded given their potentially
greater efficiency preventing age-related negative consequences, especially during limb-
immobilization. This trial will provide evidence supporting the use of light- or heavy-load
PRT on older adults depending on individual needs, improving decision making and
exercise program efficacy.

Clinical Trial Registration: NCT03724461 registration data: October 30, 2018.
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INTRODUCTION

Resistance training has become a core component of exercise
prescribed for older adults due to its capacity to mitigate
the effects of aging on neuromuscular function and improve
functional capacity (Liu and Latham, 2009; Peterson et al., 2010;
Borde et al., 2015; Lopez et al., 2018). Recent recommendations
for resistance training for older adults suggest to include power-
oriented exercises (i.e., concentric movements performed as fast
as possible) (Fragala et al., 2019). This is because muscle power
is more closely related to physical function than muscle strength
(Bean et al., 2003; Alcazar et al., 2020) and, therefore, considered
the most robust biomarker of age-related neuromuscular decline.
Moreover, power-oriented resistance training (PRT) has shown
greater effects on physical function than traditional resistance
training in older adults (Tschopp et al., 2011; Byrne et al., 2016;
Ramirez-Campillo et al., 2016).

Despite its undisputed functional relevance, scant data are
available to inform the proper prescription of PRT in older adults
(Steib et al., 2010; Borde et al., 2015; Csapo and Alegre, 2016).
The general goal of PRT is to execute concentric muscle actions
with maximal velocity to maximize power output. However, a
large variety of exercises (Franchi et al., 2019; Van Roie et al.,
2020), resistance types (i.e., pneumatic, isotonic, body weight)
(Sayers and Gibson, 2010; Van Roie et al., 2020), and intensities
(i.e., loads used) (de Vos et al., 2005; Reid et al., 2015) can
be found in the literature. In the last years, several previous
studies have been performed with the intent to determine
the optimal load for power development in older people (de
Vos et al., 2005; Reid et al., 2015; Richardson et al., 2019).
Summarizing these works in a systematic review, Katsoulis
et al. (2019) concluded that a wide range of intensities may
be used to improve muscle power and physical function in
older adults. However, the variability of outcome measures and
limited power of the studies included prevented the authors
from performing a meta-analysis. For this reason, the authors
recommended that further investigations comparing different
intensities or frequencies of training and addressing force- or
velocity-dependent components of the power adaptations should
be conducted (Katsoulis et al., 2019). Therefore, well-designed
studies using standardized testing procedures to compare the
effects of PRT as performed using different loads in older
adults are warranted.

To improve the quality of evidence, future studies should
(i) compare volume × load-matched interventions (Csapo and
Alegre, 2016); (ii) include a control period before interventions
in order to account for the error of measurement, biological
variability and training effect during testing (Hopkins, 2000);
and (iii) use unilateral exercise model designs to allow for
within-person comparisons to be made (Burd et al., 2010;
Mitchell et al., 2012; Alegre et al., 2015; Pandis et al.,
2017). This latter recommendation helps to increase statistical
power by reducing between-person variability and limiting co-
founding factors like nutrition, sleep, and physical activity
(MacInnis et al., 2017). Additionally, unilateral exercise models
provide the opportunity to investigate the cross-education
phenomenon, which may help to estimate the neural and

muscular contributions to PRT-related strength gains. Cross-
education is mainly characterized by an increase in maximal
voluntary force observed in the contralateral untrained limb
(Munn et al., 2004; Lee and Carroll, 2007). Previous evidence
was focused on the adaptations provoked by traditional heavy
resistance training on maximal voluntary force (i.e., 1RM and
maximal isometric force), whereas limited evidenced is available
about cross-education phenomenon during isometric (Hester
et al., 2019a) or dynamic (Hester et al., 2019b) ballistic actions
following PRT in older people. Moreover, it could be expected
that the load used during PRT influences the magnitude of the
cross-education phenomenon (Cirer-Sastre et al., 2017; Colomer-
Poveda et al., 2019, 2020). Hence, it deserves to be examined
whether specific cross-education adaptations might be driven
by different loads during PRT. This would enhance training
prescription during limb immobilization and rehabilitation
programs, especially in older people who are susceptible to long-
term immobilizations after falling (e.g., hip fracture) associated
to substantial neuromuscular declines and attenuated retraining
capacity (Suetta et al., 2009).

Considering the above suggestions, this manuscript serves to
present a protocol for a series of studies comparing the effects
of heavy- vs. light-load PRT in older people. The main aim
of this project is to assess the adaptations provoked by two
volume × load-matched PRT programs using heavy vs. light
loads in older adults (goal 1). The secondary aim is to investigate
the adaptations provoked by heavy- vs. light-load PRT on the
contralateral limb in older adults (goal 2).

METHODS/DESIGN

Experimental Approach
The present project and study protocol were registered in
clinicaltrials.gov (ID: NCT03724461, October 30th, 2018) and
approved by the Clinical Research Ethics Committee of the
Complejo Hospitalario de Toledo (Spain). The study protocol
will be conducted following the SPIRIT (Standard Protocol
Items: Recommendations for Interventional Trials) statement
(Chan et al., 2013). The intervention and data collection will
be conducted at the University of Castilla-La Mancha, Toledo
(Spain). This is a within-person randomized trial, including an
8-week control period followed by 12 weeks of PRT (Figure 1).
The mean changes observed during the 8-week control period
will be quantified to determine the possible extent of spontaneous
changes in all outcome measures. After completing the control
period, the participants will be randomized to one of the
following study arms based on the treatment applied to their
lower-limbs during the 12-week PRT program: (i) one leg will
perform a light-load PRT and the other leg will not perform
any exercise; (ii) one leg will perform a heavy-load PRT and the
other leg will not perform any exercise; and (iii) one leg will
perform a heavy-load PRT and the other leg will perform a light-
load PRT. Assessments will be conducted at baseline (week 0),
at the end of the control period (week 8), and following the
12-week PRT (week 20).
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FIGURE 1 | Flowchart of the study protocol.

Participants
The sample size was determined by an a priori power analysis
using G∗Power v3 software for MS Windows R© (Faul et al.,
2007). The effect size value used for calculations was d = 0.25
based on a previous study comparing peak power adaptations
after a 12-week heavy- vs. light-load PRT in older adults
(de Vos et al., 2005). Then, we considered three levels for
the between-subject factor (i.e., one for each study arm) and
three levels for the within-subject factor (i.e., three repeated
measures) setting the alpha error probability at 0.05, a 1−β of
0.95 and assuming a correlation among repeated measures of
r = 0.8. The model indicated a minimum total sample size of
24 individuals, but considering a 25% dropout rate, we have
decided to enroll at least 30 participants in total. People aged
65 years and over, non-institutionalized and without serious
mobility limitations will be encouraged to participate. Principally,
the volunteers will be recruited among participants involved in
non-exercise studies previously conducted by our research group,
local advertisements posted in public places and informative
talks about healthy aging. After accepting to participate, the
volunteers will undergo a physical examination by a geriatrician.
The criteria for exclusion are: (i) frailty status (Fried et al.,
2001) or low levels of physical function (i.e., Short Physical

Performance Battery <7 points) (Guralnik et al., 1994), (ii)
neurological, musculoskeletal, or other disorders that might
preclude subjects from completing the resistance training and
all performance tests, (iii) uncontrolled hypertension, unstable
or exercise-induced angina pectoris or myocardial ischemia or
any other medical condition that would interfere with testing
or increase subjects’ risk of complications during exercise, (iv)
history of regular resistance exercise during the previous 3 years,
and (v) total or partial knee replacement (i.e., prosthesis).
All participants will be informed orally and in written form
about the purpose, procedures, benefits, risks, and potential
discomfort related to study participation before signing a consent
form. This study will be conducted in accordance with the
Helsinki declaration.

Randomization and Allocation of
Participants
After completing the control period, the participants will
be stratified by their sex and 1RM values and randomly
allocated in equal numbers to the three intervention groups.
Then, the treatment applied to the subjects’ legs will be
determined by coin toss.
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Interventions
All participants will complete a 12-week PRT programs targeting
the lower limbs twice a week (total of 24 sessions). Training
sessions will be performed on a horizontal leg press device
that includes a weight stack system (Selection MD, Technogym,
Italy) where participants will execute unilateral repetitions. For
standardization, participants will be requested to fully extend
their leg from a common starting position (knee and hip joint
angles of 90◦ and 70◦, respectively; full extension = 180◦). Each
exercise session will start with a 5-min warm-up on a cycle-
ergometer at a low self-regulated intensity and a crank velocity
of approximately 70 rpm. Then, the lower limbs to be trained
will undergo a specific warm-up consisting of one set of 10
repetitions at 50% of the individual one repetition maximum
(1-RM), with repetitions executed at submaximal velocity. The
PRT performed with light loads (LL-PRT) will consist of six
sets of 12 repetitions using a load equivalent to 40% 1-RM,
whereas heavy-load PRT (HL-PRT) will comprise six sets of
six repetitions with a load equivalent to 80% 1-RM. Therefore,
the total volume × load will be matched between the training
programs to minimize bias related to unequal training volumes.
In addition, the 1-RM will be re-assessed in 4-week intervals
to adjust training loads and ensure progressive overload. For
both training programs, the participants will be instructed and
verbally encouraged to perform the concentric phase of each
repetition as fast and strong as possible (i.e., ballistic approach),
whereas during the eccentric phase the load will be lowered in
a controlled manner in 3 s and 2 s for LL-PRT and HL-PRT,
respectively. These unequal durations serve to balance the greater
volitional effort required to retain a heavier load compared
with a light load during the eccentric phase (Rodriguez-Lopez
et al., 2020). Sets will be interspersed by 2-min rest periods. In
subjects in whom both lower limbs will be trained (i.e., HL-
PRT vs. LL-PRT group), an additional rest period of 1-min
will be included between each leg, and the leg trained first will
alternate between sessions. To warrant adequate recovery, all
training and testing sessions will be separated by a minimum
of 48 h. Participants will be required to attend to at least 80%
of sessions. Those unable to participate for 10 days or more
will be excluded from the study. Furthermore, subjects will be
asked to maintain their regular physical activity levels and diet,
and to inform study administrators about any changes in their
medications. All training sessions and tests will be attended
individually, supervised by an experienced sport scientist, and
conducted approximately at the same time every day.

Outcomes
All tests to be performed at each measurement point will be
completed on three separate days. In the morning of the first
day, blood samples, anthropometric, and body composition data
will be collected with the participants in a fasting state. After
a light and standardized breakfast, participants will complete a
physical function test battery. On the second day, muscle size
and architecture of the mid-thigh along with patellar tendon
mechanical properties will be assessed. On the third day, the
unilateral neuromuscular performance of the lower limbs will

be assessed through isometric and dynamic tests. Additionally,
a progressively loaded five-repetition sit-to-stand (STS) test will
be conducted. Before the baseline assessments, at least two
familiarization sessions will be completed to instruct participants
in the proper technique of the neuromuscular tests. A detailed
scheme of the assessments and outcomes that will be evaluated
during this study is shown in Table 1.

Primary Outcomes
Maximal Isometric Force (MIF) and Rate of Force
Development (RFD) of the Knee Extensors
For isometric strength tests, participants will be seated on a
custom-built isometric chair (Telju Fitness, Spain) with knee and
hip angles of 90◦ and 120◦, respectively (180◦ full extension). An
ankle brace together with a steel cable with minimal compliance
will be used to connect the lower leg to a strain gauge cell (Linear
Force SmartLead, Noraxon, United States) to register knee
extension force at 1,500 Hz. Then, participants will be instructed
to perform several maximal voluntary isometric contractions
(MVIC), extending their knee as fast and strong as possible and
holding the contraction for 3 s after the cue “ready, set, go!.”
Strong verbal encouragement and visual feedback will be given
in each attempt to ensure maximal efforts. Five adequate trials
(separated by 60 s) will be acquired. Then, the MIF will be
determined as the highest force value registered, and the RFD will
be calculated as the linear slope of the time-force curve between
0–50, 0–100 and 0–200, 0–400 ms and at the maximal point of the
time-RFD curve (RFDmax).

Force-Velocity Relationship and Maximal Dynamic
Strength in the Unilateral Leg Press Exercise
The assessments will be conducted on a horizontal leg press
device (Selection MD, Technogym, Italy) instrumented with a
force plate (Type 9286BA, Kistler, Switzerland) and a linear
position transducer (Linear encoder, Chronojump Boscosystem,
Spain). A detailed description and validation of the systematic
procedure that will be followed to obtain the force-velocity
relationship and maximal dynamic strength in older adults
has been previously published (Alcazar et al., 2017). Briefly,
the participants will perform two sets of two repetitions with
the starting load equivalent to 40% of their body mass being
gradually increased (5–20 kg increments) until the 1-RM is
reached (failure was defined as not being able to lift a load
within two attempts). From the starting position (knee and hip
joint angles of 90◦ and 70◦, respectively; full extension = 180◦),
the repetitions will be executed as fast as possible during the
concentric phase, whereas self-preferred eccentric velocity will be
demanded to warrant maximal performance in the subsequent
repetition. The processing of force and velocity signals has been
described previously (Rodriguez-Lopez et al., 2020). Shortly,
force and velocity values from the most powerful attempts of each
load (i.e., highest mean power value) will be fitted in a linear
model, distinguishing between first and second repetitions (i.e.,
concentric-only vs. eccentric-concentric performance). Then,
the theoretical maximal isometric force and maximal velocity
with no load will be estimated through extrapolation of the
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TABLE 1 | Overview of the outcomes, time points of measurements, and treatments.

Time points, periods, and treatments

Baseline Pre-training Post-training

(Week 0) (Week 8) (Week 20)

Outcome Device/Procedure Control (8 weeks) Training (12 weeks)

Primary outcomes:

Unilateral neuromuscular performance

Maximal isometric force Isometric KE chair

Rate of force development Isometric KE chair

One-repetition maximum Leg press

Force-velocity parameters Leg press

Theoretical maximal isometric force

Maximal velocity with no load

Maximal muscle power

Mid-thigh muscle morphology Ultrasound

Cross-sectional area

Pennation angle

Fascicle length

Secondary Outcomes:

Muscle excitation Surface

Quadriceps electromyography

Biceps femoris

Patellar tendon mechanical properties Ultrasound

Stiffness

Young’s Modulus

Anthropometry and body composition

Weight Stadiometer

Height Scale

Body mass index

Muscle mass (total and appendicular) Dual-energy X-ray

Fat mass (total and appendicular) absorptiometry (DXA)

Bone mineral content and density

Lumbar spine

Femur proximal region

Physical function See text for details

Short Physical Performance Battery

30 m maximal gait speed

Handgrip strength

Time-up and go test

Progressive loaded sit-to-stand test Weight vest

Power output (0, 10, and 20% BW)

Venous blood samples See text for details

Oxidative stress (protein carbonylation)

Inflammation (IL-6, TNFα, CRP)

Anabolic and catabolic processes (T:C, GH, IGF-1)

Neuromuscular remodeling (CAF)

Stress-induced processes (GDF-15)

LL-PRT vs. No
training

No training HL-PRT vs. No
training

HL-PRT vs. LL-PRT

KE, knee extension; BW, body weight; HL–PRT, heavy load power–oriented resistance training; LL–PRT, light load power–oriented resistance training; IL–6, Interleukin 6;
TNFα, tumoral necrosis factor alpha; CRP, C-reactive protein; T:C, testosterone:cortisol ratio; GH, growth hormone; IGF–1, insulin growth factor-1; CAF, C–terminal agrin
fragment; GDF–15, growth differentiation factor 15.

linear regression line (force- and velocity intercepts, respectively).
In addition, the maximal muscle power as well as the force
and velocity at which it is produced will be determined
(Alcazar et al., 2017).

Mid-Thigh Muscle Size and Architecture
The participants will lie on an examination table in supine
position and with the legs slightly flexed with the aid of
a foam roller placed beneath the knee. To allow for fluid
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shifts to occur, this position will be held for 15 min before
examination. Brightness mode ultrasound (MyLab 25, Esaote
Biomedica, Genova, Italy) images will be taken with a 50 mm,
10–15 MHz linear-array probe. The scans will be acquired at
50% of the distance between the greater trochanter and the
inferior border of the lateral condyle of the femur. For muscle
size quantification, three transversal panoramic scans of the
rectus femoris and the vastus lateralis muscles will be obtained
using the extended field of view image stitching technique. For
this purpose, the examiner will acquire images by moving the
prove from the medial aponeurosis of the rectus femoris to the
lateral border of the vastus lateralis at constant velocity. Then,
three longitudinal images of the vastus lateralis will be obtained
with the probe positioned at an individually determined optimal
location (characterized by parallel aponeuroses and consistency
of the fascicle orientation) and aligned with the fascicle plane.
Abundant transmission gel will be applied to ensure acoustic
coupling with minimal pressure to avoid muscle deformation.
All scans will be subsequently analyzed using Fiji image analysis
software (Schindelin et al., 2012). For measurements of muscle
size of the rectus femoris and vastus lateralis, the muscles’
aponeuroses will be traced to quantify the cross-sectional area.
The vastus lateralis muscle architecture will be analyzed through
the Simple Muscle Architecture Analysis tool for Fiji (Seynnes
and Cronin, 2020). Basically, this is an automated analysis
process that highlights aponeuroses and fascicles to obtain the
dominant fascicle orientation (i.e., pennation angle) and estimate
fascicle length.

Secondary Outcomes
Quadriceps and Biceps Femoris Muscle Excitation
Wireless surface electromyography (DTS EMG sensors and
Desktop DTS, Noraxon United States) will be employed to
acquire the excitation levels of the quadriceps femoris muscle
(rectus femoris, vastus medialis, and vastus lateralis) and the
long head of the biceps femoris muscle during the unilateral
knee extension and leg press neuromuscular performance
tests and the assessment of the patellar tendon mechanical
properties (see below). The SENIAM recommendations will
be followed when placing bipolar electrodes (HEX Dual
Electrodes, Noraxon, United States) onto each muscle belly after
proper skin preparation (Hermens et al., 2000). Raw surface
electromyography signals will be captured at 1,500 Hz, amplified
and filtered with a band-pass filter between 10 and 500 Hz
(common mode rejection ratio >100 dB, input impedance
>100 M�, and gain = 500) before any other signal processing.
Unless otherwise stated, raw surface electromyography signals
will be rectified and smoothed by calculating the root mean
square with a 100 ms time window. The resultant signals
amplitudes will be normalized to the muscle-specific maximum
values measured during knee extension and flexion MVIC testing
(EMG AMP,% MVIC). Furthermore, total cumulative muscle
excitation will be calculated as the integrated area under the EMG
AMP curve (%MVIC × s). Electromyographic and force signals
will be synchronously processed within commercial software
(MyoResearch 3.10, Noraxon, United States).

Patellar Tendon Mechanical Properties
The morphology of the patellar tendon at rest will be assessed
with the same ultrasound system also used for measurements of
muscle size and architecture. For this purpose, the participants
will be accommodated (after a 5-min cycle ergometer warm-
up) on the custom-built chair used for isometric strength tests,
with knee and hip angles of 90◦ and 120◦, respectively (180◦

full extension), and their lower leg connected to a strain gauge
cell (see above). The extended field of view mode will be used
to acquire images of the resting patellar tendon in the sagittal
plane to determine its length as the distance between the tibial
tuberosity and the patellar apex. In addition, the cross-sectional
area of the patellar tendon will be measured at 25, 50, and 75% of
the tendon length.

Prior to measurements of tendon mechanical properties,
participants will perform several submaximal isometric ramp
contractions with constant loading and visual feedback for
tendon conditioning. Afterward, the participants will first execute
three MVIC of the knee extensors, followed by three further
maximal contractions of the knee flexors, with all contractions
being separated by 60-s rest intervals. These tests will serve
for the normalization of the electromyographic signals and to
establish the loading rate for the ramp isometric contractions in
which tendon elongation will be measured. Then, the ultrasound
probe will be positioned on the patellar tendon in the sagittal
plane, with both the patella and tibial tuberosity in the field
of view. A demonstrative image of this experimental setting
is shown in Figure 2. Ultrasound video sequences will be
recorded at 24 Hz while participants perform eight appropriate
ramp contractions of the knee extensors. The loading rate will
be standardized, such that participants gradually increase the
level of force produced from 0 to 80% of maximal isometric
force over 4 s and then relax at the same controlled rate. The
acquired force signals superimposed over a target template will
be shown on a screen to provide instant feedback to participants
(MyoResearch XP, Noraxon, United States). One minute of rest
will be granted between trials.

All image processing will be performed offline. First, tendon
elongation will be measured as the proximodistal component of
the displacement of the patellar apex relative to the tibial plateau.
The points of interest will be tracked using a semi-automated
software (Tracker 4.91)1, allowing to obtain the continuous
force-tendon length data for the subsequent analysis of tendon
mechanical properties. Force and electromyographic signals
(1,500 Hz) will be synchronized with ultrasound video (24 Hz)
data using an MS Excel R© spreadsheet. The further processing
will be performed using custom-made MATLAB R© routines
(MATLAB R2014b, MathWorks, Natick, MA, United States). The
knee extension torque will be calculated as the product of knee
extension force and the distance between the center of rotation
of the knee and the position of the ankle brace just proximal to
the malleoli. Then, this product will be divided by the individual
patellar tendon moment arm, estimated from femoral length
(Visser et al., 1990), to obtain tendon force. Tendon stress will be
calculated by dividing tendon force by the average of the patellar

1http://physlets.org/tracker/
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FIGURE 2 | Demonstrative example of the experimental setting for acquisition of in vivo patellar tendon behavior during isometric ramp contractions (A). Field of view
of ultrasound images collected from the patellar tendon (B). White arrows indicate points on patella (left) and tibial tuberosity (right) that will be tracked to determine
tendon elongation.

tendon cross-sectional area as measured at 25, 50, and 75% of
tendon length. Tendon strain will be computed as the change
in length in relation to resting tendon length. Individual force-
tendon elongation curves will be fitted with second or third order
polynomials. Then, tendon stiffness (1force/1elongation) and
Young’s modulus (1stress/1strain) will be calculated as the slope
of the fitted polynomials in the final 10% of force-elongation and
stress-strain curves, respectively, of the weakest valid trial.

Anthropometric and Body Composition Assessments
Participants height, body mass, and body mass index will be
assessed using a stadiometer and scale device (Seca 711, Seca,
Hamburg, Germany). Total and appendicular body composition
(i.e., absolute and relative bone, muscle and fat content) will be
determined using a calibrated dual-energy X-ray absorptiometry
(DXA) device (Hologic Series Discovery QDR densitometer;
Hologic, Bedford, MA, United States). In addition to the whole
body scans, bone mineral content and density will be determined
from the lumbar spine (L1–L4) and the proximal region of
both femurs (total hip, greater trochanter, intertrochanter, Ward’s
triangle, and femoral neck). All DXA scans will be analyzed
using Physician’s Viewer, APEX System Software Version 3.1.2
(Hologic, Bedford, MA, United States).

Physical Function Test Battery
A wide battery of test will be used to evaluate the physical
function of participants. Firstly, the Short Physical Performance
Battery will be conducted, which evaluates static balance, 4-m
habitual gait speed and five-repetition sit-to-stand time (Guralnik
et al., 1994). In addition, 4.5-m habitual gait speed and 30-m
maximal gait speed will be also examined. The handgrip strength
will be registered during a maximal isometric contraction using a
digital dynamometer (Takei TKK 5401, Tokyo, Japan). For this
purpose, participants will be instructed to let their arms hang
straight and slightly abduct their shoulders. Finally, participants
will complete a 3-m timed up and go test, which consists of

getting up from a chair, walking around a cone located 3-m in
front of the chair and sitting down again as fast as possible. Two
appropriate trials will be collected from each test, registering the
better of both performances.

Progressively Loaded 5-Repetition Sit-to-Stand Test
In addition to the tests included in the Short Physical
Performance Battery, participants will perform an additional
repeated sit-to-stand test with increasing loads. Starting from a
seated position on a standardized armless chair with their feet
over a force-plate and their arms crossed over the chest, they
will be encouraged to complete five repetitions (rising to a full
standing position and return to the original sitting position) as
rapidly as possible. The test will be conducted under unloaded
and loaded conditions: 0%, 10%, and 20% of the participant’s
body mass. The better of two adequate trials in each loading
condition will be registered. One minute of passive recovery will
be guaranteed between trials. A video camera (HD Pro Webcam
C920 1080p, 30 Hz, Logitech, Switzerland) will record all trials
from the sagittal plane. Concentric and eccentric phases of the
movement will be detected offline examining force and video
signals synchronized within a specialized software (MyoResearch
3.10, Noraxon, United States). Mean force will be collected with
the force plate. STS vertical displacement will be calculated as
leg length (from the superior border of the greater trochanter of
the femur to the inferior border of the calcaneus bone) minus
the height of the chair from the top of the force plate (0.43 m).
Then, mean velocity of each STS repetition will be calculated as
the ratio between STS vertical distance and time elapsed during
the concentric phase. Finally, mean power during each repetition
will be determined as the product of mean force and mean
velocity values.

Blood Samples Collection
Blood samples will be collected at rest after an overnight fast
(>12 h) from an antecubital vein in different tubes containing
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thixotropic gel, sodium heparin and ethylenediaminetetraacetic
acid (EDTA) (BD Vacutainer, Stockholm, Sweden). Samples
will be collected at least 72–96 h apart from any exercise or
testing session. Samples collected in the sodium heparin and
EDTA tubes will be immediately centrifuged (1200 g, 10 min
and 4◦C) whereas thixotropic gel tubes will be kept at room
temperature (22–24◦C) for 30 min before being identically
centrifuged. Samples will be analyzed immediately for routine
clinical chemistry measurements and then, they will be put
into 500-µL aliquots and frozen at −80◦C for later analysis.
This further analysis will determine the circulation levels
of biomarkers related with oxidative stress, inflammation,
anabolic and catabolic processes, neuromuscular remodeling
and stress-induced processes. More specifically, oxidative
stress will be determined through immunoblot detection of
protein carbonylation with commercially available kits, levels
of interleukin-6, tumoral necrosis factor alpha (TNFα), and
C-reactive protein will be assessed as inflammatory markers and
the testosterone: cortisol ratio, growth hormone, insulin growth
factor-1, and creatine kinase will be analyzed as biomarkers
of anabolic and catabolic processes with a high-sensitivity
magnetic multiplex assay (Bio-Plex Multiplex System, Bio-Rad,
CA, United States). Furthermore, C-terminal agrin fragment
(CAF), as a neuromuscular remodeling biomarker, and growth
differentiation factor (GDF-15) as a biomarker for stress-induced
processes will be determined using commercially available
enzyme-linked immunosorbent assay (ELISA) kits according to
the manufacturer’s protocol. All samples collected for a given
individual will be assessed within the same sample plate.

Harms
Interventions and procedures considered in this study are
minimally invasive, with a low risk of adverse events. Participants
may develop delayed onset muscle soreness during the first
sessions, diminishing after few sessions due to the repeated bout
effect (Byrne et al., 2006). Since the exercise will be directly
supervised by an experienced sport scientist, the risk of injury
is minimal. Potential acute or persistent exercise-related adverse
events will be brought to the attention of a study physician and
discussed with both the participant and the project leader before
making joint, informed decisions concerning their treatment and
the further participation in the study.

Statistical Analysis
Data will preferentially be presented as mean ± standard
deviation. Normality of distribution will be assessed by the
Shapiro–Wilk test and log-transformed in case of non-normal
distribution. As preference, the outcomes will be registered
as the absolute (Post – Pre) and relative [(Post – Pre)/Pre]
change during the 8-week control period and the 12-week PRT
program. Given the hierarchical structure and correlated data
contained in our investigation (each participant will contribute
to observations in two different groups), the existence of partially
paired data must be considered for comparison purposes. Thus,
linear mixed effect models will be used to assess the goals
proposed for the present investigation. To assess the adaptations
provoked by two volume × load-matched PRT programs using

heavy vs. light loads in older adults (goal 1), changes noted
in the legs undergoing HL-PRT and LL-PRT (i.e., week 20-
week 8) and those noted in the same legs during the control
period (i.e., week 8-week 0) will be compared with treatment
(HL-PRT vs. LL-PRT vs. control) as a fixed factor, participants
as a random factor and baseline values as a covariate. To
investigate the adaptations provoked by heavy- vs. light-load
PRT on the contralateral limb in older adults (goal 2), changes
noted in the contralateral non-exercising legs of those legs
performing either HL- or LL-PRT (i.e., week 20-week 8) and
those noted in the same legs during the control period (i.e.,
week 8-week 0) will be compared with treatment (HL-PRT
vs. LL-PRT vs. control) as a fixed factor, participants as a
random factor and baseline values as a covariate. The models
will be calculated considering maximum likelihood estimation
and the best-fitting covariance structure. Bonferroni corrections
will be applied for the post hoc pairwise comparisons and
the Cohen’s d effect sizes will be calculated and classified
as trivial (0.20), small (0.20–0.49), moderate (0.50–0.79), and
large (>0.8) (Cohen, 1988). Potential adverse events and drop-
outs will be compared between groups by Chi-squared tests.
All statistical analyses will be performed using IBM SPSS
Statistics for Windows Version 24.0 (IBM Corp. Armonk, NY,
United States), and the level of significance will be set at
α = 0.05.

DISCUSSION

The main purpose of the current project is to increase
the knowledge about the effect of training intensity of PRT
in older adults. Exploring specific adaptations induced by
HL-PRT and LL-PRT will provide valuable data informing
the prescription of resistive training in this population. The
interindividual variability of training responses found in older
adults recommends that exercise interventions be tailored
according to individual deficits (Ramírez-Vélez and Izquierdo,
2019). For example, an impaired muscle power output may result
from a reduced ability to produce force at slow velocities (i.e.,
deficit with heavy loads), limitations to produce force at high
velocities (i.e., deficit with light loads), or even a combination
of both (Alcazar et al., 2018). Although both deficits have been
associated with poor functional performance, low quality of life
and frailty (Alcazar et al., 2018), it seems reasonable to expect
that training success rates would be greater if the PRT prescribed
accounted for individual needs. In this sense, previous studies
comparing PRT using different loads have found force- (de Vos
et al., 2005; Orr et al., 2006) or velocity-dependent (Englund
et al., 2017) specific adaptations for heavier and lighter loads,
respectively. Conversely, studies using mechanical work-matched
approaches (Macaluso et al., 2003) or those studies conducted
in mobility-limited older adults (Reid et al., 2015) have not
confirmed these specific adaptations. Against this background,
this project will consider the recommendations of Katsoulis et al.
(2019) and expand our knowledge concerning the functional
benefits of individually tailored PRT in older age. In addition,
our study will allow for mechanistic insights into the specific
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neuromuscular adaptations induced by HL-PRT and LL-PRT.
Despite impaired neuromuscular excitation seems to be an
important limitation for power production in older adults (Klass
et al., 2008; Clark et al., 2010), other mechanisms such as muscle
morphology and muscle-tendon behavior play an important role.
For example, improvements in muscle mass, fascicle length,
and pennation angle (and consequently increased physiological
cross-sectional area of the muscle) have been linked to an
enhanced muscle power production after a 6-weeks plyometric
training intervention in older adults (Franchi et al., 2019).
Besides that, high-loading exercises like heavy resistance training
or PRT have showed to induce changes in the muscle-tendon
complex (Hoffrén et al., 2012; Eriksen et al., 2019), modeling
tendon behavior as a force transducer during the former, and
as an elastic energy storage and power amplifier during the
latter (Magnusson and Kjaer, 2019). This might be especially
relevant during actions involving the stretch-shortening cycle,
which induces a potentiation mechanism that mitigate power
production limitations seen during pure concentric actions
in older adults (Navarro-Cruz et al., 2019). In conjunction,
these muscle power determinants that will be addressed in this
study could be closely related with an expected improvement
of functional performance (Tschopp et al., 2011; Byrne et al.,
2016). In this sense, we aimed to evaluate the protective role of
PRT against disability analyzing functional performance under
different tasks and load-capacity conditions that will be obtained
from the progressive loaded sit-to-stand test. Parallel to these
adaptations, PRT has proved efficacy reinforcing bone health of
postmenopausal women (Stengel et al., 2005; Hamaguchi et al.,
2017) and as a suitable exercise to improve metabolic profile and
body composition of older individuals (Ihalainen et al., 2019).

Regarding the second aim of this study (i.e., cross-education
phenomenon), we expect to observe this phenomenon as most
of its determinants will be fulfilled. The magnitude of cross
education is greater in untrained participants and after training
with complex and high demanding tasks as could be PRT (Lee
and Carroll, 2007; Cirer-Sastre et al., 2017; Colomer-Poveda et al.,
2019). Furthermore, the cross-education has been previously
observed in older people after ballistic training (Hester et al.,
2019a,b). However, the impact of the load used during PRT
in cross-education in older adults remains to be elucidated.
In a previous study conducted in older adults comparing the
mechanical characteristics of light- vs. heavy-load PRT (40
vs. 80% 1-RM) (Rodriguez-Lopez et al., 2020), the muscle
excitation registered (i.e., EMG amplitude) was similar when both
training programs were executed until the same degree of fatigue
was reached during the set. Since muscle excitation could be
considered a proxy of neural excitation (Vigotsky et al., 2018), a
major determinant of the cross-education phenomenon, it could
be hypothesized that small or no differences will be found in the
magnitude of the cross-education effects yielded by HL-PRT and
LL-PRT in our study. However, other factors such as the anabolic
systemic response to resistance training may influence on cross-
education-derived adaptations, and thus, some differences may
arise between using heavy vs. light loads in PRT in older adults.

In conclusion, the results of this study will shed light about the
influence of load magnitude on PRT neuromuscular adaptations

in older adults. Furthermore, the original design of this study
brings the opportunity to investigate possible cross-education
adaptations on an untrained contralateral leg. Hence, this study
will aid to design tailored training programs in older adults, even
during limb-immobilization or for clinical populations where
unilateral training is recommended.
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