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Diet and inflammatory response are recognized as strictly related, and interest in exploring 
the potential of edible fats and oils for health and chronic diseases is emerging worldwide. 
Polyunsaturated fatty acids (PUFAs) present in fish oil (FO), such as eicosapentaenoic 
acid (EPA) and docosahexaenoic acid (DHA), may be partly converted into oxygenated 
bioactive lipids with anti-inflammatory and/or pro-resolving activities. Moreover, the 
co-presence of phenolic compounds and vitamins in edible oils may prevent the 
development of chronic diseases by their anti-inflammatory, antioxidant, neuroprotective, 
and immunomodulatory activities. Finally, a high content in mono-unsaturated fatty acids 
may improve the serum lipid profile and decrease the alterations caused by the oxidized 
low-density lipoproteins and free radicals. The present review aims to highlight the role 
of lipids and other bioactive compounds contained in edible oils on oxidative stress and 
inflammation, focusing on critical and controversial issues that recently emerged, and 
pointing to the opposing role often played by edible oils components and their 
oxidized metabolites.

Keywords: edible oil, vegetable oil, linoleic acid, alpha-linolenic acid, docosahexaenoic acid, immune response, 
inflammation resolution, marine oil

INTRODUCTION

Reactive oxygen species (ROS) are radical and non-radical chemical species formed by the 
partial reduction of oxygen that physiologically accumulate in parallel with cellular aerobic 
respiration (Angelova and Abramov, 2016). If unchecked, these compounds may result in DNA 
damages and cellular death. Figure  1 shows possible endogenous and exogenous sources of 
ROS, highlighting respiration as the major contributor to endogenous ROS production. Moreover, 
during stress conditions, the endoplasmic reticulum releases Ca2+ that may (a) contribute to 
the activation of the cytoplasmic protein NLR-Family Pyrin Domain Containing 3 (NLRP3) 
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and therefore of the inflammasome, and (b) enter the 
mitochondria with subsequent generation and release of ROS 
(Zorov et al., 2014). Cytoplasmic ROS can also activate nuclear 
transcription factor kappa B (NF-κB), that migrates into the 
cellular nucleus promoting the transcription of inflammatory 
and oxidative genes, like cyclooxygenase (COX)-2, inducible-
nitric oxide synthases (NOS), tumor necrosis factor alpha 
(TNF-α), interleukin (IL)-6, and IL-1β (Mitchell et  al., 2016). 
Transcription of inflammatory and oxidative genes can also 
be activated by Activator Protein 1 (AP-1) and Mitogen-Activated 
Protein Kinase (MAPK) resulting from toll like receptor’s (TLR) 
engagement (He et  al., 2009; Kuriakose et  al., 2019).

Additional sources of ROS include drug-derived ROS 
produced as a consequence of their oxidative metabolism, 
X-rays, and surgical interventions, but ROS formation is also 
significantly associated with the inflammatory response. 
Inflammation is the physiological response to damage and is 
normally temporarily limited and solved by either specific or 
non-specific immune mechanisms. When an inflammatory 
response to an insult, whichever the origin, is not contained 
and then eliminated by the immune response, the self-
perpetuation extends beyond the primary foci within a 
generalized hyper-reaction generating ROS that may contribute 
to the pathogenesis of non-communicable chronic diseases 
(NCDs), including cardiovascular diseases (CVDs), metabolic 
diseases, and cancer (Liguori et  al., 2018).

The body possesses defense mechanisms against ROS, such 
as specific enzymes (i.e., superoxide dismutase, catalase, and 
glutathione peroxidase) and thiolic antioxidant (i.e., glutathione, 
and albumin), and generates biologically active metabolites 
playing an important role in the physiological resolution of 
the inflammatory process. The diet may contribute to these 
processes by providing micronutrients, such as vitamin C and 

vitamins A and E, that can neutralize ROS, as well as 
macronutrients such as omega (ω)3 fatty acids that are substrates 
for the biosynthesis of resolution mediators.

Besides vitamins, other micronutrients can modulate 
inflammation, including minerals like Se, Cu, and Zn (Galland, 
2010), while focusing on macronutrients (that is, dietary 
components supplying energy, such as proteins, carbohydrates, 
and fats), hyper-caloric Western diets based on energy-dense 
foods, rich in simple sugars, and low in fibers, greatly contribute 
to an increase of endogenous lipogenesis to store the excess 
of energy. This process leads to high serum levels of saturated 
fatty acids (SFAs) which, in turn positively correlate with 
inflammatory markers such as circulating fibrinogen (Galland, 
2010). By contrast, consumption of polyunsaturated fatty acids 
(PUFAs) and ω3 fatty acids in particular, increases their 
circulating levels and shows opposite associations (He et  al., 
2009). Compared with ω3, ω6 fatty acids show variable effects 
on inflammation, and available data are controversial (Innes 
and Calder, 2018), but dietary, circulating monounsaturated 
fatty acids (MUFAs), especially oleic acid, may have anti-
inflammatory effects (Mashek and Wu, 2015).

Thus, dietary patterns, according to their specific nutrient 
and food composition, can either help to preserve a functional 
health status, or increase the risk of developing NCDs. The 
Mediterranean Diet (MD) is considered a healthy food pattern, 
especially considering its potential role in protecting against 
inflammation (Gotsis et  al., 2015). The term “Mediterranean 
Diet” is usually referred to as a diet characterized by the high 
consumption of fruits, vegetables, whole grain cereals, seafood, 
legumes, nuts, and seeds, with a limited intake of meat and 
fermented beverages (Widmer et al., 2015). Replacing the intake 
of SFAs with PUFAs is recommended by dietary guidelines 
focused on cardiovascular health [National Cholesterol Education 
Program (NCEP) Expert Panel on Detection, Evaluation, and 
T. of H. B. C. in A. (Adult T. P. I.), 2002], and consuming 
dietary oils derived from plants, seeds, or of marine origin is 
a strategy to increase the intake of PUFAs.

Plant-derived oils contain the two precursors of the ω6 and 
ω3 families, i.e., linoleic and alpha-linolenic acids (LA, ALA), 
together with protective micronutrients, such as tocopherols, 
carotenoids, phytosterol, beta-carotene, nitrogen compounds, 
minerals (e.g., phosphorous, magnesium, manganese, copper, 
iron, zinc, and potassium), vitamins, and phenolic compounds 
(Vergallo, 2020). Marine-derived oils, in particular oils from 
fatty fish, are an important source of ω3 fatty acids, predominantly 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA; 
Abedi and Sahari, 2014). Freshwater fish also ensures a good 
supply of ω6 PUFAs, but the possible presence of toxic 
contaminants or heavy metals and antibiotics may raise concerns 
in using fish oil (FO) as a source of PUFAs. Furthermore, 
undesirable flavors and tastes of FO may contribute to limiting 
their consumption (Abedi and Sahari, 2014).

In the first part of this narrative review, we  will focus on 
the specific families of compounds present in plant- and marine-
derived oils and their potential role relative to the formation 
of ROS and the inflammatory response. Particular attention 
will be  on their specific activity and function, their dietary 

FIGURE 1 | Possible sources of Reactive Oxygen Species (ROS).
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sources and the principal evidence related to their association 
with human health.

The second part of this work will briefly summarize a 
selection of dietary oils (vegetable or marine-derived) focusing 
on the results of human trials available in the literature 
highlighting their effects in different disease conditions.

A specific attention will be  paid to controversial or debated 
issues relative to selected components or edible oils.

LIPIDS, LIPID-DERIVED COMPOUNDS, 
AND MICRONUTRIENTS FROM EDIBLE 
OILS: ROLE IN OXIDATIVE STRESS 
AND INFLAMMATION

Edible oils and their components can play different and 
opposing roles in oxidative stress and inflammation. During 
the inflammatory responses and in presence of pathologies 
characterized by high tissue production of ROS, an increase 
intake of oils with significant amounts of long-chain 
PUFAs (LC-PUFAs) may increase PUFA in membrane 
phospholipids and, because of their high susceptibility to 
peroxidation (Pamplona, 2008), this could cause increased 
levels of PUFA peroxidation-derived compounds, such as 
oxidized phospholipids and isoprostanes, possessing significant 
pro-inflammatory properties (Takahashi et  al., 1992; Marathe 
et al., 2001; Leitinger, 2003). On the other hand, recent reports 
identified oxidized phospholipids endowed with potent activities 
leading to the physiological resolution of the inflammatory 
process (Friedli and Freigang, 2017), pointing to the balance 
between these potential effects of LC-PUFA peroxidation as 
a critical factor in defining the outcome of the increased 
consumption of LC-PUFAs.

Oxygenase enzymes, such as lipoxygenases and COXs, acting 
on LC-PUFAs can also contribute to the formation of ROS, 
both directly, as a by-product of their enzymatic activity (Swindle 
et  al., 2007), and through the formation of ω6 arachidonic 
acid (AA) metabolites such as leukotriene (LT) B4, that activate 
the NADPH oxidase (NOX; Yun et  al., 2010). Conversely, 
lipoxygenase-derived metabolites of ω3 LC-PUFAs may limit 
the formation of ROS (Chattopadhyay et  al., 2017), control 
the inflammatory response, and promote its resolution (Serhan 
et  al., 2008), suggesting again how a fine balance may define 
the contribution of LC-PUFAs to the physiological resolution 
of the inflammatory response rather than its evolution into 
chronic inflammation and pathology.

Finally, micronutrients from vegetable oils, such as vitamins 
or polyphenols, may also provide protection against ROS 
formation and its effects by their anti-oxidant activity, thus 
preserving membrane integrity (Ayala et  al., 2014; Bochkov 
et  al., 2017) and limiting the formation of pro-inflammatory 
mediators (Santus et  al., 2005). Nevertheless, also in this case, 
the discussion is ongoing about the ability of these compounds 
to significantly affect human health in consideration of the 
low concentrations observed in many edible oils and the limited 
bioavailability of phenolic compounds (Nediani et  al., 2019).

LC-PUFAs
Long-chain polyunsaturated fatty acids are synthesized by 
elongation and desaturation of the carbon chain from the 
parent essential PUFAs: LA for the ω6 series and ALA for 
the ω3 series (Agostoni and Bruzzese, 1992). The metabolic 
pathway consists of successive carbon chain elongation and 
desaturation steps (by inserting double bonds into the carbon 
chain), that are controlled by elongase and desaturase enzymes, 
respectively. It begins with a ∆6-desaturation step, followed 
by chain elongation and desaturation thereof, to yield EPA 
when the initial substrate is ALA, or to yield AA when the 
initial substrate is LA (Zárate et  al., 2017).

Arachidonic Acid and Its Metabolites
Arachidonic acid (AA) is the main ω6 product and is present 
esterified to the 2-position in specific classes of membrane 
phospholipids (Chilton and Murphy, 1986). Upon release from 
membrane phospholipids by the activity of the cytosolic 
phospholipase A2, AA is enzymatically converted by several 
oxygenases into eicosanoids, a large family of mostly 
pro-inflammatory molecules, while non-enxymatic peroxidation 
of esterified AA leads to the formation of isoprostanes (Morrow 
et  al., 1990), that can be  released from phospholipids by the 
activity of platelet-activating factor acetylhydrolases and soluble 
phospholipases A2 (Kuksis and Pruzanski, 2017).

Cyclooxygenase (COX)-1 and COX-2 drive the synthesis 
of prostaglandins (PGs), prostacyclin, and thromboxane (TX; 
Smith et al., 1996); although these bioactive lipids are involved 
in a number of physiological and homeostatic processes, including 
hemostasis, vascular function, and gastric cytoprotection (Robert, 
1979; Bunting et  al., 1983; Weksler, 1984), they are mostly 
renowned for their ability to initiate and maintain inflammation. 
PGD2, PGE2, PGI2, and PGF2α represent to date a central subject 
of study among eicosanoids in inflammation, especially in light 
of the ability of NSAIDs to block their synthesis by inhibition 
of COX-1/2, which in turn results in the prevention of 
inflammation (Vane, 2002). A significant body of evidence is 
available that COX-2-derived PGE2 may play a role in tumor 
angiogenesis by increasing vascular endothelial growth factor 
(VEGF; Eibl et  al., 2003), and recent data strongly suggest a 
contribution of platelet COX-1-derived thromboxane in colorectal 
cancer (Patrignani and Patrono, 2018).

Non enzymatic isoprostanes have been widely used as marker 
of oxidative stress in vivo, but biological activities through the 
interaction with the thromboxane receptor have also been reported 
for 8-isoprostaglandin F2α (Takahashi et  al., 1992), suggesting 
that isoprostanes could play a role in the control of vascular 
tone and hemostasis (Capra et  al., 2014). Recent reports have 
nevertheless shown that non enzymatic lipid peroxidation of 
esterified AA also generates cyclopentenone-containing oxydised 
phospholipids and related isoprostanes possessing potent 
pro-resolution activities. These compounds inhibit TLR activation 
and NF-kB signaling, and activate the Nrf2-pathway leading to 
the expression of anti-oxidant genes, limiting inflammation and 
cellular damage (Friedli and Freigang, 2017).

5-, 12-, and 15-lipoxygenases (5/12/15-LOX) generate 
leukotrienes (LTs), hydroxyeicosatetraenoic acids (HETEs; 

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mazzocchi et al. Bioactive Compounds and Edible Oils

Frontiers in Physiology | www.frontiersin.org 4 April 2021 | Volume 12 | Article 659551

FIGURE 2 | The role of ω-3 fatty acids in inflammation.

Kuhn et  al., 2015), and lipoxins (LXs; Romano et  al., 2015); 
Leukotrienes also play a significant role in inflammation (Sala 
et  al., 1998), and their increased expression has been reported 
in response to Th2 cytokines; neutrophilic tissue infiltration, 
and activation in response to LTB4, a main metabolite of 
5-LO, is a mainstay of the acute inflammatory response (Mashima 
and Okuyama, 2015). Again, together with the proinflammatory 
role of lipoxygenase products, evidence have emerged early 
on that trihydroxy-derivatives of AA such as lipoxin A4 (LXA4) 
and LXB4, acting through the G-protein coupled receptor ALX/
FPR2, inhibit inflammation responses by leukocytes, endothelial 
and epithelial cells (Romano et  al., 2015).

Finally, diHETEs and epoxyeicosatrienoic acids represent 
the products of P450 epoxygenases (Bellien and Joannides, 
2013), while ω and ω-1 monohydroxy metabolites of AA are 
generated by P450 ω-hydroxylases. Also in this case while 
the latter compounds can play pathophysiological role in 
cancer progression by promoting angiogenesis (Johnson et al., 
2015), the former compounds have been reported to 
be endowed of significant anti-inflammatory activities, mediated 
by the inhibition of NF-kB, and the increase of peroxisome 
proliferator-activated receptor-gamma (PPAR-γ) transcription 
activity (Norwood et  al., 2010).

ω3 Long Chain PUFAs and Their Metabolites
The main activities of ω3 LC-PUFAs are to directly and indirectly 
inhibit the inflammatory response: DHA can reduce endoplasmic 
reticulum stress and ROS production in mitochondria, inhibit 
TLR activation, and upregulate cytoprotective proteins, 

intracellular antioxidants, and anti-inflammatory and detoxifying 
enzymes through the activation of nuclear factor erythroid 
2-related factor 2 (NRF2). Activated NRF2 inhibits the activity 
of AP-1, NF-κB, and MPK and promotes the transcription of 
anti-inflammatory and anti-oxidative genes like IL-10, IL-4, 
superoxide dismutase, heme oxidase-1, and glutathione 
(Yamagata, 2017). DHA and EPA can regulate the expression 
of oxidized low-density lipoprotein receptor 1, plasminogen 
activator inhibitor 1, thromboxane A2 receptor, vascular cell 
adhesion molecule-1, monocyte chemoattractant protein-1, and 
intercellular adhesion molecule 1, regulating, de facto, the 
inflammation response (Yamagata, 2017). Moreover, DHA inhibits 
TLR activation acting as an antagonist of SFA and blocking 
the inflammation triggered by TLR (Hwang et al., 2016; Figure 2).

ω3 LC-PUFAs, such as EPA, DPA, and DHA, are also the 
precursors of a number of oxygenated lipids, typically resulting 
from the coordinated activities of multiple lipoxygenases, including 
the 15/17R-lipoxygenase activity resulting from the aspirin 
acetylation of COX-2 (Serhan et  al., 2002). The resulting 
compounds have been collectively described as a novel genus 
of specialized pro-resolving lipid mediators (SPM; Serhan et al., 
2020) and are endowed with potent anti-inflammatory, 
pro-resolution activities within the immune system. SPMs, 
including D- and E-series resolvins, protectins, maresins (Serhan, 
2017), and maresin conjugates in tissue regeneration (MCTRs; 
Dalli et  al., 2016; Chiang et  al., 2018), proved effective in 
limiting inflammation and contributing to speed-up the 
physiological resolution of the inflammatory response 
(Serhan and Levy, 2018). Several reports have linked 
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supplementation with ω3 LC-PUFAs with increased concentrations 
of SPM in plasma (Grenon et  al., 2015; Mas et  al., 2016), but 
a critical study carried out both using ω3 LC-PUFAs 
supplementation and LPS challenge in vivo in humans raised 
questions about the effective correlation between plasma SPM 
and dietary supplementation (Skarke et al., 2015). Recent results 
using human hepatic cells showed extremely rapid β-oxidation 
of protectin D1, suggesting that plasma determination of this 
SPM may not be  the appropriate approach to the assessment 
of its in vivo production (Balas et  al., 2019). Indeed, in vivo 
production of eicosanoids has always been assessed either at 
the local site of production (if possible) or through the 
determination of stable hepatic metabolites in urines (Catella 
et  al., 1986), while plasma concentrations were early on ruled 
out as unreliable or undetectable. In agreement with these 
considerations, supplementation with DHA in cystic fibrosis 
patients resulted in increased concentrations of DHA-derived 
oxygenated metabolites in sputum (Teopompi et  al., 2019), but 
the relevance of ω3 LC-PUFAs supplementation to the production 
of SPM remains to be  assessed.

Linoleic Acid and Its Metabolites
Linoleic acid, defined as an essential fatty acid in mammals 
because of their inability to synthesize it (Marangoni et  al., 
2020), is common in the human diet, being widely distributed 
in foods. In many vegetable oils, it represents more than 50% 
of the lipid content; high amounts of LA are also present in 
nuts, while lower levels are found in cereals (more in whole 
grains), legumes, some meats, eggs, and dairy products 
(Marangoni et  al., 2020). In animal cells can be  converted 
into AA; however, LA conversion to AA is very low (< 1%), 
and increasing the intake of dietary LA does not lead to a 
significant increase of its metabolites tissue levels (Rett and 
Whelan, 2011; Whelan and Fritsche, 2013). The effect of LA 
on human health is still controversial: a recent review discussed 
evidence about the potential benefit of increasing dietary intake 
of LA (Marangoni et  al., 2020), reporting that epidemiological 
studies indicate that an adequate intake of LA reduces amounts 
of plasma low-density lipoprotein cholesterol (LDL-C) and 
dietary intervention studies showed that replacing 5% of the 
dietary energy derived from SFA with ω6 PUFAs reduces LDL-C 
by up to 10% (Siri-Tarino et  al., 2015). Furthermore, in 
prospective cohort study circulating concentrations of LA are 
inversely associated with new cases of type 2 diabetes (Fretts 
et al., 2019). On the contrary, the reevaluation of data obtained 
in double-blind randomized controlled trials (RCTs), together 
with a systematic review and meta-analysis, while reporting a 
significant reduction of serum cholesterol did not confirm the 
original hypothesis of a significant effect on the risk of death 
by coronary heart disease (CHD) or all causes (Ramsden et al., 
2013, 2016). The controversial role of linoleic acid is also 
underlined by several evidence suggesting that high intake of 
this PUFA is associated to an increase risk of colonic inflammation 
and colonic cancer. Indeed the risk of colorectal adenoma 
increased in correlation to plasma concentrations of linoleic 
acid in an endoscopy-based case–control study (Pot et al., 2008), 
and dietary linoleic acid was found to potentially contribute 

to an increased risk of ulcerative colitis in a prospective cohort 
study (Hart et  al., 2009).

Linoleic acid has also been reported to be  the 
substrate for CYP450 enzymes, including CYP2J2, CYP2C8, 
CYP2C9, and CYP1A1, leading to the formation of linoleic 
epoxides 9,10-epoxyoctadecenoic acid (9,10-EpOME), and 
12,13-epoxyoctadecenoic acid (12,13-EpOME) known as 
leukotoxin and isoleukotoxin (Hildreth et  al., 2020); these 
epoxides are then metabolized by the soluble epoxide hydrolases 
(sEH) into the dihydroxyderivatives 9,10-DiHOME and 12,13-
DiHOME. The concentration of these compounds is dependent 
on both the regulation of biosynthetic pathways (CYP450s and 
s EH) and the dietary intake of their parent fatty acid LA. 
9,10-EpOME is a major contributor to pulmonary toxicity in 
Acute Respiratory Distress Syndrome (ARDS), an effect that 
is enabled by the conversion into DiHOME (Zheng et  al., 
2001). DiHOMEs may also play a dual role in inflammation, 
stimulating neutrophil chemotaxis at low concentrations while 
inhibiting neutrophil respiratory burst at higher concentrations 
(Thompson and Hammock, 2007).

Alpha-Linolenic Acid and Its Metabolites
Just like LA, ALA is defined as an essential fatty acid in 
mammals (Das, 2006), and its principal diet sources are nuts, 
fish, leafy vegetables, and seed oils. After absorption, it can 
be  catabolized into longer chain and more unsaturated FAs 
such as EPA and DHA, but similar to LA conversion into 
AA within the ω6 series, the endogenous production of ALA 
derivatives is low in humans. Tracer studies observed conversion 
of ALA to EPA, ω3 docosapentaenoic acid (DPA), and DHA, 
from birth to adulthood, in male and female, but in infants 
the conversion of ALA to DHA is about 1% whereas in adults 
is even lower (Brenna et  al., 2009). ALA supplementation (by 
diet, capsules etc.) generally increases EPA and DPA, but has 
limited effects on DHA levels in plasma fractions and in 
circulating blood cells, while DHA supplementation increases 
the concentrations of this FA in blood and tissues (Arterburn 
et  al., 2006). It should be  also underlined that there is a 
competition between ω3 and ω6 FAs for the same metabolic 
pathway enzymes (desaturases and elongases), and that an 
increased LA intake decreases ω3 LC-PUFAs. Indeed, dietary 
ALA conversion appears to be  decreased by high LA/ALA 
dietary ratios (Brenna et  al., 2009).

Inconsistent data have recently been reported from studies 
examining how fatty acids, and particularly ω3 LC-PUFAs, 
can prevent or treat food allergy, atopic dermatitis, and asthma 
(Venter et  al., 2019). These results can be  partially justified 
by differences in bioavailability and interindividual variability 
in response to supplementation. Providing preformed ω3 
derivatives or foods rich in ω3 LC-PUFAs seems more effective 
than supplying ALA because of the reported limited conversion 
capability in humans.

Non enzymatic oxidation of ALA originates analogs of 
isoprostanes termed phytoprostanes (Galano et  al., 2017), 
possessing antinflammatory activities (Gilles et  al., 2009). 
ALA-enriched diet in rats was reported to reduce oxidative 
stress and inflammation during myocardial infarction, while 
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increasing the formation of phytoprostane, suggesting their 
contribution to the observed effects (Leung et al., 2021). Recent 
data have also shown that novel metabolites generated by gut 
lactic acid bacteria from ALA, namely 13-hydroxy-
octadecadienoic acid and 13-oxo-octadecadienoic acid, are 
capable to induce, both in vitro and in vivo, the differentiation 
of macrophage toward the anti-inflammatory phenotype M2 
(Ohue-Kitano et al., 2018), through the activation of G protein-
coupled receptor 40.

Monounsaturated Fatty Acids
Dietary MUFAs sources are both vegetable (e.g., olive oils, 
nuts, and seeds) and animal (e.g., meat from poultry and pig). 
The most abundant MUFA within the MD is oleic acid (about 
90% of all MUFAs), followed by palmitoleic and vaccenic acids. 
A recent meta-analysis focusing on the effects of different 
dietary sources of MUFAs on CVD provided evidence that 
only olive oil was associated with a significant risk reduction 
of all-cause mortality, cardiovascular events, and stroke 
(Schwingshackl and Hoffmann, 2014), consistent with the fact 
that virgin olive oil is a supplier of other biologically active 
components such as polyphenols (Visioli and Bernardini, 2011), 
in particular oleuropein, in addition to MUFA.

Phenolic Compounds
The beneficial effects of oils have been widely attributed to 
their content in phenols, and more than 8,000 phenolic 
compounds have been identified. The structure of polyphenols 
is characterized by aromatic rings surrounded by hydroxyl 
groups (Quideau et  al., 2011). Among these bioactive oil 
components there are tocopherols and tocotrienols (corn oil, 
soybean oil, wheat oil, and others), flavonoids (olive oil, sunflower 
seed oil), sterols, and phenolic acids (as esterified or free 
molecules, aldehyde forms, and glycosides). With exception of 
sterols that have beneficial effect on serum lipids (decreasing 
LDL-C and increasing HDL-C), the other compounds possess 
mainly radical scavenging, antioxidant and anti-inflammatory 
activities (Pandey and Rizvi, 2009), and the ability to modulate 
the immune response, affecting the multiplication of white 
blood cells and the production of cytokines (Gorzynik-Debicka 
et  al., 2018). Different components alone have been tested in 
vitro, in cells or cell free assays, and some extra virgin olive 
oil (EVOO) phenolic compounds, but not all of them, inhibit 
IL-1β, PGE2, and INFγ production (Miles et  al., 2005). In 
vitro experimental evidence also showed significant anti-
neuroinflammatory effects of lignanamides from hemp seeds 
(Luo et  al., 2017; Wang et  al., 2019). In in vivo experiments, 
sesamol decreased oxidative stress and inflammation (Kuhad 
and Chopra, 2008), and sesamine (0.2% in diet) decreased 
lipid peroxidation in plasma and liver in rats (Yamashita et  al., 
2000). Sesame lignans were also investigated in human, comparing 
the effects of a supplement of sesamin/episesamin 1:1 ratio 
(10  mg)  +  vitamin E (101  mg) formulated in wheat germ oil 
with wheat germ oil alone, showing a significant increase of 
antioxidant capacity evaluated as an increased lag-time in 
plasma LDL oxidation (Takemoto et  al., 2015).

The predominant compounds found in EVOO are represented 
by oleuropein, hydroxytyrosol, and their derivatives (Pedan 
et  al., 2019). The European Food Safety Authority (EFSA) 
approved in 2011 a claim that EVOO’s polyphenols protect 
blood lipids against oxidative stress at a minimal dose of 5 mg/
kg/day. The 5  mg of hydroxytyrosol should be  available by 
consuming 23  g of EVOO in the context of a balanced diet 
(EFSA Panel on NDA, 2011).

Lipophenols are an emerging class of molecules that have 
been studied in these last years; they are characterized by 
condensation (esterification/acylation) of polyphenols and fatty 
acids, mainly unsaturated ones. Phenols and PUFAs, as described 
above, are natural compounds both endowed with biological 
activities on inflammation, oxidation, cancer, and CVDs, and 
the combination of these molecules could be  of therapeutic 
advantage. In particular, the conjugation of polyphenols, such 
as flavonoids, phloroglucinol, and catechol derivatives with ω3 
LC-PUFAs generates lipophenols (or phenolipids) of interest 
in which ω3 LC-PUFAs confer hydrophobicity, cell membrane 
penetration, and bioavailability to phenols, while the latter 
protect PUFAs from oxidation, possibly promoting their beneficial 
effects (Crauste et  al., 2016).

Lipophenols can be  obtained by enzymatic or chemical 
synthesis, but also from natural sources such as algae and 
marine species. The biological activity of lipophenols has been 
assessed in in vitro assays, frequently in non-cellular system, 
and only few studies have been performed in vivo in experimental 
animals. The antioxidant activity is a radical scavenging activity, 
even if the conjugation with FA frequently causes a decrease 
in the antioxidant properties of phenol, depending on the type 
of FA and on the phenol site of esterification (Moine et  al., 
2021). N-acyl dopamine and N-acyl-vanillylamines derivatives 
(containing a phenolic moiety), have also been shown to inhibit 
NO, IL-1β, IL-6, and TNF-α production, an effect that was 
dependent on the nature of FA with major effect for FA with 
a ketone group, then PUFA, MUFA, and saturated FA 
(Dang et al., 2011), suggesting a minor role for the phenolic moiety.

However, it must be stressed that the contribution to human 
health of all phenolic compounds depends on several factors 
including the concentration and whole oil composition, the 
extent of absorption and metabolism and the bioavailability 
in target tissues (Santangelo et  al., 2017).

Vitamins
Vitamin E (α-tocopherol) and carotenoids are lipophilic 
antioxidants contained in vegetable oils (e.g., canola, olive, and 
soybean oil). They are known to decrease serum LDL levels 
and to prevent their oxidation (Upritchard et  al., 2000). A 
large clinical trial showed a significant increase in the risk of 
prostate cancer in healthy men upon Vitamin E supplementation 
(Klein et  al., 2011) and there is no specific advice on the 
intake of vitamin E. Its metabolism is related to vitamin C, 
vitamin B3, selenium, and glutathione, that all should be included 
within the diet to reach an optimal effect (Kurutas, 2016).

Vitamin E and carotenoids present in oils play an important 
role in the protection of PUFAs from oxidation: a pilot study 
carried out in experimental animals showed that while different 
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preparations of fish oil resulted in similar changes in plasma 
lipids, a significant increase in plasma lipid peroxidation was 
observed in the absence of fish oil stabilization with a natural 
antioxidant mixture rich in α-tocopherol (Engstrm et al., 2009). 
Carotenoids have been well-characterized for their antioxidant 
activity in vitro (Sandmann, 2019), and recent data have also 
shown their ability to specifically limit PUFA peroxidation in 
lipid membranes (Widomska et  al., 2019).

Vitamin A is abundant in FO, in the liver and in dairy 
foods, and has a role in maintaining the immune system 
functions (Gilbert, 2013). Most effects of vitamin A are exerted 
by its metabolite, retinoic acid (RA), which through ligation 
of nuclear receptors controls the transcriptional expression of 
RA target genes. Within the immune system, RA has a central 
role in orchestrating immune responses and dendritic cells 
(DCs), and macrophages seem responsible for its production 
(Erkelens and Mebius, 2017).

EDIBLE PLANTS/SEEDS OILS

Edible oils are obtained from seeds, fruits, and pulps of plants, 
including many herbaceous plants, and comprise major 
components (such as triacylglycerols) and minor compounds 
(such as sterols, carotenoids, and tocopherols). They are known 
to be  an essential dietary requirement for humans and may 
also play a critical role in the economy of several countries 
(in Tunisia 1.7 million ha are planted with olive tree, producing 
4% of the olive oil production worldwide; Jabeur et  al., 2014). 
Given their economic value, adulteration with cheaper oils is 
a common problem (Salah and Nofal, 2021) sometimes resulting 
in serious effects on consumers health as in the case of the 
Spanish oil toxic syndrome (Gelpí et  al., 2002). In this section, 
we  will review the results of clinical studies carried out with 
the different commercially available edible oils.

Hemp (Cannabis sativa) Seed Oil
Hemp seed oil is obtained from Cannabis sativa, and is 
characterized by high PUFAs content and low SFAs amounts 
(for composition see Table  1), with significant amounts of 
antioxidant such as tocopherols and phenolic compounds 
(Smeriglio et  al., 2016). While studies in humans using 
supplementation with hempseed oil are scarce, there are 
nonetheless positive reports showing effects on clinical symptoms 
of dermatological diseases (atopic dermatitis; Callaway et  al., 
2005), as well as reduction of plasma triglycerides and 
improvement of the ratio total cholesterol/HDL cholesterol 
(Schwab et al., 2006). Nevertheless, the effects on plasma lipids 
could not be  confirmed in subsequent studies in normal 
volunteers (Kaul et  al., 2008) and in adolescent with 
hyperlipidemia (Del Bo et  al., 2019).

Flaxseed Oil
Flaxseed oil (for composition see Table  1) is a good source 
of essential FA and contains lignans, cyanogenic glycosides, 
and cyclic peptides. In spite of the rich content of essential 

FA, the impact of flaxseed oil on serum lipids is controversial 
(Pan et al., 2009; Prasad, 2009): a reduction of plasma triglycerides 
and the improvement of the ratio total cholesterol/HDL cholesterol 
have been reported (Schwab et  al., 2006), but has not been 
confirmed (Kaul et  al., 2008). With respect to potential effects 
on cardiovascular inflammation, a RCT in healthy abdominally 
obese adults treated for 8 weeks with flaxseed oil capsules found 
no modifications in C-reactive protein (CRP), serum amyloid 
A (SAA), IL-6, and TNF-α (Nelson et al., 2007). On the contrary, 
6  weeks of flaxseed oil administration resulted in a significant 
reduction of CRP (Zhao et  al., 2004), an effect confirmed by 
two additional studies that observed a decrease of CRP, SAA, 
and IL-6 (Rallidis et  al., 2003; Bemelmans et  al., 2004).

Olive Oil and Extra-Virgin Olive Oil
Olive oils (for composition see Table  1) possess many health 
properties of higher nutritional quality, in particular the EVOO 
(Martín-Peláez et al., 2013). The majority of benefits are ascribed 
to minimal constituents in the unsaponifiable fraction, like 
phenolic compounds, phytosterols, tocopherols, and pigments 
(Mazzocchi et  al., 2019). The effects on human health have 
been linked to its efficacy in preventing and treating of chronic 
disease resulting from anti-inflammatory, antioxidant, 
neuroprotective, and immunomodulatory activities (Carmen 
Crespo et  al., 2018). The phenolic part accounts from 50 to 
800  mg/kg and the predominant compound is made-up by 
oleuropein and its breakdown derivatives, hydroxytyrosol and 
tyrosol, but additional components contribute to the anti-
inflammatory effects of EVOO as shown by the NUTRAOLEUM 
study: in this double-blind RCT, patients were supplemented 
with three different virgin olive oils (standard, high in phenolic 
compounds, and enriched with triterpenes oleanolic and maslinic 
acids) in a 3-week intervention. Over this period of time, 
plasma inflammatory biomarkers (IL-8 and TNF-alpha) and 
DNA oxidation significantly decreased in the group of subjects 
receiving the functional EVOO enriched with triterpenes 
(Sanchez-Rodriguez et  al., 2019).

Soybean Oil
Soybean oil is extracted from the seeds of the soybean (for 
composition see Table  1). Phytosterols present in the oil may 
be  responsible of its reported cholesterol-lowering activity (Zhu 
et  al., 2019). The introduction of ∆6 desaturase from primrose 
(Primula juliae) and ∆15-desaturase from red bread mold 
(Neurospora crassa) into the soybean resulted in the production 
of a soybean oil rich in stearidonic acid (SDA; 18:4, n-3). 
Together, these two enzymes reduce the amount of linoleic 
acid by converting it into ALA and γ-linolenic acid, which are 
in turn ultimately converted into SDA, representing up to 
20–30% of total fatty acids in the resulting oil. SDA, unlike 
ALA, may then be able to raise tissue levels of EPA and possibly 
DHA in humans, making widely used soybean oil a potential 
dietary source of this “pro-EPA” fatty acid (Harris, 2012). Indeed, 
two separate clinical trials showed increased EPA and ω3 index 
in adult overweight subjects (Harris et al., 2008; Lemke et al., 2010), 
confirming the ability of SDA to raise EPA plasma levels.
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Canola Oil
Canola oil is obtained from the seeds of different species of 
Brassica family (for composition see Table  1). Brassica napus 
is known as rapeseed and its oil has a high content of erucic 
acid, a FA suspected of having pathogenic potential, but as 
edible oil, canola oil originates from selected Brassica typically 
showing erucic acid levels below 2%. Lin et al. (2013) reviewed 
the studies investigating the effects of canola oil, reporting 
significant reduction in total and LDL cholesterol, increased 
tocopherol levels, and insulin sensitivity. No effects were 
observed with respect to lipid peroxidation or susceptibility 
of LDL to oxidation, but platelets showed decreased ATP 
secretion and aggregation. Inflammatory markers were not 
affected by canola oil-based diets while potential linkages 
between canola oil usage and modifications of cancer risk 
remain undefined.

Recently, industries manufactured the high-oleic canola oil 
(HOCO), new canola oil with a modified formulation in fatty 
acids. HOCO is richer in MUFAs, lower in SFAs, and has a 
lower ratio of ω6/ω3 fatty acids than standard canola oil. A 
multicenter RCT provided evidence that a DHA-enriched HOCO 
improves lipid profiles and lowers CVD risk in abdominal 
obese subjects (Jones et  al., 2014).

EDIBLE MARINE-DERIVED OILS

Marine Animal-Derived Oils
It is widely recognized that regularly eating fish decreases the 
risk of CVDs and related mortality (Hu et  al., 2002; He et  al., 
2004), and dietary guidelines for ω3 LC-PUFAs and fish intake 
recommend two portions of fatty fish per week to assume 

TABLE 1 | Components of selected edible oils (unless specified otherwise the amounts reported are per 100 g of oil).

Oil Description Flaxseed 
(Pennington, 

2002)

Olive 
(Pennington, 

2002)

Canola 
(Pennington, 

2002)

Soybean 
(Pennington, 

2002)

Hempseed 
(Wang et al., 

2019)

Cod liver 
(Pennington, 

2002)

Krill (Xie et al., 
2019)

Fatty acids, total 
saturated (g)

8.976 13.808 7.365 15.65 6.67 22.608

Fatty acids, total 
monounsaturated (g)

18.438 72.961 63.276 22.783 13.33 46.711

Fatty acids, total 
polyunsaturated (g)

67.849 10.523 28.142 57.74 66.67 22.541

Choline, total (mg) 0.2 0.3 0.2 0.2
Vitamin E (alpha-
tocopherol) (mg)

0.47 14.35 17.46 8.18 14.74–63.0

Vitamin K (mcg) 9.3 60.2 71.3 183.9
Calcium (mg) 1 1 1,322
Phosphorus (mg) 1 1,140
Magnesium (mg) 360
Iron (mg) 0.56 0.05
Zinc (mg) 0.07 0.01
Potassium (mg) 1
Sodium (mg) 2
Vitamin D (μg) 250
Vitamin A (μg) 30,000 16.4–28.5 mg/100 g
Ω-6/ω-3 ratio 1.71–2.27
Chlorophylls (μg/g) 0.041–2.64
Tocopherols 
(mg/100 g)

100–150

Carotenoids (μg/g) 0.29–1.73
10:0 (g) 0.008
12:0 (g) 0.018
14:0 (g) 0.077 3.568
16:0 (g) 5.109 11.29 4.298 10.455 10.63
18:0 (g) 3.367 1.953 2.087 4.435 2.799
16:1 (g) 0.06 1.255 0.214 0 8.309
18:1 (g) 18.316 71.269 61.744 22.55 20.653
20: 1(g) 0.311 1.317 0.233 10.422
22:1 (g) 0.031 7.328
18:2 (g) 14.327 9.762 19.005 50.952 0.935
18:3 (g) 53.368 0.761 9.137 6.789 0.935
18:4 (g) 0.935
20:4 (g) 0.935
20:5 n-3 (g) 6.898
22:5 n-3 (g) 0.935
22:6 n-3 (g) 10.968
Cholesterol (mg) 570
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250–500 mg/die of EPA + DHA and prevent coronary diseases 
(American Heart Association Nutrition Committee et al., 2006; 
Mozaffarian and Rimm, 2006). While a food-based approach 
is preferable (Kris-Etherton et al., 2007), nutritional supplements 
are suitable substitutes for people who do not eat fish, and 
up to 3  g/day of fish oil is “generally recognized as safe” by 
the United  States Food and Drug Administration. Cod liver 
oil (for composition see Table  1) is a dietary supplement 
extracted from Atlantic cod containing saturated, 
monounsaturated, and various PUFAs, including both EPA and 
DHA, together with vitamin A and D (Hu et  al., 2019). While 
fish oil supplementation is recommended by the American 
Heart Association for CHD patients, insufficient evidence was 
found to grant the use in prevention for patient at high CVD 
risk only (Siscovick et  al., 2017). A large meta-analysis of 10 
recent RCT also found no effect of marine ω3 PUFAs 
supplementation on fatal and non-fatal CHD (Aung et  al., 
2018) fueling the debate about the health benefit of fish oil 
supplementation, but a new meta-analysis that included also 
three recent, large RCTs (VITAL, ASCEND, and REDUCE-IT), 
finally confirmed that marine ω3 supplementation reduce the 
risk for myocardial infarction, CHD and CVD death, also 
defining a clear dose-response relationship between the ω3 
dose assumed and the effects (Hu et  al., 2019).

In consideration of fish being a limited resource, attention 
to different sources of ω3 LC-PUFAs is also emerging. Krill 
oil, for example, is obtained from “Euphausia superba” and, 
along with a wide variety of fatty acid compounds (for composition 
see Table  1), also provides antioxidants, such as the carotenoid 
astaxanthin, vitamin E, and vitamin A. A RCT in healthy 
individuals showed a significant increase in EPA and EPA + DHA 
levels in plasma after consumption of 3  g/die for 4  weeks of 
krill oil when compared to FO (Ramprasath et al., 2013). Since 
both FO and krill oils deliver the same amount of total ω3 
PUFAs, the results of this study may suggest that the bioavailability 
of ω3 PUFAs from krill oil is better than that from FO, but 
a reexamination of the bioavailability studies failed to confirm 
a difference between FO and krill oil (Salem and Kuratko, 
2014). Lipids from different marine sources show a wide 
variability in ω3 LC-FAs content (Schuchardt and Hahn, 2013), 
and their bioavailability depends on several factors, including 
the concomitant intake of food (mainly its fat content) and 
the co-presence of other components (Kutzner et  al., 2017). 
The marine sources of ω3 LC-FA not only differ in terms of 
absolute amounts of specific ω3 LC-FA, but also with respect 
to their chemical structures. In fish and in fish-derived oils, 
ω3 LC-FA is present primarily as triglycerides and, to a lesser 
extent, as free fatty acids. In krill oil, besides the two fractions 
mentioned, a substantial percentage of ω3 LC-FA is bound 
into phospholipids, raising the possibility that this form of ω3 
LC-FA may also affect the bioavailability (Kutzner et  al., 2017). 
It must be  noted that in the near future, the capture of krill 
may also be  restricted because of ecological concerns.

Algae
Algae consist of an intricate and non-specialized cluster of 
organisms characterized by an elementary reproductive structure 

and of photosynthetic nature. Currently, many species are cited 
in the literature as sources of bioactive compounds that are 
suitable as functional food ingredients (Ibañez and Cifuentes, 
2013; Rengasamy et al., 2020). Micro and macro-algae represent 
a more sustainable source of PUFA-rich oils than fish. The 
PUFA profile varies among algal species: in macroalgae, lipid 
content is ~2–5% of dry weight, but the PUFA proportion of 
these lipids can represent up to 70% (Cofrades et  al., 2010). 
Certain species of microalgae are capable of de novo production 
of LC-PUFAs thanks to their specific enzymatic systems, and 
the LC-PUFA content varies among species, but EPA and DHA 
are predominant in most species (Ratledge, 2004).

Algal biomass contains significant amounts of lipid-soluble 
carotenoids, with fucoxhantin and astaxanthin being the most 
abundant (Rengasamy et  al., 2020). Limited evidence about 
their activites are available (Šimat et  al., 2020), and a meta-
analysis of the RCT carried out with astaxhantin showed unclear 
results (Wu et  al., 2020) suggesting that additional studies are 
necessary to establish their potential health benefits.

The use of marine algae-derived antioxidants and PUFAs is 
a desirable goal, and in the last 2 decades, the potential of 
microalgae and microbes as sources of fatty acids has been 
increasingly recognized, leading to the large-scale production of 
PUFA supplements (Martins et  al., 2013). The process of lipid 
production from microalgae and other microorganisms, i.e., single 
cell oil (SCO) production, has been recently proposed, and is 
of current industrial interest for use of these materials as dietary 
supplements in adults and infant nutrition (Ratledge, 2004).

DISCUSSION

Available evidence indicates that consumption of LC-PUFAs, 
MUFAs, and polyphenols from edible oils correlates to decreased 
levels of oxidative stress and inflammation. Dietary lipids act 
directly and indirectly through the formation of oxygenated 
metabolites possessing potent biological activities, such as 
eicosanoids and specialized pro-resolving mediators. In 
consideration of the different and often opposing biological 
activities of the families of LC-PUFAs oxygenated derivatives, 
it is of critical importance to assess the relative abundance of 
their precursors in cell membranes resulting from specific dietary 
habits, because LC-PUFAs may compete for the same metabolic 
pathways, affecting the resulting levels of bioactive metabolites 
in organs and tissues (Zárate et  al., 2017). Furthermore the 
same metabolite sometimes generates opposing effects at different 
concentrations, as reported for PGE2 that may differentially 
activate VEGF at low concentrations and IL-8 at higher 
concentrations (Bonanno et al., 2016), introducing an additional 
layer of complexity in predicting the final biological outcome 
resulting from the activation of specific biosynthetic pathways.

The sensibility of LC-PUFAs to peroxidation may also lead 
to the formation of a number of biologically active metabolites, 
that in parallel to what observed for enzymatic metabolites 
possess often opposing biological activities, enhancing 
inflammation, oxidative stress, and cellular damage on one side, 
and promoting the resolution of the inflammatory response on 
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the other hand. Recently a web-based interactive interface has 
been made available to search for thousands of interconnected 
biochemical pathways leading to specific phenotypes of relevance 
for the inflammation and its resolution process (Serhan et al., 2020).

The Mediterranean Diet, thanks to its high supply of vegetables, 
seeds, and marine food sources rich in ω3 lipids, may 
be  considered an anti-inflammatory diet, and the beneficial 
roles of plant, seeds, and marine-derived oils in the human 
body are of growing interest. Major consumption of these oils 
in their present form, or as nutraceutical supplements, as is 
the case of oils from fish and algae, may highly contribute 
replacing SFAs with PUFAs in dietary patterns. Nevertheless, 
the health benefits associated to increased PUFAs concentrations 
in cellular membranes have been the object of significant debate 
(Tummala et  al., 2019), with the most comprehensive meta-
analysis to-date still supporting the efficacy of marine ω3 
supplementation in reducing cardiovascular risk (Hu et al., 2019).

In conclusion, it must be  noted that the high heterogeneity 
in oil composition, inclusive of both the fat and the non-fat 
components, even from the same primary sources, as well the 

heterogeneity of clinical study designs reporting the beneficial 
effects of edible oils, may play a significant role in the health 
outcome associated to their consumption, often making it 
difficult to propose firm recommendations from both a 
quantitative and a qualitative standpoint.
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