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Human-induced climate change is increasing the frequency, duration, and intensity of heat 
waves and exposure to these extreme temperatures impacts individual physiology and 
performance (e.g., metabolism, water balance, and growth). These traits may be susceptible 
to thermal conditions experienced during embryonic development, but experiments focusing 
on post-natal development are scant. Documented effects of heat waves on whole-body 
metabolism may reflect changes in mitochondrial function, but most studies do not measure 
physiological traits at both the cellular and whole organism levels. Here, we exposed nests 
of zebra finches to experimentally simulated heat waves for 18 days after hatching and 
measured body mass, growth rate, whole-body metabolic rate, body temperature, wet 
thermal conductance, evaporative water loss, and relative water economy of chicks at three 
ages corresponding to ectothermic (day 5), poikilothermic (day 12), and homoeothermic 
(day 50) stages. Additionally, we measured mitochondrial bioenergetics of blood cells 
80 days post-hatch. While early-life exposure to heat wave conditions did not impact whole 
body metabolic and hygric physiology, body temperature was lower for birds from heated 
compared with control nests at both 12 and 50 days of age. There was also an effect of 
nest heating at the cellular level, with mitochondria from heated birds having higher 
endogenous and proton-leak related respiration, although oxidative phosphorylation, 
maximum respiratory capacity, and coupling efficiency were not impacted. Our results 
suggest that early-life exposure to high ambient temperature induces programming effects 
on cellular-level and thermal physiology that may not be apparent for whole-animal metabolism.

Keywords: birds (Australian terrestrial), developmental plasticity, metabolic rate, mitochondria, Taeniopygia 
guttata castanotis (Aves, Passeriformes), water loss

INTRODUCTION

Physiological and life history traits that impact fitness can be  influenced by environmental 
conditions, in particular temperature, experienced during early life stages (Lindström, 1999; 
Monaghan, 2008; Conradie et al., 2019). Exposure to high temperature can elicit stress responses 
(Boddicker et  al., 2014), alter metabolism (O’Steen and Janzen, 1999; Moraes et  al., 2003; 
Schnurr et  al., 2014), modify water balance (Williams and Tieleman, 2000; McWhorter et  al., 2018), 
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impact growth and body size (O’Steen, 1998; Andrew et  al., 
2017; Andreasson et  al., 2018; Sauve et  al., 2021), and disrupt 
functional processes at the subcellular level (Paital and Chainy, 
2014). Understanding the physiological impacts of high 
temperature is particularly important considering that 
anthropogenic climate change is resulting in an increase in 
the duration, frequency, and intensity of heat waves (Meehl 
and Tebaldi, 2004; Tebaldi et  al., 2006; Pachauri et  al., 2014; 
Conradie et  al., 2020).

For a variety of taxa, it is hypothesized that changes in 
whole body metabolism and other physiological and life history 
traits reflect functional variation at the subcellular level, such 
as mitochondrial performance (Tattersall et  al., 2012; Jimenez 
et  al., 2014a,b; Hood et  al., 2018a,b). Despite the crucial role 
of mitochondrial physiology for maintenance of homeostasis 
(Pörtner, 2001), few experimental studies examine temperature 
effects on mitochondrial function together with metabolism, 
growth, and body size (Price et  al., 2017). Consequently, the 
impacts of temperature-induced variation at different levels of 
physiological organization are currently unclear.

Some physiological variations emerge early in life from 
temperature effects during the sensitive stages of embryonic 
development (Durant et  al., 2010; Nord and Nilsson, 2011; 
DuRant et al., 2012; Nord and Giroud, 2020; Stier et al., 2020). 
Embryonic stages of all organisms are ectothermic and their 
mitochondria are particularly sensitive to thermal variation 
(Chung and Schulte, 2020). However, while phenotypic responses 
to high temperatures during development for some domestic 
animals have been investigated (e.g., Mujahid et  al., 2007; 
Huang et  al., 2015), comparatively little is known about the 
effects of heat during the early post-natal stage on the physiology 
of wild animals and potential repercussions into adulthood 
(Andreasson et  al., 2018, 2020; Halevy, 2020).

The thermoregulatory stages of altricial birds (Price and 
Dzialowski, 2018) make them a useful model for examining 
effects of high ambient temperature (Ta) experienced during 
the post-natal stage. Like embryos, nestlings are ectothermic 
after hatching (Price and Dzialowski, 2018), so if responses 
to heat observed during the egg stage are related to ectothermy, 
then nestlings may be  as sensitive as embryos to changing Ta 
(Webb, 1987). Nestlings gradually transition to an endothermic-
poikilothermic stage when their feathers begin to erupt, before 
finally developing full homeothermy after fledging (Sirsat et al., 
2016a). Therefore, altricial passerines offer a unique opportunity 
for examining plastic responses to prior exposure to high Ta 
during three substantially different thermoregulatory states 
within the same individual.

Metabolic, hygric, growth, and mitochondrial consequences 
of exposure to high Ta may differ among populations due to 
genetic adaptation (Harada et  al., 2019), while both acute and 
chronic physiological plasticity may also modify thermal 
responses (Williams and Tieleman, 2000; Tieleman et al., 2002, 
2003; Noakes et  al., 2016; Cooper et  al., 2020a,b). Recent 
experimental data for zebra finches (Taeniopygia guttata) indicated 
that prior exposure of adults to simulated heat waves had 
little effect on their subsequent physiology (Cooper et al., 2020b). 
However, early life experiences can prepare subcellular and 

whole-animal phenotypes for subsequent thermal conditions 
(DuRant et  al., 2013; Jonsson and Jonsson, 2014; Hepp et  al., 
2015; Gyllenhammer et  al., 2020; Koch et  al., 2021); these 
developmental effects can be  as substantial as inter-population 
differences (Tracy and Walsberg, 2001). Physiological 
consequences of heat waves experienced during post-natal 
growth by altricial birds have received little attention, despite 
this being the period when thermoregulation develops. Here 
we  examine the impact of exposure during the nestling period 
to simulated heat waves on physiological traits of zebra finches.

The zebra finch is an arid-habitat Australian passerine with 
a well-appreciated physiological capacity to withstand high Ta 
(Zann, 1996; Cooper et  al., 2019). Despite this, zebra finches 
have been involved in mass-mortality events associated with 
heat waves (Finlayson, 1932; Towie, 2009). Thermal, hygric, 
and reproductive effects of climate change are predicted to 
reduce the zebra finch’s distribution and abundance (McKechnie 
et  al., 2012; Conradie et  al., 2020), but the potential for 
developmental plasticity to mitigate these impacts needs to 
be  considered (Fuller et  al., 2010; Boyles et  al., 2011). 
We  quantified the effects of exposure to high Ta (simulated 
heat wave) during the post-natal stage on physiological variables 
at the whole body and mitochondrial level. We  measured 
metabolic rate (MR; measured as oxygen consumption, VO2), 
body temperature (Tb), and evaporative water loss (EWL) and 
calculated wet thermal conductance (Cwet) and relative water 
economy (RWE), at three thermoregulatory stages (ectothermic, 
poikilothermic, and endothermic; Sirsat et  al., 2016a). We  also 
measured the nestlings’ growth rate, and assessed mitochondrial 
function of red blood cells once they reached adulthood (e.g., 
early-life programming effects; Gyllenhammer et  al., 2020).

MATERIALS AND METHODS

Species and Housing
Groups of three male and three female zebra finches were 
placed in outdoor aviaries containing four shaded nest boxes. 
Birds were randomly selected from a population derived from 
wild-caught birds from western New South Wales (31.3°S, 
141.6°E) and bred in captivity at Macquarie University (33.7°S, 
151.1°E) for 3–7 generations. After an initial week of acclimation, 
the birds were provided with nesting material. Dates of clutch 
initiation and completion were recorded and clutches were 
monitored occasionally during incubation and then multiple 
times a day when approaching hatch date. Experiments were 
performed on an individual bird from each of 11 control and 
11 experimentally heated nests with at least three nestlings in 
each nest.

Heating Protocol
The nestling stage for zebra finches lasts 18–22  days, so nests 
were heated for 18  days starting on the day after hatch using 
a Kapton flexible heating device [Omega Engineering 
KHA-404(10)-P], powered by a DC regulated Powertech power 
supply (HW1200R-12). A Vemer digital heat regulator (HT 
NIPT-1P3A VM628500) set at 40  ±  0.2°C controlled the heat 
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output via a digital time switch (Vemer MICRO-D) based on 
the nest temperature recorded by a Vemer VE122800 double 
injection IP68 probe placed in the nest, for 6  h a day from 
9:00 until 15:00. This temperature was selected because it 
approaches Tb of small songbirds (Pollock et al., 2021) challenging 
their capacity for heat dissipation, and approximates the daily 
maximal Ta recorded during the breeding season within the 
natural habitat for this species (Griffith et  al., 2016). Control 
nests were fitted with sham heating devices.

Temperature was measured every 24  s at two positions 
inside each nest box (3  cm below the roof  =  Ta and on the 
bottom of the nest in contact with the nestlings  =  brood 
temperature; Tbr) between days 1 and 8 post-hatch. Temperature 
was recorded only during the ectothermic period because at 
later stages Tbr is influenced by the nestlings’ metabolic heat 
production and older nestlings tended to cluster in the corners 
of the box, making Tbr data less reliable. Both temperature 
probes were wired to a Gemini Tinytag Plus 2 data logger 
and temperature data analyzed using Tinytag Explorer (ver. 
4.7). During the 6  h of experimental heating mean Ta 
(37.3  ±  1.33°C) and Tbr (35.4  ±  1.84°C) in the treatment nest 
boxes were significantly higher than in the control boxes 
(21.5  ±  1.84°C and 33.7  ±  1.33°C; t1,11  =  19.99, p  <  0.001; 
t1,11 = 2.49, p = 0.01, respectively; Figure 1). As a consequence, 
the mean differential between Tbr and Ta was substantially 
smaller for treated nests (1.9  ±  2.5°C) compared to control 
nests (12.2  ±  2.6°C).

Measurements of Metabolic Rate, 
Evaporative Water Loss, and Body 
Temperature
We measured resting metabolic rate (RMR) for the second 
hatched nestling of each brood (and occasionally of one other 
sibling) at days 5, 12, and 50 post hatch, at Ta  =  40°C, a 
physiologically challenging Ta above thermoneutrality (Calder, 
1964; Cade et  al., 1965; Cooper et  al., 2020b). When hatching 
was highly synchronous, we  randomly selected one individual 
for measurement. Measurements at day 5 were made between 
15:00 and 18:00 to allow the nestling to experience regular 
feeding and brooding activity. At day 12 measurements 
commenced at 18:00 and lasted 6–9  h, until physiological 
variables were stable and minimal (Page et  al., 2011). Prior 
to measurements at day 50 birds were individually caged and 
fasted from 14:00 (with access to ad libitum water); they were 
then measured from 19:00 until 05:00 the following morning. 
Nestlings aged 5 and 12  days were placed in a mesh cup 
within the 500  ml glass metabolic chamber, while 50  day old 
offspring rested on a perch.

Measurements of VO2, VCO2 and EWL were made with 
open-flow respirometry after Withers (2001), using a Sable 
Systems Foxbox analyzer. Air flow through the chamber was 
regulated at 100, 200, and 300  ml  min−1 for 5, 12, and 50  day 
old birds, respectively, using the Foxbox’s inbuilt pump and 
flow regulator. Incurrent air was scrubbed of water vapor with 
drierite (W Hammond Co). Excurrent chamber air passed 
through a Vaisala 45A thin-film capacitance RH/Ta probe 

interfaced to the Foxbox, it was dried with drierite, and then 
passed through the Foxbox’s CO2 and then O2 sensor. The 
serial outputs for O2, CO2, Ta, and RH were recorded by a 
PC every 20  s with a custom-written Visual Basic (VB v6) 
data acquisition program (P Withers). Two separate open-flow 
systems allowed for continuous measurement of two birds. 
Birds were weighed with an electronic scale (Nuweigh; ±0.01 g) 
before and after each measurement and the mean mass used 
for calculations. At the end of each experiment Tb (±0.1°C) 
was measured immediately after the bird was removed from 
the chamber with a plastic-tipped thermocouple (diameter 
1 mm), connected to a calibrated QM1601 Digitech Thermometer 
(TechBrands, Australia), inserted 0.5–1.5  cm, depending on 
the size of the bird, into the cloaca.

Baselines of background O2, CO2, and RH were established 
for at least 30  min before and after each experiment. VO2, 
VCO2, and EWL were calculated after Withers (2001) for 
the ~20  min period where these values were steady and 
minimal, using custom-written data analysis software (VB 
v6; P. Withers). Since VCO2 mirrors VO2, we  present only 
VO2 here. Wet thermal conductance (Cwet, J.h−1.°C−1) was 
calculated as MHP/(Tb-Ta), where MHP is metabolic heat 
production, calculated from the appropriate oxy-calorific 
conversion (Withers et  al., 2016) for VO2 as determined by 
the respiratory exchange ratio (RER). Relative water economy 
(RWE) was calculated as MWP/EWL, where MWP is the 
metabolic water production, determined from the RER and 
the hygric conversion for VO2 after Withers et  al. (2016).

A Sensodyne Gillian Gilibrator was used to calibrate the 
Foxboxs’ flow meters. Room air (20.95% O2) and nitrogen 
(0% O2; BOC gases, Perth, WA, Australia) were used to two-point 
calibrate the O2 analyzers, while the CO2 analyzers were calibrated 
with a precision gas mix (0.53% CO2; BOC Gases) and N2. 
The RH probes were calibrated at five RHs from 2% (dry, 
using drierite) to 85% using a Sable Systems DG4 
humidity controller.

Growth Rate
Individual nestlings were marked with non-toxic markers on 
the tarsi to measure individual growth trajectories. Birds were 
weighed with an electronic scale (Nuweigh; ±0.01  g) and 
measurements were made every second day at the same time 
(16:00  ±  1  h) starting at hatch day until fledging (ca. day 
20). The growth rate constant (k) was calculated using logistic 
regression (Ricklefs, 1968; Remeŝ and Martin, 2002; Sofaer 
et  al., 2013) to determine the slope of the line tangent to the 
growth curve at the inflection point (a mass-independent 
estimate of growth rate), as well as asymptotic body mass 
(i.e., at fledging).

Mitochondrial Bioenergetic Measurements
Avian erythrocytes are nucleated and have functional 
mitochondria (Stier et  al., 2013), allowing measurements of 
mitochondrial function from small blood samples (Stier et  al., 
2017, 2019). Mitochondrial function of blood cells correlates 
with that of other tissues for birds (e.g., Stier et  al., 2017) 
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and mammals (Koch et  al., 2021). Using blood rather than 
organs such as brain or liver allows for measurements where 
euthanasia is not an option, such as for repeated measurements 
during long-term studies, or for species of conservation concern. 
We, therefore, examine if high Ta during the post-natal stage 
impact blood mitochondrial function. Measurements of 
mitochondrial respiration were performed on intact blood cells 
between day 79 and 83 post hatch (hereafter referred as day 
80), to prevent any impacts of sampling on the other 
measurements. Measurements were made for the same individuals 
as the other physiological variables, except in one instance 
when a bird did not survive until age 80; it was replaced with 
a sibling from the same brood. Within 5  min of capturing 
each bird in the aviary 70  μl of blood was taken from the 
brachial vein using heparinized capillaries and transferred into 
Eppendorf tubes. Blood cells were then immediately separated 
from the plasma by centrifuging the sample for 5  min at 
3,000 rpm at 4°C. Plasma was removed from the upper fraction 
of the sample and the blood cells were then washed by adding 
1  ml of ice cold phosphate buffered saline (PBS) and spinning 
at 800  rpm for 3  min at 4°C.

Before starting measurements of mitochondrial respiration, 
the PBS was discarded and the blood cells were mixed with 
1 ml of MiR05 medium [0 5 mM Egtazic Acid (EGTA), 3 mM 
MgCl2, 60 mM K-lactobionate, 20 mM taurine, 10 mM KH2PO4, 
20  mM Hepes, 110  mM sucrose, free fatty acid bovine serum 
albumin (1  g  L−1), pH 7.1; Stier et  al., 2017]. Blood cells were 
then transferred into the two chambers of an O2k high resolution 
respirometer (Oroboros Instruments, Innsbruck, Austria) set 
at 37.5°C for duplicate measurements for each bird. After 
equilibration for 10 min we recorded mitochondrial ROUTINE 
respiration, representing endogenous cellular mitochondrial O2 
consumption. We then quantified mitochondrial O2 consumption 
associated with mitochondrial proton leak (LEAK) by injecting 
1  μl of 5  mM oligomycin to inhibit ATP synthesis. Oxidative 
phosphorylation (OXPHOS) was calculated by subtracting LEAK 
from ROUTINE. We  then estimated the maximum capacity 
of the mitochondrial electron transport system (ETS) by 
progressive titration with the mitochondrial uncoupler CCCP 
(carbonyl cyanide m-chlorophenyl hydrazine; 1  μl of 1  mM 
steps). Finally, we inhibited mitochondrial respiration by injecting 
5  μl of antimycin A (a complex III inhibitor) to measure 
non-mitochondrial O2 consumption and subtract this value 
from each of the other parameters. We calculated two different 
mitochondrial flux control ratios (FCRs), namely an index of 
OXPHOS coupling efficiency [OxCE = 1 −  (LEAK/ROUTINE)] 
and an index of mitochondrial reserve capacity  
(FCRR/ETS  =  ROUTINE/ETS). We  evaluated the technical 
repeatability of mitochondrial respiration rates by calculating 
intra-class coefficients of correlation based on duplicate 
measurements (ICC, ranged from 0.63 to 0.76, all p  <  0.001). 
To account for individual variation in blood cell density and 
differences in blood sample volume, we  performed a Pierce 
BCA protein quantification assay (ThermoFisher Scientific, 
Waltham, MA, United  States) and normalized mitochondrial 
respiration rates for the protein content of the sample by 
including this value as covariate in statistical analyses (see below).

Statistical Analysis
All analyses were performed with R version 3.5.1 for Mac 
(R Core Team, 2018). We  used a t-test to compare Ta and 
Tbr of control and heated nests. For each nest, we  estimated 
and compared growth rates (K), and asymptotic size before 
fledge date (A) for nestling mass using nonlinear mixed models 
(package nlme Pinheiro et al., 2017) following the methodology 
of Sofaer et  al. (2013). Age and treatment were fixed effects, 
and nest and nestling identity were included as random effects 
to account for the lack of independence among siblings and 
for repeated measures of the same individual over time.

We tested effects of nest heating on whole-animal physiological 
variables by fitting linear mixed models using the packages 
lme4 and lmerTest (Bates et  al., 2014; Kuznetsova et  al., 2017). 
Treatment and age and their interaction were fixed factors 
and body mass was a covariate. For Cwet, we  only examined 
data for nestlings at 12 and 50  days because at day 5 Tb 
closely approximated Ta, so calculation of Cwet was unreliable. 
We included random slopes for individuals nested within brood 
to account for repeated measures of individuals belonging to 
the same brood. Post-hoc pairwise comparisons between groups 
were made using the emmeans package (Lenth et  al., 2019) 
which applies Tukey and Kenward-Roger degrees of 
freedom adjustments.

To examine the effect of nest heating on mitochondrial 
bioenergetics (ROUTINE, LEAK, OXPHOS, and ETS) and 
we  used protein content and temperature treatment as fixed 
factors, and individual as a random slope to account for our 
repeated measurements. For analysis of OxCE and FCRR/ETS 
ratios protein content was not included as a covariate.

RESULTS

Growth of nestlings did not significantly differ between control 
and heated nests (F1,700  =  0.33, p  =  0.560, Figure  2), and there 
were no significant differences between treatment and control 
nests for body mass at fledging date (F1,700  =  1.53, p  =  0.216, 
Figure  2) or at 50  days post-hatch (F1,18.8  =  0.08, p  =  0.929).

Temperature treatment had no significant influence on MR, 
EWL, RWE, or Cwet (F1,62  ≤  4.3, p  ≥  0.055; Figures  3A–D). 
There was a significant effect of early-life heat waves on Tb 
(F1,24.6  =  9.0, p  =  0.006; Figure  3E) with birds from heated 
nests having a lower Tb than those from control nests at day 
12 (p = 0.026) and 50 (p = 0.007), but not at day 5 (p = 0.82). 
Body mass was significantly correlated with MR 
(β  =  2.83  ±  0.72; F1,62  =  14.8, p  <  0.001) and EWL 
(β  =  9.54  ±  3.58; F1,62  =  7.1, p  =  0.010), but not with the 
other parameters (F1,62  ≤  1.2, p  ≥  0.26). Metabolic rate, Tb, 
and RWE increased with age (F2,62 ≥ 4.9, p ≤ 0.011; Figure 3D) 
but Cwet decreased between day 12 and 50 (F2,62 ≥ 4.5, p < 0.042; 
Figure  3D) and EWL did not vary with age (F2,52.8  =  0.2, 
p  =  0.83; Figure  3B).

Birds from heated nests had higher mitochondrial respiration 
rates at day 80 than those from control nests for both ROUTINE 
(F1,19.6  =  4.6, p  =  0.04; Figure  4) and LEAK (F1,20.0  =  8.0, 
p  =  0.01; Figure  4). There was no significant effect of the 
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FIGURE 1 | Typical 24 h air Ta and brood Tbr temperature profile in control and heated zebra finch (Taeniopygia guttata) nest boxes. Data were recorded in adjacent 
aviaries during the same day for two nests with a brood size of four.

FIGURE 2 | Sigmoidal plot describing the post-natal growth trajectories for body mass of zebra finch (T. guttata) nestlings from control (blue) and heated 
(red) nests. There was no significant difference in growth rate or asymptotic body mass between treatment groups (see Results section for details). N = 11 
and 11.
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heat treatment for OXPHOS, ETS, OxCE, or FCRROUTINE/ETS 
(F1,19–20  ≤  3.5, p  ≥  0.07; Figure  4).

DISCUSSION

For zebra finches, early-life exposure to simulated heat waves 
had no significant impact on whole-body metabolic rate or 
hygric physiology but reduced Tb of nestlings at days 12 and 
50 (i.e., both during the temperature treatment and 1  month 
after it ended). A lower Tb allows greater scope for hyperthermia 
at high Ta (Tieleman and Williams, 1999), but can impose 
limits on muscle functionality and immune reactions (Boyles 
et  al., 2011). Despite no whole-body metabolic effect, birds 
from heated nests had higher mitochondrial respiration (both 
endogenous and proton-leak) than birds from control nests 
2  months after the heat treatment. While the consequences 
of these mitochondrial changes for accommodating high Ta at 
later life stages are unknown, our results indicate that post-
natal developmental programing of mitochondrial function by 

exposure to elevated Ta does occur. Our results also suggest 
that the effects of early-life heat exposure emerge after the 
ectothermic stage (day 5) when endothermy develops. This 
information improves our understanding of species responses 
and potential resilience to climate change (Conradie et al., 2020).

Previous thermal acclimation and acclimatization studies for 
adult birds, including zebra finches, document lower MR and 
EWL, and higher Tb, for birds during or immediately following 
or chronic or acute periods of exposure to high Ta (Williams 
and Tieleman, 2000; Cooper et  al., 2020a). These responses 
create a more favorable trade-off between hyperthermia and 
dehydration for birds exposed to high Ta. However, our findings 
are consistent with those for adult zebra finches (Cooper et  al., 
2020b), that suggest that prior acute exposure to high Ta has 
little effect on whole-animal metabolism and water balance at 
later time-points. As these physiological variables correlate with 
field energy and water expenditure (Nagy, 1987; Cooper et  al., 
2003), prior experience of high Ta is also unlikely to influence 
daily energy and water requirements in the field. So while there 
is evidence that birds adjust their physiology during periods 

A

C

E

B

D

FIGURE 3 | Effects of early-life heat waves exposure in zebra finch on whole-body physiology: (A) metabolic rate (B) evaporative water loss (C) relative water 
economy (D) thermal conductance, and (E) body temperature after exposure to an ambient temperature of 40°C for >2 h. Individuals have been successively 
measured at day 5 (ectothermic stage), day 12 (poikilothermic stage), and day 50 (homoeothermic stage; 1 month after the treatment ended) post hatch. Individual 
data points are presented along with their mean ± SE.
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high Ta, our results support the hypothesis that periodic extreme 
events such as heat waves do little to prepare birds for future 
warming, and are of greater concern for the persistence of avian 
populations (McKechnie and Wolf, 2010; Franklin et  al., 2014; 
Cooper et  al., 2020a,b).

We detected no effect of early-life exposure to increased 
Ta on growth rate and body mass at fledging or at 50  days 
of age, consistent with observations of Hsu et  al. (2020) for 
wild pied flycatchers (Ficedula hypoleuca). Dawson et al. (2005) 
also found that growth rates of tree swallows (Tachycineta 
bicolor) from heated nests were the same as those from control 
nests, although birds from heated nests had higher body mass. 
However, other studies report lower growth rates for nestlings 
from heated nests (Rodríguez and Barba, 2016; Andreasson 
et al., 2018). Various factors, such as physiological and parental 
care variables, can influence the relationship between nest 
temperature and nestling growth rate. In colder climates, warmer 
minimum and mean nest temperatures are correlated with 
higher nestling growth rates, while in warmer climates, higher 
nest temperature can negatively impact nesting growth rates 
(Larson et  al., 2015) presumably as a consequence of nest 
temperature moving closer to or further from an optimal 
temperature for growth. The absence of a temperature effect 
on body mass differs from previous results for wild and captive 
zebra finches (Andrew et  al., 2017, 2018). However, thermal 
responses can vary depending on the ontogenetic stage (Halevy, 
2020) and in these previous studies, heating occurred during 
the embryonic as well as the post-natal period.

There is a considerable body of literature discussing the 
impact on physiological and life history variables of manipulating 
temperature during the embryonic stage (Elphick and Shine, 
1998; O’Steen, 1998; Gilchrist and Huey, 2001; Du and Ji, 
2003; Ardia et  al., 2010; Nord and Nilsson, 2011; DuRant 
et al., 2012; Scott and Johnston, 2012; Hepp et al., 2015; Andrew 
et  al., 2017; Ton and Martin, 2017) in contrast to the scarcity 
of manipulative studies during the post-natal stage for altricial 
birds (Andreasson et  al., 2020). The significant later-life whole 
body physiological consequences of high Ta during embryonic 

development compared to our observations for nestlings suggests 
that the embryonic phase may be  more sensitive to plastic 
adjustments compared to the post-natal stage. This may 
be because embryos of all species are ectothermic with potentially 
greater exposure to variable temperature. However, our 
experimental treatment induced no whole-animal metabolic 
or water loss effects, even for ectothermic 5-day-old nestlings. 
This, together with the absence of Ta effects for body mass 
and growth rates compared to previous findings (Andrew et al., 
2017, 2018) support the idea that conditions experienced during 
the post-natal stage have fewer subsequent effects for adult 
birds than those experienced as an embryo. This may be  a 
consequence of the developmental and gene expression processes 
underlying functional differentiation of tissues during the 
embryonic stage (Gilbert and Epel, 2009), while the post-natal 
stage is characterized by cellular proliferation and growth rather 
than functional differentiation (Starck and Ricklefs, 1998).

We did uncover some functional consequences of early-life 
exposure to heat waves at the subcellular level. Two months 
after the end of the temperature treatment, both endogenous 
(ROUTINE) and proton-leak (LEAK) mitochondrial respiration 
rates were higher for birds in experimentally heated nests 
compared to control nests. It is possible that this is a consequence 
of birds from control and heated groups differing with respect 
to the thermal optimum for their mitochondrial function. High 
proton LEAK is functionally linked to thermogenesis in brown 
adipose tissue of mammals and has been associated with a 
fast pace of life and higher oxidative stress for birds (Jimenez 
et  al., 2014b). A small increase in proton leak reduces reactive 
oxygen species (ROS) production and oxidative stress (Divakaruni 
and Brand, 2011; Koch et  al., 2021). Acute exposure to heat 
generates cellular stress and increases production of ROS (Abele 
et  al., 2002; Mujahid et  al., 2005; Tan et  al., 2010), which can 
elicit an upregulation of mitochondrial proton leak as a protective 
mechanism (Jarmuszkiewicz et  al., 2015). Consequently, the 
increase we  observed in LEAK for birds from heated nests 
may be advantageous for buffering heat-induced oxidative stress. 
However, higher LEAK increases metabolic heat production, 

FIGURE 4 | Effects of early-life heat waves exposure in zebra finch on blood cells mitochondrial physiology measured at day 80 (i.e., 2 months after the treatment 
ended). ROUTINE represents the endogenous mitochondrial respiration, LEAK the proton-leak related mitochondrial respiration, OXPHOS the ATP-synthesis related 
mitochondrial respiration, and ETS the maximal mitochondrial respiration. OXPHOS coupling efficiency (OxCE) is an index of mitochondrial efficiency to produce ATP 
and FCRR/ETS an index of the mitochondrial reserve capacity. Individual data points are presented along with their mean ± SE and describe oxygen consumption 
not corrected by protein content (see Materials and Methods and Results sections for details on statistics).
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which is detrimental at high Ta and it is unclear why our 
birds from heated nests had lower rather than higher Tb despite 
the elevated mitochondrial function. Future studies should 
examine this by measuring long-term implications for Tb, 
oxidative stress, and biomarkers of biological aging, such as 
telomere length (Dupoué et  al., 2017).

A correlation between whole-animal metabolism and 
mitochondrial function is expected (White and Kearney, 2011; 
Jimenez et  al., 2014a), but the interrelationships between 
physiological function at different levels of organization are 
debated (Norin and Metcalfe, 2019). The increased mitochondrial 
ROUTINE and LEAK, we  observed at 80  days post-hatch for 
our heat-treated birds did not reflect an increased whole-body 
metabolism at early life-history stages and Tb was lower, not 
higher. This may be  due to temporal physiological changes 
(we observed changes in rates of whole-body metabolism at 
different ages) and/or elevated Cwet for birds from heated nests 
which may have dissipated increased MHP. Our results suggest 
that elevated Cwet may have occurred but we  unfortunately 
did not have sufficient statistical power to detect differences 
in Cwet for heated and control nets (Figure  3D). There may 
also be  differences in mitochondrial contribution to whole-
animal metabolism from different tissues (Else and Hulbert, 
1985). Mitochondrial VO2 of muscle or liver, which have a 
greater contribution to whole-animal metabolism than blood 
(Sirsat et  al., 2016b,c), may have correlated more strongly with 
whole-body metabolism, but this is unlikely as mitochondrial 
function of blood correlates with that of other tissues (Stier 
et  al., 2017). These findings emphasize the need for improved 
understanding of the relationship between cellular and whole 
body metabolism, and of the utility of blood as a tissue for 
mitochondrial measurements (Koch et  al., 2021).

In summary, our study provides no evidence that exposure 
to high nest temperature during the neonatal period has any 
subsequent effect on growth rate, mass, and whole-body metabolic 
and hygric physiology of zebra finch chicks during any of the 
three phases of thermoregulatory development. These results 
may reflect the natural history of the species (Griffith et  al., 
2021). Yet, there is an impact on Tb and on ROUTINE and 
LEAK mitochondrial function for endothermic birds, consistent 
with responses to oxidative damage and life-history tradeoffs 
(Tan et  al., 2010; Hood et  al., 2018a,b). This suggests that 
there is some limited scope for prior experience of heat waves 
during the neo-natal phase to result in whole organism metabolic 
changes. Such results force us to reconsider our approaches 
in exploring environmental influences on physiological traits. 

Indeed, failing to detect metabolic or growth consequences at 
the whole body level does not exclude sub-cellular repercussions 
that may have important implications for other unmeasured 
aspects of phenotypic and evolutionary fitness.
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