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The renin angiotensin system and the cholinergic anti-inflammatory pathway have been
recently shown to modulate lung inflammation in patients with COVID-19. We will show
how studies performed on this disease are starting to provide evidence that these two
anti-inflammatory systems may functionally interact with each other, a mechanism that
could have a more general physiological relevance than only COVID-19 infection.
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INTRODUCTION

Two anti-inflammatory systems have primary role in controlling inflammation in the lung. The
first is based on cholinergic neurotransmission and neuronal-type nicotinic acetylcholine receptors
(nAChR) which are nowadays emerging as important players, not only in lung inflammation but
also in lung carcinogenesis. The other system is centered on small peptides generated by the Renin-
Angiotensin System (RAS) whose role in the control of arterial blood pressure is well known, but
recently emerged as important mediators of inflammation not only in the lung but also in other
organs, such as the kidney or the cardiovascular system. Recent investigations on the pathogenetic
mechanisms of the ongoing devastating COVID-19 pandemic suggest that the cholinergic anti-
inflammatory system and the RAS system could converge at some point in the pathways inducing
lung inflammation. Understanding such a convergence could help to disentangle the intricate
relationship between tobacco smoking and the risk of COVID-19, facilitating new therapeutic
approaches for this disease and unveiling more general issues on the regulation of inflammation
in lung diseases.

THE CHOLINERGIC ANTI-INFLAMMATORY SYSTEM IN
PULMONARY INFLAMMATION

Neuronal type nAChR are pentameric receptor-operated cationic channels constituted by the
homomeric or heteromeric assembly of nine different isoforms of α, and three different isoforms

Abbreviations: ACE, Angiotensin-converting enzyme; ACE-2, Angiotensin-converting enzyme 2; Ach, Acetylcholine; Ang
II, Angiotensin II; Ang-(1-7), Angiotensin-(1–7); Ang-(1–9), Angiotensin-(1–9); AT1-R, Angiotensin II receptor type 1; AT2-
R, Angiotensin II receptor type II; COPD, chronic obstructive pulmonary disease; COVID-19, coronavirus disease 2019; Ko,
knockout; Mas-R, Mas-receptor; nAChR, nicotinic acetylcholine receptors; RAS, Renin-angiotensin system; SARS-CoV2,
severe acute respiratory syndrome coronavirus 2.
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of β subunits (Yamada and Ichinose, 2018). Among these
different subunits the expression of α3, α4, α5, α7, β2, and β4
has been demonstrated in the lung (Lippi and Henry, 2020),
where they form nAChR that can be activated either by the
Ach directly synthetized by epithelial lung cells (Kuba et al.,
2005) or by the Ach released from vagal terminals that innervate
also distal airways (Fox et al., 1980). In recent years attention
has been focused on homomeric α7 receptors (Hajiasgharzadeh
et al., 2019). These rapidly desensitizing, highly Ca2+ permeable
nAChRs, with the unusual property of responding not only
to Ach but also to choline, were first identified in the lung
by Wang et al. (2001) who demonstrated their presence in
human bronchial epithelial cells. Hollenhorst et al. (2012)
demonstrated that nicotine binding to nAchR is effective in
activation of transepithelial ion transport in mouse tracheal
epithelium involving adenylyl cyclase activity. Kumar et al.
(2020) studied many subtypes of nAChRs, such as α3β4, able
to increase Ca2+ release from intracellular store in the mouse
trachea. Studies in α7 nAChR ko mice, showing enhanced tissue
inflammation in response to different inflammogens, support
the hypothesis that these receptors could negatively modulate
the inflammatory response (Su et al., 2010). The cholinergic
regulation of macrophage function through nAChR α7 is part
of the wider cholinergic anti-inflammatory pathway operated
by vagal nerves in the modulation of tissue inflammation
(MacKenzie, 2011). In this contest, an anti-inflammatory effect
was observed in the lung where it could represent an interesting
target for the treatment of both acute and chronic inflammatory
diseases (Su et al., 2010; Brégeon et al., 2011; Yamada and
Ichinose, 2018). Recent studies indicate that protection from
inhaled pathogens evolved in the airways through mucociliary
clearance and cough. The protective respiratory reflexes to locally
released bacterial bitter “taste” substances are most probably
initiated by tracheal brush cells (BC), able to synthetize Ach,
effective in stimulating nAChR, and several other intracellular
signal molecules (Hollenhorst et al., 2020). In particular, nicotinic
stimulation of α3β4-nAChR acutely increases particle transport
speed (PTS) on the mucosal surface to the same extent as the
established strong activator ATP (Perniss et al., 2020). Krasteva
et al. (2011) identified cholinergic chemosensory cells in mouse
trachea, able to release Ach and reduce the breathing frequency.
These brush cells, as cholinergic sensors of the chemical
composition of the lower airway luminal microenvironment,
are directly linked to the regulation of respiration and to the
immune system modulation. Khani et al. (2020) highlighted the
key role played by nicotinic agonists against cytokine storm
induced by COVID-19.

THE RAS SYSTEM IN PULMONARY
INFLAMMATION

It has been well known that RAS participates not only to
the regulation of arterial blood pressure but also in tissue
inflammation. By acting on AT1 receptors (Kummer et al., 2008),
Angiotensin II (Ang II), indeed, induces free radical generation,
activates dendritic cells, stimulates synthesis and release of

proinflammatory and chemoattractant cytokines, promotes the
expression of endothelial adhesion molecules and leukocyte
margination and migration in tissues (Benigni et al., 2010).
Similar effects have been demonstrated also in the lung where
Ang II promotes free oxygen radical formation (Wang et al.,
2017), enhances vascular permeability and edema formation
(Zhang and Sun, 2005), and contributes to tissue damage and
remodeling by promoting the apoptosis of alveolar epithelial cells
(Wang et al., 1999) and the proliferation of fibroblasts (Marshall
et al., 2000). Ang II proinflammatory effects are homeostatically
counteracted by another RAS peptide, Angiotensin (1-7) [Ang-
(1-7)] that is generated by the alternative metabolism of Ang I
or Ang II by ACE2 (Silva and Teixeira, 2016), an 805 amino
acids transmembrane metallopeptidase, cloned 20 years ago by
Tipnis et al. (2000). More specifically, this enzyme removes
a single residue from Ang II to generate Ang-(1–7) and a
single residue from Ang I to yield Ang-(1–9) which is further
processed to generate Ang-(1-7) (Donoghue et al., 2000). Acting
on AT2 receptors and Mas receptors, Ang-(1-7) counteracts Ang
II activity by inducing anti-proliferative, anti-inflammatory and
antifibrotic effects as it has been demonstrated in animal models
of several inflammatory disorders including rheumatoid arthritis,
diabetic nephropathy, hepatic fibrosis and lung diseases such as
asthma, pulmonary fibrosis and the respiratory distress syndrome
(Benter et al., 2008; El-Hashim et al., 2012; Galvão et al.,
2019; Magalhães et al., 2019). Interestingly, beneficial effects,
probably dependent from increased Ang-(1-7) generation have
been demonstrated in piglets with lipopolysaccharide-induced
lung injury upon treatment with recombinant ACE-2 (Treml
et al., 2010): this enzyme has also been tested in a pilot trials in
humans with ARDS (Khan et al., 2017).

A new role for ACE2 in pulmonary diseases has been
demonstrated by studies on two new human coronaviruses,
SARS-CoV and SARS-CoV2. SARS-CoV causes the SARS
epidemics that determined about 8400 cases and more than
800 deaths in 2003/2004 (Staats et al., 2020). SARS-CoV2 is
responsible for the ongoing COVID-19 pandemic that at the
time of writing already caused 8.52 million of cases and more
than 450.000 deaths in the World (World Health Organization
(WHO), 2020). Both these viruses enter target cells in the airways
and diffuse into susceptible organs, such as the brain, upon
binding of their surface spike protein (S) to plasma membrane
ACE2. More specifically, after binding to ACE 2 the S protein
is cleaved by the Transmembrane Serine Protease 2 (TMPRSS2);
its carboxy-terminal S2 domain is released, facilitating the fusion
of viral membrane with the plasma membrane of the target
cell (Hoffmann et al., 2020). ACE2 has a crucial role in the
pathophysiology of SARS-CoV and SARS-CoV2 infections, as the
key factor for virus penetration; however, it also participates to
the pathophysiological mechanisms of these diseases in a way
related to its physiological activity in the RAS modulation. It has
been suggested, indeed, that ACE2 activity could by impaired
after S protein binding, with consequent imbalance of the RAS
mechanisms, facilitating the proinflammatory activities of Ang II.
Upon exposure to a fusion protein of the SARS-CoV S protein
and the immunoglobulin Fc fragment, Su et al. (2010) showed
that the surface density of ACE2 is significantly lowered both
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FIGURE 1 | Interaction between the renin angiotensin system and the cholinergic anti-inflammatory pathway in SARS-CoV-2 lung infection. The drawing shows how
the renin angiotensin system and the cholinergic anti-inflammatory pathway modulate tissue inflammation in lungs infected with SARS-CoV-2 and how these two
systems interact with each other (see the text for further details). Ang I: Angiotensin I; Ang II: angiotensin II; Ang-(1–7): angiotensin 1-7; Ang-(1–9): angiotensin 1-9;
ACE: angiotensin-converting enzyme; ACE2: Angiotensin-converting enzyme 2; AT1R: Angiotensin Receptor 1; AT2: Angiotensin Receptor 2; MASR: Mas receptors.

in HEK-293 overexpressing this enzyme and in Vero E6 cells
endogenously expressing ACE2. The mechanism suggested for
this S protein effect is receptor-dependent endocytosis and the
same has been hypothesized in susceptible cells challenged with
SARS-CoV. Hajiasgharzadeh et al. (2019) showed that SARS-CoV
also promotes TACE-dependent cleavage of ACE2 in plasma-
membrane adding to ACE2 shedding and to a decrease of local
ACE2 availability and activity. A demonstration, that S-protein-
dependent loss of ACE2 activity could facilitate the progression
of lung inflammation, was given by experiments showing that
the S-Fc fusion protein causes functional imbalance of the
RAS mechanisms worsening the lung damage induced by acid
aspiration in mice: this worsening effect is prevented with AT1
receptor antagonists (Su et al., 2010). The same mechanism has
been suggested during COVID-19 and could critically contribute
to the devastating progression of this disease.

DOES THE CHOLINERGIC
ANTI-INFLAMMATORY PATHWAY
REGULATE PULMONARY RAS HINTS
FROM THE COVID-19 PANDEMICS?

The hypothesis that cholinergic mechanisms could modulate
the RAS in the lung has been proposed to explain the effect

of tobacco smoking on the risk of contracting COVID-19
(Changeux et al., 2020). A high prevalence of smokers among the
COVID-19 patients with the most serious disease was reported
at the beginning of the pandemic in China (Guan et al., 2020).
Since then, several studies analyzed the relationship between
tobacco smoking and the severity of COVID-19 infection with
contradictory results. For instance, Vardavas and Nikitara (2020)
showed that tobacco smoking increases the risk of a serious
course of the disease; Lippi and Henry (2020) reported a non-
significant trend for such association and Farsalinos et al. (2020)
observed that in 13 studies from China the prevalence of
smokers among patients with COVID was significantly lower
than in general population. By examining 15 published studies,
Alqahtani et al. (2020) found that the disease was much more
serious in smokers than in non-smokers, although the prevalence
of smokers and patients with Chronic obstructive pulmonary
disease (COPD) was lower among patients with COVID-19.
Another meta-analysis of data from 18 studies showed that
smokers were statistically less likely to be hospitalized for serious
COVID-19 (OR = 0.18, 95% CI: 0.14–0.23, p < 0.01) (González-
Rubio et al., 2020). These data could suggest that tobacco
smoking reduces the probability of contracting COVID-19 but
worsens the prognosis of the disease when contracted. Whilst
the effect of cigarette smoking on COVID-19 remains uncertain,
experimental evidence supports the hypothesis that it increases
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ACE-2 activity as demonstrated in the peripheral blood of
healthy volunteers (Kimura et al., 2019) and in isolated rat lungs
(Bakhle et al., 1979). Moreover, it has been shown that the
exposure to cigarette smoke increases the activity of both ACE
and ACE2 activities in the lung in mice (Hung et al., 2016),
and that the expression of ACE2 is higher in the small airways
of human patients with COPD and in current smokers when
compared with healthy subjects and former smokers (Alqahtani
et al., 2020; Leung et al., 2020). Since tobacco smoke has
many chemical components besides nicotine, it could affect ACE
or ACE2 expression by multiple mechanisms, not necessarily
limited to the nicotine-dependent stimulation of nAChR. For
instance, it could induce tissue inflammation, which enhances
the release of cytokines known to significantly increase ACE2
expression in the lung (Wösten-van Asperen et al., 2008), and
selectively increases the number of the epithelial cells which
express ACE2 including alveolar type I, globet and club cells
(Smith et al., 2020). However, it is likely that nicotine by itself
may exert a role in this process considering that it induces
ACE2 upregulation in cultured human bronchial epithelial cells
and this effect is blunted by the selective nAChR blocker,
α-bungarotoxin, and by anti-α7 siRNAs (Russo et al., 2020).
Nicotine contained in smoke could be, therefore, acting as an
activator of the cholinergic anti-inflammatory system in the lung,
which could be beneficial in COVID-19 (Tizabi et al., 2020;
Qin et al., 2021). Indeed, although cholinergic stimulation is
expected to increase the density of the SARS-CoV2 receptor
ACE2, the higher activity of this enzyme could reduce Ang
II-induced proinflammatory status mainly by enhancing the
levels of its functional antagonist Ang-(1-7) (Magalhaes et al.,
2020). A further argument to suggest that nicotinic receptor
stimulation could be beneficial in COVID-19 is that it could
counteract the inhibitory effect of SARS-CoV2 on nicotinic
receptors. As a matter of fact, it has been observed the S
protein of SARS CoV2 shows sequence analogies with the nAChR
blocker α-bungarotoxin (Kimura et al., 2019), and in silico studies
showed that it can bind to nAChR and that several nAChR
agonists including nicotine can effectively prevent this binding
(Alexandris et al., 2020; Lagoumintzis et al., 2021). The inhibitory
effects of SARS-CoV2 on nAChR are expected to imbalance
the equilibrium between Ang II and Ang-(1-7) in favor of the
former, hence promoting lung inflammation, whereas cholinergic
stimulation could bring back to normal the Ang II/Ang-(1-7)
balance. Under this respect, it is worth noting that beneficial

effects of enhancing ACE-2 have been demonstrated in a single
patient with severe COVID-19 (a trial is ongoing) who was given
human recombinant soluble ACE2 with the double rationale of
blocking SARS-CoV2 spike proteins and of lowering Ang II at the
same time enhancing Ang-(1-7) (Zoufaly et al., 2020). Because
of its well-known toxicity for the airways, cigarette smoke
cannot be recommended to enhance cholinergic tone, but both
pharmacological and non-pharmacological tools can be used to
this aim. For instance, clinical trials are ongoing to evaluate
the efficacy in COVID-19 patients of nicotine patches (the
NICOVIDREA trial, NCT04598594), pyridostigmine bromide
(the PISCO trial) (Fragoso-Saavedra et al., 2020) or vagal nerve
stimulation (NCT04379037; Fudim et al., 2020; Staats et al.,
2020). The results of these studies are eagerly expected as
they could provide the clinical evidence, which is still missing
(Wenzl, 2020), that cholinergic stimulation could be helpful in
COVID-19 patients.

CONCLUSIONS AND FUTURE
PERSPECTIVES

In conclusion, we have summarized the data suggesting
that RAS and the cholinergic anti-inflammatory system may
represent two major regulatory mechanisms of inflammation
in the lung. We have reported that ACE2 acts as a receptor
for SARS-CoV2 and the still controversial effect of tobacco
smoking leading to a cholinergic hypothesis for COVID-
19. This hypothesis postulates that nicotine acting through
nAChR modifies risk and prognosis of this disease by changing
ACE2 levels (Figure 1). Besides the potential relevance for the
pharmacological treatment of COVID-19, that remains to be
established, the hypothesis that RAS and the cholinergic system
may functionally interact certainly deserves further attention
because of its potential implications for basic lung physiology and
for the pathophysiology of pulmonary diseases.
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