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Euryhaline teleosts exhibit major changes in renal function as they move between
freshwater (FW) and seawater (SW) environments, thus tolerating large fluctuations in
salinity. In FW, the kidney excretes large volumes of water through high glomerular
filtration rates (GFR) and low tubular reabsorption rates, while actively reabsorbing
most ions at high rates. The excreted product has a high urine flow rate (UFR) with
a dilute composition. In SW, GFR is greatly reduced, and the tubules reabsorb as
much water as possible, while actively secreting divalent ions. The excreted product
has a low UFR, and is almost isosmotic to the blood plasma, with Mg2+, SO4

2−,
and Cl− as the major ionic components. Early studies at the organismal level have
described these basic patterns, while in the last two decades, studies of regulation
at the cell and molecular level have been implemented, though only in a few euryhaline
groups (salmonids, eels, tilapias, and fugus). There have been few studies combining
the two approaches. The aim of the review is to integrate known aspects of renal
physiology (reabsorption and secretion) with more recent advances in molecular water
and solute physiology (gene and protein function of transporters). The renal transporters
addressed include the subunits of the Na+, K+- ATPase (NKA) enzyme, monovalent
ion transporters for Na+, Cl−, and K+ (NKCC1, NKCC2, CLC-K, NCC, ROMK2), water
transport pathways [aquaporins (AQP), claudins (CLDN)], and divalent ion transporters
for SO4

2−, Mg2+, and Ca2+ (SLC26A6, SLC26A1, SLC13A1, SLC41A1, CNNM2,
CNNM3, NCX1, NCX2, PMCA). For each transport category, we address the current
understanding at the molecular level, try to synthesize it with classical knowledge of
overall renal function, and highlight knowledge gaps. Future research on the kidney
of euryhaline fishes should focus on integrating changes in kidney reabsorption and
secretion of ions with changes in transporter function at the cellular and molecular level
(gene and protein verification) in different regions of the nephrons. An increased focus on
the kidney individually and its functional integration with the other osmoregulatory organs
(gills, skin and intestine) in maintaining overall homeostasis will have applied relevance
for aquaculture.
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INTRODUCTION

Several teleost fish species have developed strategies to maintain
fluid and electrolyte homeostasis in a wide range of salinities,
involving integrated ion and water transport activities of
the gills, kidney and intestine (Evans et al., 2005; Marshall
and Grosell, 2005; Evans, 2010; Grosell, 2010). By definition,
stenohaline fish are able to cope only within a narrow
salinity range in either freshwater (FW) or seawater (SW)
(Gonzalez, 2012). Approximately 3–5% of teleosts are euryhaline
with the ability to acclimate to strongly hypotonic and
hypertonic salinities (Evans, 1984). Anatomical and physiological
knowledge of the cooperative osmoregulatory functions of
gills, kidney and intestine is abundant (Marshall and Grosell,
2005; Evans, 2008, 2010; Grosell, 2010; Hwang et al., 2011;
Whittamore, 2012). Hence, major reviews have focused on
renal physiology in FW and SW acclimated fishes (Hickman
and Trump, 1969; Wood and Patrick, 1994; Wood, 1995;
Renfro, 1999; Beyenbach, 2004; Dantzler, 2016; McCormick
et al., 2013a), while renal function has been addressed to
a larger extent in mammals as dysfunctional regulation of
water and ions is linked to many pathological conditions
(Markovich, 2001; Dawson et al., 2003; Markovich and
Aronson, 2007; Arjona et al., 2019; Chen et al., 2020).
The purpose of the current review is not to reiterate
fine details already covered in the above-mentioned reviews,
but rather to integrate known aspects of renal physiology
with emerging genetic and molecular information on the
transporters in the kidney of euryhaline teleosts. Euryhaline
teleosts are especially appealing because: (1) it is important
to understand coping mechanisms of fish in the face of
global climate change, because rising sea levels due to the
polar ice melting are associated with decreased ocean salinity
in pelagic zones. Conversely, increased salinization of coastal
areas is occurring as a consequence of extreme climate
events (floods, tsunamis, hurricanes, etc.) where seawater
often invades freshwater environments (Kültz, 2015), and,
thus, may negatively affect stenohaline fish that normally
regulate within a narrow salinity range, (2) whole genome
duplication (WGD) has occurred four times during evolution,
where WGD3 (teleost-specific) and WGD4 (salmonid-specific)
have generated new genomic material in teleosts that may
provide increased phenotypic diversity (Kondrashov et al.,
2002; Kondrashov, 2012; Macqueen and Johnston, 2014;
Houston and Macqueen, 2019), (3) recent studies have
revealed some of the molecular basis of the water and
ion transport processes identified in previous physiological
characterization of the euryhaline teleost kidney, and (4) among
several phyla such as salmonids, eels and cichlids, which
are critically important for global fisheries and aquaculture,
there are many species with declining wild populations. Our
overall aim is to highlight recent advances in molecular
transport pathways and their role in the renal function of
euryhaline teleosts.

GENOME PLASTICITY OF EURYHALINE
TELEOSTS AND ANATOMICAL
CHARACTERISTICS OF THE KIDNEY

Salinity tolerance is a careful balance between bioenergetic
costs and trade-offs that ultimately may modulate adaptive
plasticity and evolutionary change in kidney function (Watt,
1985; Schulte, 2001; Dalziel et al., 2009). Many novel paralogous
genes associated with water and ion regulation have been
discovered in teleosts compared to the mammalian models,
presumably enabling teleosts to inhabit and thrive in different
aquatic habitats (Cutler and Cramb, 2001; Kondrashov et al.,
2002; Takei et al., 2014; Warren et al., 2014). WGD events have
generated thousands of duplicate genes, argued to be one of
the major drivers for shaping the vertebrate genome during
evolution (Sato and Nishida, 2010). Euryhaline teleosts such
as salmonids exhibit a high paralog retention (25–75%), often
exhibiting transporter paralogs not found in other teleosts,
leading to more extensive genomic plasticity (Bailey et al.,
1978; Houston and Macqueen, 2019). The plasticity originating
from the teleosts specific WGD3 events approximately 320-
350 million years ago (mya) and salmoniformes WGD4
events 50-80 mya may have enhanced the capacities for
euryhaline species in these phyla to deal with salinity
fluctuations and to acclimate to FW and SW environments
(Houston and Macqueen, 2019).

In their seminal review, Hickman and Trump (1969)
provided a detailed overview of the evolution and anatomy
of the teleost kidney. Both microscopic observations and
studies on isolated tubules divide the nephron of euryhaline
fishes into sections: glomerulus (excluding aglomular fish),
proximal tubule I and II (tubule II is longer, and marine
teleosts may have a third proximal tubule), intermediate
segment (only present in freshwater teleosts), the distal
tubule (sometimes missing in marine teleosts), and the
collecting tubule and collecting duct (Hickman and Trump,
1969; Figure 1). The anatomical and regulatory properties
of these segments may differ depending on the salinity
the fish is acclimated to, or if the animal is transitioning
between salinities.

In euryhaline species, glomeruli and tubular segments are
tangled and in close connection with hematopoietic tissue,
especially in the anterior part of the kidney, while urine
producing nephrons are more numerous toward the posterior
part (Anderson and Loewen, 1975; Resende et al., 2010).
Afferent arterioles enter into a network of capillaries at the
vascular pole of the glomerulus. In these capillaries, the arterial
blood pressure filters the plasma through small pores into
Bowman‘s capsule, consisting of visceral and parietal layers
(Brown et al., 1983). The internal or visceral layer of the
glomerulus has modified epithelial cells, called podocytes (“foot
cells”) with intermingling projections (pedicels) that wrap around
the glomerular capillaries, with narrow slits between them.
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FIGURE 1 | Anatomical overview of the nephron in euryhaline teleosts. The
figure represents the general anatomy of the nephron in euryhaline species
with the following segments: Glomerulus (G), Proximal Tubule I (PTI), Proximal
Tubule II (PTII), Distal tubule (DT) and Collecting tubule (CT). Hence, no cross
section overview is given for neck segment (N) and collecting duct (CD). Note
that the intermediate segment, only found in FW stenohaline teleosts, is not
illustrated. The anatomical differences with well-defined vacuoles and microvilli
in the proximal tubule (more distinct in PTI), basolateral membrane infoldings
in all tubule segments (more distinct in DT) and apical located membrane
granules in CT. Model are based on Hickman and Trump (1969). Further note
that this illustrates the main anatomical features of the nephron, and that
differences may exists between species. For a more comprehensive detailed
anatomical view see Hickman and Trump (1969) and Dantzler (2016).

These, together with the intercellular channels (“fenestrae”) of
the vascular endothelium, and a trilaminar basement membrane
create a filtration barrier (“sieve”) that is small enough to
allow the passage of both essential and unwanted solutes
from the blood, yet not large enough for proteins or red
blood cells (RBC) to permeate (Elger et al., 1984). Plasma
filtered into Bowman’s capsule is the primary urine, almost
identical in composition to the blood plasma from which it was
formed, apart from the absence of proteins. The primary urine

passes the short neck segment and thereafter, is sequentially
modified by reabsorption and secretion processes as it passes
through the proximal and distal tubules before entering the
collecting tubule and duct (Charmi et al., 2010). Ultimately,
the urine enters the paired mesonephric duct which merge
together, forming the urinary bladder where the urine is stored
before it is periodically discharged through the urinary papilla
(Curtis and Wood, 1991; Demarest and Machen, 1984). All
parts of the nephron tubules and urinary bladder exhibit
transport processes that contribute to the final volume and
composition of the urine.

RENAL HANDLING OF IONS AND WATER
IN FW AND SW ENVIRONMENTS

In FW, ions are scarce and Osmolarity is very low, so
stenohaline (FW) and euryhaline (when in FW) fishes experience
a continuous osmotic influx of water and diffusive loss of
major ions through the gills and skin. The kidney counters
this by filtering large amounts of blood in the glomeruli,
thereby maintaining high glomerular filtration rates (GFR)
of approximately 4–16 ml//kg/h and urine flow rates (UFR)
of 1–6 ml/kg/h, ensuring excretion of large volumes of
dilute urine (20–50 mOsm/L) (Hickman and Trump, 1969;
Beyenbach, 1995; (Figures 2A,C). The urine of FW teleosts
typically contains 5–20 mM of NaCl with other ions being
at most a few millimolar (mM), and often in the sub-
millimolar range (Hickman and Trump, 1969). Production of
dilute urine is possible due to the impermeable features of the
distal tubule and downstream regions (collecting tubule/duct),
including the bladder, enabling the reabsorption of precious
ions (mainly Na+ and Cl−) while limiting the accompanying
osmotic reabsorption of water. In proximal tubule I, organic
acids are secreted, while compounds like glucose, other
macromolecules and NaCl are reabsorbed, accompanied by
some water (Hickman and Trump, 1969; Marshall and Grosell,
2005; Figures 2A,C). Although minor secretion of Mg2+ and
SO4

2− occurs (Nishimura et al., 1983), most divalent ions
such as Mg2+, SO4

2−, and Ca2+ are reabsorbed in proximal
tubule II of the nephron. Na+, Cl−, K+, and HCO3

− are also
reabsorbed in proximal tubule II, together with some water (Cliff
and Beyenbach, 1992; Dantzler, 2003). Although the primary
function of the FW kidney is solute reabsorption and water
excretion, most measurements to date have been on fasted
fish, and evidence suggests that dietary ion intake can cause
shifts from reabsorption to secretion of both monovalent and
divalent ions (Oikari and Rankin, 1985; Curtis and Wood,
1991; Cliff and Beyenbach, 1992; Bucking and Wood, 2007;
Bucking et al., 2010).

In SW, ions are abundant and water is lost by osmosis
through the gills and skin. Fish replace water loss by drinking,
but thereby incur additional Na+ and Cl− loading which
accompanies this enteric water absorption (Marshall and Grosell,
2005). In general, both urine volume and composition differ
between SW and FW species. In SW, water conservation and
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FIGURE 2 | Overview of water and ion movement in freshwater teleost nephron (FW) and seawater teleost nephron (SW). FW (A,C): In a FW fish kidney, most ions
are reabsorbed, and water follows by diffusion. Therefore, impermeable features of the distal and collecting duct can reabsorb Na+ and Cl- with minimal
accompanying osmotic movement. The glomerulus filters (GFR) roughly 4–16 milliliter/kilogram/hours (ml/kg/h) of plasma (270–280 mOsm/L) while producing (UFR)
roughly 1-6 ml/kg/h of dilute urine (20–50 mOsm/L). SW (B,D): In a SW fish kidney, most divalent ions are secreted and water follows by osmosis. To counter water
loss and dehydration in SW fish, distal and collecting tubule must be more permeable enabling effective Na+ and Cl- reabsorption while water can follow by
osmosis. The glomerulus filters (GFR) roughly 0.2–1.5 ml/kg/h of plasma (320 mOsm/L) while producing (UFR) roughly 0.2–0.3 ml/kg/h of concentrated urine
(300 mOsm/L) rich in SO4

2- and Mg2+. Different sections of the nephron are displayed as follows: Glomerulus (G), Neck segment (NS), Proximal tubule I (PTI),
Proximal tubule II (PTII), Distal tubule (DT), Colleting tubule (CT) and collecting duct (CD). Keep in mind that the nephron in euryhaline teleost in FW and SW
environments usually has a distal segment (model C and D) commonly found in stenohaline FW teleosts (Model A) while stenohaline SW teleosts (model B) possess
a third proximal segment. Transport in the collecting duct are not indicated here but are known to have similar roles as in the collecting tubule. Models modified from
the paper of Hickman and Trump (1969) and Marshall and Grosell (2005).

excretion of excess divalent ions (e.g., Mg2+, Ca2+, SO4
2−) by

the kidney are vital. Therefore, the SW kidney typically exhibits
low GFR (0.5–2.0 ml/h/kg) reflecting greatly reduced numbers
of functioning glomeruli, or sometimes without glomeruli as
in aglomular fish (Schmidt-Nielsen and Renfro, 1975; Brown
et al., 1978), and low UFR (0.2–0.3 ml/h/kg) compared to FW
fish, producing a urine which is approximately isotonic (300–
410 mOsm/L) to the blood plasma. The major urinary cations
are Mg2+, Na+, and Ca2+, while the major anions are SO4

2−

and Cl− (Hickman, 1968b; Hickman and Trump, 1969; Renfro,
1999; Beyenbach, 2004; Figures 2B,D). The distal tubule is
usually reduced and reabsorption of Na+ and Cl− occurs in
the late proximal tubule and urinary bladder. Reabsorption of
Na+ and Cl− occurs in proximal tubule I where some water
follows by osmosis (Hickman and Trump, 1969). Excretion
of Mg2+, Ca2+ and SO4

2− is believed to be primarily by
secretion in proximal tubule II, but there is some evidence
that this also takes place in proximal tubule I (Hickman and
Trump, 1969; Beyenbach, 1995; Figures 2B,D). Hence, the
urine is made isosmotic largely due to reabsorption of NaCl,
which is accompanied by water in the distal and collecting
tubule (Dantzler, 2003; Figures 2B,D). Further reabsorption

of Na+ and Cl− appears to occur in the urinary bladder,
leaving high concentrations of divalent ions in the urine
(Beyenbach and Kirschner, 1975).

The preceding overview summarizes our general
understanding of how the kidney functions at a macro-
level in FW and SW teleosts. For additional details, the reader
is referred to Smith (1930); Hickman and Trump (1969),
Beyenbach and Kirschner (1975); Brown et al. (1978), Beyenbach
(1986); Talbot et al. (1989), Curtis and Wood (1991); Wood
and Patrick (1994), Wood (1995); Nishimura and Fan (2003),
Dantzler (2003); Beyenbach (2004), Marshall and Grosell (2005),
and Dantzler (2016).

NA+/K+ - ATPASE - ESSENTIAL FOR
FLUID AND ELECTROLYTE
HOMEOSTASIS

Na+/K+- ATPase (NKA) maintains high and low intracellular
K+ and Na+ concentrations, respectively, and is therefore
crucial in the regulation of the transmembrane potential
used for cellular homeostasis and secondary transport of
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many compounds (Skou and Esmann, 1992). Analogous to
its osmoregulatory role in the gills (Evans et al., 1999;
Evans, 2008; Hiroi and McCormick, 2012) and intestine
(Sundell et al., 2003; Sundell and Sundh, 2012; Sundh
et al., 2014), the NKA pump powers the electrochemical
gradients required for reabsorption and secretion in the renal
tubules (Nishimura and Fan, 2003), and indirectly enables
reciprocal switchovers of ion and water transport during
migrations between FW and SW (Marshall and Grosell, 2005;
Edwards and Marshall, 2012).

In the kidney, the NKA plays a primary role in driving the
reabsorption of Na+, water (indirectly) and other solutes (Hiroi
et al., 2005; Tang et al., 2010; Teranishi and Kaneko, 2010; Kato
et al., 2011; Hiroi and McCormick, 2012; McCormick et al.,
2013a). Renal NKA activity is often responsive to changes in
environmental salinity, though patterns are inconsistent amongst
species. NKA activity increases in some species (European
seabass (Dicentrarchus labrax), wedge sole (Dicologoglossa
cuneata), milkfish (Chanos chanos) upon FW to SW transfer,
suggesting a heightened requirement for tubular ion transport,
probably reflecting the need for secretion of divalent ions
(Venturini et al., 1992; Herrera et al., 2009; Tang et al.,
2010). Conversely, increased renal NKA activity upon transfer
from SW to FW is also observed in striped bass (Morone
saxatilis), spotted green pufferfish (Tetradon nigroviridis) and
Japanese eel (Anguilla japonica), presumably reflecting the
greater requirement of roughly 95% reabsorption of NaCl from
the high volume of primary urine (Madsen et al., 1994; Lin
et al., 2004; Nebel et al., 2005; Tang et al., 2012). NKA activity
remaining stable in response changing salinity has also been
observed in Atlantic salmon (Salmo salar), sea bream (Sparus
auratus) and Senegalese sole (Solea senegalensis) (McCormick
et al., 1989; Sangiao-Alvarellos et al., 2005; Arjona et al., 2007),
perhaps reflecting more fine-tuned regulatory mechanisms. The
NKA is composed of two essential subunits, the catalytic alpha
(α) and the structurally important beta subunit (β), both of
which are essential for modulating the transport properties
of the enzyme (Kaplan, 2002). In addition, a third gamma
(γ) subunit, often referred to as FXYD protein, appears to
modify the kinetic properties of Na+ and K+ transport (Garty
and Karlish, 2006; Tang et al., 2012; Hu et al., 2014; Yang
et al., 2016). Adjustments of multiple components of the NKA
enzyme provides increased regulatory plasticity, as indicated
by additional paralogs detected in euryhaline teleosts (Blanco
and Mercer, 1998; Richards et al., 2003; Nilsen et al., 2007;
McCormick et al., 2013b). In tilapia (Oreochromis sp.), kidney
nka α1 subunit mRNA expression increases in SW acclimated
individuals compared with their FW counterparts (Zhu et al.,
2018). In tilapia, the α-1 and α-3 subunits were the predominant
isoforms expressed in SW, while the α-2 subunit was more
abundant in FW fish (Yang et al., 2016). Conversely, the α-
1 subunit abundance was higher in FW milkfish (Chanos
chanos) than their SW counterparts, with no differences in
α-2 and α-3 subunits (Yang et al., 2016). Expression and
localization of yet undefined NKA isoforms have been found
in all segments of the nephron but are more distinct in
proximal II and distal segments in trout (Oncorhynchus mykiss),

killifish (Fundulus heteroclitus), Japanese eel (Anguilla japonica)
and tilapia (Katoh et al., 2008; Teranishi and Kaneko, 2010;
Yang et al., 2016). Interestingly, in the Japanese eel higher
NKA enzyme activity was observed in FW compared to SW,
though this was not reflected by changes in fxyd mRNA
(Tang et al., 2012). In Atlantic salmon (Salmo salar) renal
expression of fxyd2 and fxyd12 was higher in FW than SW
fish (Tipsmark, 2008), yet NKA enzyme activity remained
unchanged (McCormick et al., 1989). Conversely, a more recent
study suggested that renal FXYD12 enhanced NKA activity
upon salinity challenge to maintain internal homeostasis in
two euryhaline medaka species (Yang et al., 2016). Renal NKA
activity was higher in FW for Indian medaka (Oryzias dancena)
while the opposite was evident in Japanese medaka (Oryzias
latipes). The authors linked this to an increased demand for
ion reabsorption in FW and increased demand for water
reabsorption and ion secretion in SW. Some of the differences
in regulatory responses of subunits and enzyme activity in
the kidneys of euryhaline teleosts probably reflect the life
cycle history (anadromy, catadromy, amphidromy) and salinity
preference. It may also stem from the use of crude tissue
homogenates, obscuring regional differences. Future research
should focus on segment-specific enzyme activity and expression
of different subunits in relation to migratory patterns and
salinity preference.

MAJOR TRANSPORTERS OF THE
RENAL TUBULES TO ABSORB AND
SECRETE MONOVALENT AND
DIVALENT IONS

Fish live in an aquatic environment that is either hypo-osmotic or
hyper-osmotic and are thus more vulnerable to changes in body
fluids compared to terrestrial animals (Takei et al., 2014). As a
consequence of the major ionic differences between FW and SW
environments (Table 1), euryhaline species transition from high
GFR/UFR to low GFR/UFR, accompanied by major alterations
in tubular transport functions in which reciprocal switchovers
of both water and ion transport are necessary in response to
alteration in external salinites.

MONOVALENT IONS AND THE KNOWN
TRANSPORTERS IN THE KIDNEY OF
EURYHALINE FISH

Fish encounter severe ionic and osmotic gradients in both FW
and SW (Table 1). While the deficits and excesses of essential
monovalent ions (Na+, K+, Cl−) are dealt with by gills and
intestine (Evans et al., 1999; Marshall, 2002; Marshall and Grosell,
2005; Grosell, 2010; Esbaugh and Cutler, 2016), the kidney also
plays an important role (Beyenbach, 1986; Cliff and Beyenbach,
1992; Dantzler, 2003; Katoh et al., 2008; Kato et al., 2011). Key
transport pathways are addressed below.
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TABLE 1 | Ion composition and osmolality (Osm) in freshwater (FW) and seawater (SW) and in blood plasma and urine in FW and SW teleosts.

Freshwater teleosts (FW) Seawater teleosts (SW) References

Concentration (mM kg water−1) Concentration (mM kg water−1)

Na+ Cl− K+ Mg2+ SO4
2− Ca2+ Osm Na+ Cl− K+ Mg2+ SO4

2− Ca2+ Osm

Water 0.25 0.23 0.005 0.04 0.05 0.07 1 439 513 9.3 50 26 9.6 1050 Evans (1993)

Plasma 154 134 2.4 1.3 0.4 1.5 274 181 155 2.7 1.3 1.5 1.5 360 Miles (1971); Watanabe
and Takei (2012)

Urine 28 6.4 2.1 0.42 0.008 1.1 57 17 121 1.42 133 69 19 304 Hickman and Trump (1969);
Miles (1971)

GFR 4-16 ml/kilogram/hour 0.5-2 ml/kilogram/hour Hickman and Trump (1969);
Beyenbach (1995),
Beyenbach (2004)

UFR 1-6 ml/kilogram/hour 0.2-0.3 ml/kilogram/hour

Glomerular Filtration Rate (GFR) and Urine Flow Rate (UFR) in FW and SW acclimated teleosts is also shown.

Members of the Solute Carrier Family 12
(SLC12) and Kidney Specific Chloride
Channels (ClC-K)
The Solute Carrier family 12 comprises part of the cation Cl−
transporter family, integral membrane proteins that mediate
electroneutral transport of Na+, K+ and Cl− across epithelial
membranes (Haas, 1989). Two major NKCC isoforms occur in
vertebrates, the NKCC1 (SLC12A2) and the NKCC2 (SLC12A1).
NKCC2 is believed to function in an absorptive manner, and in
the mammalian kidney, it is apically expressed in cells of the
thick ascending limb of the loop of Henle (Haas and Forbush,
2000). NKCC1 is likely involved in transcellular Cl− secretion,
facilitating the entry of Cl− at the basolateral membrane of
proximal tubules (Dantzler, 2003). Current knowledge about
kidney NKCC isoforms in euryhaline species is derived from
studies of European eel (Anguilla anguilla, Tipsmark et al.,
2002; Cutler and Cramb, 2008), killifish (Scott et al., 2004;
Katoh et al., 2008), rainbow trout (Katoh et al., 2008) and
mefugu (Takifugu obscurus, Takifugu rubripes; Kato et al., 2011).
Based on these studies the teleost NKCC1 has been assigned a
secretory role, while NKCC2 is thought to be responsible for
reabsorption of Na+, K+ and 2Cl− (Cutler and Cramb, 2002b,
2008; Lorin-Nebel et al., 2006).

Net secretion of NaCl in the proximal tubule in both FW
and SW environments may be a conserved function within
euryhaline teleosts (Beyenbach, 1986, 1995, 2004; Braun and
Dantzler, 2011; Orlov et al., 2015). Secretion in the proximal
segment is stimulated by cAMP and inhibited by the NKCC
antagonist furosemide, indicating that Cl− likely enters the
cell on the basolateral side through NKCC1 (Beyenbach, 1995,
2004; Orlov et al., 2015). In FW-acclimated European eel,
downregulation of kidney nkcc1a mRNA compared with SW
individuals probably reflects a reduced requirement for tubular
ion secretion in the proximal segment (Tipsmark et al., 2002).
Studies in killifish confirm the notion that Na+, Cl− and K+ are
transported from extracellular fluid into the cell by basolateral
NKCC (based on a general NKCC antibody), and Cl−, Na+ and
K+ are further secreted through the apical specific Cl− channels
(CLC-K) and NKCC (based on a general NKCC antibody)

(Katoh et al., 2008). These findings coincide well with in vitro
studies of proximal tubules from killifish and winter flounder
(Pleuronectes americanus, Beyenbach, 1995, 2004), suggesting
a similar secretory function for proximal tubules (Cliff and
Beyenbach, 1992). Conversely, the proximal segment I has also
been suggested to reabsorb Na+ and Cl− in both FW (Nishimura
and Imai, 1982; Marshall and Grosell, 2005) and SW teleosts
(Nishimura and Imai, 1982). Species-specific differences may
account for the differences observed concerning reabsorption
versus secretion of NaCl in proximal tubules or both may take
place through proximal tubule I and II. Katoh et al. (2008)
proposed a regulatory system in the proximal tubules that
can switch between secretion and absorption using basolateral
and apical NKCC transporters, respectively, depending on their
osmoregulatory need in FW or SW. However, the basolateral
versus apical locations of NKCC1 and NKCC2 still need to be
confirmed in fish tubules.

The distal tubule function as a Na+ and Cl− reabsorbing
segment (Hickman and Trump, 1969; Nishimura et al., 1983)
where the NKCC2 and ClC-K appear to be critical, thereby
contributing to the dilute urine of FW fish (Tipsmark et al.,
2002; Wingert et al., 2007; Cutler and Cramb, 2008; Katoh
et al., 2008; Kato et al., 2011). The basolateral ClC-K belongs to
the ClC family of chloride channels that contribute largely to
Na+/Cl− reabsorption in the Loop of Henle of the mammalian
kidney (Kobayashi et al., 2001; Wojciechowski et al., 2018).
Duplicates of the CLC-2 chloride channel are identifed in
zebrafish kidney and named clcn2b and clcn2c, with the latter
being substantially higher expressed (Pérez-Rius et al., 2015).
A basolateral specific ClC-K in the tubule cells of FW-adapted
tilapia indicates a vital role in transepithelial Cl− reabsorption
in distal segments (Miyazaki et al., 2002). In zebrafish, a kidney-
specific CLC-K channels was located apically in tubule cells,
argued to be essential for successful renal reabsorption, (Pérez-
Rius et al., 2019), further advocating the importance of CLC-K
channels in FW environments in which reabsorption of Cl−
are vital. Based on the limited evidence available it appears
that both an apical and basolateral specific CLC-K channel
are present in the teleost kidney. The CLC-K has also been
suggested to operate together with the NKCC2 and NCC in the
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FIGURE 3 | Schematic overview showing localization and mechanisms of Na+, Cl− and K+ transport in FW (A and B) and SW (C) teleosts. (A and B) The
basolateral Na+ - K+ - ATPase (NKA) generates a favorable transeptial membrane potential used by other ion transporters. In FW urine dilution likely occurs through
the apically located NKCC2 in the distal tubule which reabsorbs luminal Na+, K+ and Cl- through a concentration gradient under water impermeable conditions (A).
The cytosolic Cl- are further passed into the interstitial space via the chloride channel (CLCK), while the apical K+ channel (ROMK2) maintain the luminal K+

concentrations creating a lumen positive transepithelial voltage necessary for Na+, K+ and Cl− absorption through the NKCC2. In the collecting duct of FW fish
NCC further reabsorbs Na+ and Cl− aided by the basolateral NKA and CLCK transporters (B). (C) In SW the mechanisms of NaCl absorption is likely similar to
those in the distal tubule of FW fish, only here the tubules are permeable to water and the NaCl absorption is likely accompanied by water. The ROMK2 and CLCK
are based on expression profiles in the pronephric duct of zebra fish (Wingert et al., 2007), tilapia (Miyazaki et al., 2002) kidneys as well as the mammalian model
(Nielsen et al., 2002) for all the models. All models are based on the paper of Katoh et al. (2008) and Kato et al. (2011).

collecting duct of the euryhaline pufferfish (Kato et al., 2011;
Figure 3). In vitro studies on FW-acclimated rainbow trout
showed that Cl− absorption in the distal tubule is significantly
higher than Cl− secretion, suggesting a net Cl− reabsorption
in the distal segment (Nishimura et al., 1983). Expression of
the nkcc2α isoform in the European eel (restricted to the
renal tissue, as in mammals) further supports a reabsorptive
role in the distal segment in FW (Cutler and Cramb, 2008).
Efficient NaCl reabsorption in the distal and collecting segments
of FW-acclimated teleosts probably depend on the apical
NKCC2 cotransporter and the basolateral NKA pump and ClC-
K channels (Miyazaki et al., 2002; Nishimura and Fan, 2003;

Cutler and Cramb, 2008; Kato et al., 2011; Pérez-Rius et al., 2019;
Figures 3A,B).

The Solute Carrier 12 Member 3
(SLC12A3, NCC)
The distal tubule and collecting duct of FW euryhaline fishes
may be functionally equivalent to the ascending limb and
distal convoluted tubule in mammals; the latter reabsorbs Na+
through the Epithelial sodium channel, ENaC (Loffing et al.,
2001). Surprisingly, the ENaC transporter appears to have been
lost in some vertebrate groups such as the ray-finned fishes
(Actinoptergii), though lobe finned fishes (Sarcopterygii) have
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retained the transporter (Hanukoglu and Hanukoglu, 2016), and
it has described in the lungfish kidney (Uchiyama et al., 2012).
The Solute Carrier 12 member 3 (SLC12A3), also referred to
as NCC (sodium chloride cotransporter), is expressed in the
collecting tubule/duct of several FW teleosts and is suggested
to compensate for the absence of a ENaC (Cutler and Cramb,
2008; Katoh et al., 2008; Kato et al., 2011). While the NKCC2
is thought to reabsorb Na+ and Cl−, thereby diluting the urine
in the distal segment (Kato et al., 2011), the NCC is thought
to further reabsorb Na+ and Cl− in the collecting tubule/duct
and urinary bladder (Gamba et al., 1993; Cutler and Cramb,
2008; Figures 3A,B). However in trout bladder, the use of
pharmacological blockers for NKCC (bumetanide) and NCC
(chlorothiazide) were ineffective, despite a 50% coupling of
Na+ and Cl− transport in trout bladder (Burgess et al., 2000)
suggesting that more functional studies are required. In FW
pufferfish, the NKCC2 was expressed in the distal tubules, while
the NCC was expressed in the collecting tubule/duct, likely
involved in NaCl reabsorption (Katoh et al., 2008; Kato et al.,
2011; Figures 3A,B). During SW acclimation, pufferfish NCC
mRNA levels and apical location of the NCC protein were
significantly reduced (Kato et al., 2011). The NCC in kidney is
essential for the production of hypotonic urine in FW but not in
SW (Figure 3B), while the NKCC2 is needed to reabsorb Na+
and Cl− in the distal tubule of FW fish and the collecting tubule
of SW fish (Katoh et al., 2008; Kato et al., 2011; Figures 3A,C).
The closely related NCCα in European eels was downregulated
following acclimation to SW (Cutler and Cramb, 2008), which
also strengthens the previous conclusion.

K+ Specific Transporters and Channels
Potassium (K+) is a major monovalent cation in vertebrates.
Basolateral NKA maintains intracellular K+ levels roughly 30-
fold higher than extracellular K+ levels, thereby establishing
the membrane potential. There have been extensive reviews on
K+ handling by the mammalian kidney, involving ROMK, K+-
ATPase (KA), H+-K+-ATPase (HKA), Maxi K, KCC1, KCC2
and KCC (Giebisch, 1998; Hebert et al., 2005; Giebisch et al.,
2007; Palmer, 2014; Kamel et al., 2018), but information in fish
remains sparse. So far, we have focused on NKCC1 and NKCC2 in
relation to Na+ and Cl− regulation, but K+ is also moved by these
transporters. Katoh et al. (2008) have proposed that an apically
located NKCC absorbs K+ in the distal tubule in conjunction
with NaCl, aided by ClC-K, K+ channels and/or the NKA pump
(Figures 3A,C). This is contradictory to the mammalian model
where most K+ is absorbed in the proximal tubules and the thick
ascending limb (Giebisch, 1998; Giebisch et al., 2007). However,
NaCl reabsorption in teleosts is suggested to be possible largely
due to the lumen positive transepithelial voltages generated by
apical renal outer medullary K+ channel 2 (ROMK2) (Kato
et al., 2011; Figures 3A,C), a hypothesis that needs experimental
validation in the teleost kidney. Indeed, parallel to the ROMK2
expressed in the mammalian kidney (Hebert et al., 2005), a
ROMK2 ortholog has been identified in the distal segment in
zebrafish (Danio rerio) larvae (Wingert et al., 2007). Plasma K+
levels are very similar in FW and SW teleosts, generally between
2-5 mM (Edwards and Marshall, 2012; Table 1). In the urine

the K+ levels range from 0.4 to 5.8 mM (Hickman and Trump,
1969; Table 1) and are relatively unaffected by diet compared
to other ions (Bucking et al., 2010). While information on renal
K+ transport in fish remains limited, data on other transport
epithelia are emerging. These include expression patterns of
ROMK and related pathways such as subfamily M (Maxi-K), K+-
Cl− cotransporters (KCC1, KCC2) and K+-Cl− cotransporter
4 (KCC4) in gills and skin of euryhaline tilapia (Furukawa
et al., 2012) and medaka (Horng et al., 2017). Their potential
contributions in the kidney warrant investigation.

Other Important Renal Monovalent Ion
Transporters
A portion of Na+, Cl− together with glucose are reabsorbed
in the proximal segment (Nishimura and Imai, 1982; Dantzler,
2003; Beyenbach, 2004). The pathways remain somewhat unclear
but may involve a Na+/H+ exchanger (Na+/H+ exchanger
3 (NHE3), SLC9A3) as well as a Na+/glucose cotransporter
(Solute-carrier family 5 (SLC5A), SGLT) transporter that may
facilitate apical entry of Na+ into proximal tubule cells (Ivanis
et al., 2008). Interestingly NHE3 was localized to the apical
membranes of proximal segment II in SW acclimated Japanese
eel, and the authors suggested that reabsorption of monovalent
ions in the kidney of SW eels is likely mediated by NHE3
while the NKKC2 and NCC (termed NKCC2α and NCCα

in Japanese eel) are important in FW eels (Teranishi et al.,
2013). However, NHE3 was also detected in FW eel, and
thus may operate in FW as well. Nevertheless, most NaCl
are reabsorbed in distal and collecting tubule through the
NKCC/NCC transporters (previous paragraphs). NHE3 also
contributes to renal acid-base regulation in FW rainbow trout,
while the SGLT proteins involved in Na+/glucose cotransport
have not been investigated in teleosts, though are present in
cartilaginous fish (Althoff et al., 2006, 2007; Ivanis et al., 2008). In
addition, Na+ appears to be transported together with phosphate
by the type-II sodium-phosphate cotransporter (NaPi-II), now
termed SLC34A2B, at the basolateral membrane of proximal
segment II, whereas in the collecting tubule and collecting
duct, the same transporter is located on the apical membranes
and appears to drive reabsorption (Gupta and Renfro, 1989;
Elger et al., 1998; Verri and Werner, 2019). Verri and Werner
(2019) provide a detailed review of phosphate transport in
the kidney. Finally, cystic fibrosis transmembrane conductor
(CFTR) has been credited with a secretory role in gill Cl−
transport (Cutler and Cramb, 2001; Marshall and Singer, 2002;
Hiroi and McCormick, 2012; Wong et al., 2016). Initially cftr
mRNA was not detected in the eel kidney (Marshall and Singer,
2002), but was later detected in the distal segment of Atlantic
salmon (Madsen et al., 2020). Both of the above studies was
not able to distinguish between the cftr1 and cftr2 isoforms
in the kidney. Thus, the role of cftr in the kidney, relative to
the important contributions of the SLC 12 family and CLC-
K transporters (Katoh et al., 2008; Kato et al., 2011), still
remains elusive.

The kidney plays an important accessory role to the primary
role of the gills in acid-base and ammonia regulation, and
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monovalent ion transporters are critically involved in these
processes in the renal tubules. In addition to NHE3, these
include V-type H+ATPase, Na+-HCO3

− co-transporter (NBC1),
carbonic anhydrase (CA), CAc, CA IV, anion exchanger (AE1),
Rhesus (RH) glycoproteins). We consider this to be outside the
scope for the current review but is a focus of another detailed
review in progress, and will consequently not be addressed here.

Summary and Knowledge Gaps in
Monovalent Ion Transport of the Kidney
The acclimation of euryhaline species to changing salinity must
involve a finely controlled regulation of many monovalent
transporters. In summary, the NKCC1 seems to be secretory
and is largely found in proximal tubule II, while the NKCC2
appears to be reabsorptive in FW and SW, especially in the distal
and collecting tubule (Figures 3A,C), with some species-specific
variation amongst euryhaline species. Some of these assumptions
are based on the use of a general NKCC antibody where the
authors refer to a secretory (NKCC1) and reabsorbing (NKCC2)
type (Katoh et al., 2008). We assume that the paper of Kato et al.
(2011) refers to the collecting tubule when they use the name
“early” collecting duct as this are more in line with common
anatomical investigations (Hickman and Trump, 1969; Braun
and Dantzler, 2011; Dantzler, 2016). The NCC transporter is
predominantly found in the collecting tubule/duct and urinary
bladder, likely reabsorbing even more Na+ and Cl− resulting
in a very dilute urine in FW species (Curtis and Wood, 1991;
Kato et al., 2011; Figure 3B). Additionally, the teleost NKCC2
and NCC appear to have analogous Na+ and Cl− reabsorptive
functions to those in the mammalian ascending limb of Henle
and distal convoluted tubule, while K+ regulation remains less
understood. Indeed, much of our understanding of all these
transport processes still relies on mammalian models, and only
a few euryhaline fish have been studied in detail (eel, tilapia,
killifish and pufferfish). Our limited knowledge of NHE3, SGLT
and CFTR transporters in the kidney of fish is a particular
deficit. More studies on existing species and inclusion of other
species are crucial to better understand the kidney’s role in
monovalent regulation and its connection to water transport
(see next section).

AQUAPORINS (AQP) AND THEIR ROLE
IN WATER TRANSPORT IN THE KIDNEY
OF EURYHALINE FISH

The aquaporins, first identified in mammals, constitute several
intrinsic proteins (MIPs) that facilitate the passive movement
of water molecules across cellular membranes (King et al.,
2004). AQP functions and regulation are complicated, with
many aspects yet to be elucidated (Verkman and Mitra, 2000;
Abedin et al., 2019). Vertebrate aquaporins are heterogeneous,
found in diverse tissues, and generally categorized based on
their permeability preferences for water, glycerol, and other
small solutes (Verkman and Mitra, 2000; Takata et al., 2004).
Of the 10 AQP isoforms so far described, 7 are present in the

mammalian kidney, located along the nephron and collecting
duct, emphasizing their importance for renal water handling
(Knepper et al., 2001).

Several teleost AQPs has been identified and annotated based
on their mammalian analogs: AQP-1aa, -1ab, -3a, -3b, -7, -8aa, -
8ab, -9a, -10a, 10b, and -12 (currently known water transporters).
Even though several are expressed in the teleost kidney (Tingaud-
Sequeira et al., 2010), their roles in renal physiology remain
elusive (Cerdà and Finn, 2010). However, recent investigations
have shed some light on AQP1, AQP3, AQP8, AQP10, AQP11
and AQP12 regulation and role in euryhaline fish (Martinez et al.,
2005; Tipsmark et al., 2010; Engelund and Madsen, 2011, 2015;
Madsen et al., 2015; Madsen et al., 2020).

Aquaporin 1
Aquaporin 1 proteins participate in water reabsorption from
the tubular lumen and may be crucial to avoid dehydration
in SW teleosts. In seabass (Dicentrarchus labrax) and marine
medaka (Oryzias melastigma) aqp1a mRNA levels are elevated
in SW-acclimated fish compared to fish in FW (Giffard-Mena
et al., 2007, 2011; Kim et al., 2014). In climbing perch (Anabas
testudineus) aqp1a was induced after 24 h in SW (Ip et al.,
2013). Interestingly, reciprocal expression of aqp1aa and aqp1ab
paralogs suggests an even greater regulatory plasticity in Atlantic
salmon, with increasing aqp1aa mRNA and decreasing aqp1ab
mRNA levels during smoltification and after SW exposure
(Tipsmark et al., 2010), despite conflicting regulation patterns
in other species. For instance, in European eel, mRNA levels of
both aqp1aa and aqp1ab paralogs decreased after SW transfer
(Martinez et al., 2005). Conversely, mRNA levels of aqp1 were
undetectable in the kidney of SW-adapted Japanese eel (Aoki
et al., 2003), while no changes in kidney aqp1a mRNA levels
were observed in silver seabream (Sparus sarba) acclimated from
SW (33 ppt) to salinities ranging from 0 ppt to 70 ppt (Deane
et al., 2011). In the black porgy (Acanthopagrus schlegeli), renal
mRNA levels of aqp1 were downregulated in FW and upregulated
in response to increased salinity (10 h) (An et al., 2008).
In salmonids, Aqp1aa is located in the proximal tubule and
suggested to be a trans-cellular pathway for water movement,
while inconsistent expression in the distal tubule supports the
notion that the distal segment is impermeable to water (Engelund
and Madsen, 2015) (Figures 4A,B). However, AQP1ab is mainly
detected intracellularly in sub apical vesicles near the plasma
membrane of proximal tubules of FW salmonids (Engelund
and Madsen, 2011, 2015) (Figure 4A) and AQP1 was only
found apically in undefined tubule cells in European (silver)
eels in both FW and SW (Martinez et al., 2005). The proximal
tubule location of AQP1 paralogs in salmonids is consistent
with that of proximal tubules and the descending limbs of the
loop of Henle in mammalian nephrons (Knepper et al., 2001).
However, apart from Atlantic salmon, AQP1 has yet to be
localized to a specific nephron segment in other euryhaline fish
(Cerdà and Finn, 2010).

Aquaporin 3
In mammals, AQP3 is located on basolateral membranes of
tubule cells and seems to have a role in water reabsorption
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FIGURE 4 | Schematic overview showing localization of AQP (aquaporins) in kidney of teleosts. The localization of several AQP transporters in both proximal (A) and
distal/collecting (B) segments of the kidney. No difference is observed between FW and SW environments of any of the above AQP in the fish kidney. The AQPs are
located in apical, sub-apical, lateral and basolateral positions in proximal tubules while no sub-apical location of AQPs has been found in the distal/collecting tubule.
The approximate location of each AQP is as follows: AQP1aa (red, apical/lateral/basolateral), AQP1ab (brown, sub-apical), AQP3a (green, apical/sub-apical/lateral),
AQP8b (blue, lateral/basolateral) and AQP10b (yellow, apical/sub-apical/lateral). In the distal/collecting tubule only AQP1aa and AQP8b have been
discovered/located. AQP distribution in proximal tubule I and II as well as distal and collecting tubule have not been differentiated and need to be experimentally
determined. Models are based on the paper of Engelund and Madsen (2015).

(Knepper et al., 2001). Although mRNA expression of aqp3 was
not initially detected in teleosts (Cutler and Cramb, 2002a), these
authors later localized AQP3 in the apical pole of renal tubule
cells upon SW-acclimation in eels. There were no differences
in protein abundance or location during transition from FW
to SW, suggesting a role independent of external salinity
(Cutler et al., 2007).

In tilapia and Atlantic salmon renal aqp3a mRNA expressions
were elevated in SW compared to FW (Watanabe et al., 2005;
Tipsmark et al., 2010). However, unchanged kidney aqp3a mRNA
levels during smoltification supports the notion that regulation
of aqp3a is not part of the preparatory process prior to SW
exposure, but rather responsive to external salinity, as in tilapia
(Tipsmark et al., 2010). In Atlantic salmon, AQP3a is expressed in
the apical, subapical and lateral space of the proximal tubule and
been suggested to have a role in regulation of cell volume through
intracellular vesicles and transcellular water transport (Engelund
and Madsen, 2015) (Figure 4A). The authors further suggested
that the AQP3a might have a role in water conservation or in
secondary transcellular water transport. However, in Japanese
medaka the mRNA levels of aqp3a appeared to be unaffected by
salinity (Madsen et al., 2014). Notably, renal aqp3 (later referred
to as aqp3b by Engelund and Madsen, 2011) was not expressed
in Japanese eel kidney (Kim et al., 2010) in SW. Hence, it seems
that aqp3b is either expressed at very low levels, or possibly absent
in the fish kidney. In summary, AQP3a channels are probably
important for conserving water to avoid dehydration in SW
acclimated fish. In contrast AQP3b channels are present in FW
European eel but unresponsive to salinity, and expressed only

at low levels. Despite the high degree of regulatory plasticity of
AQP3a, the exact role of the AQP3b and therefore the AQP3 in
general remains uncertain.

Aquaporin 8
The function of AQP8 in water homeostasis is still elusive,
even in mammals where it is predominantly present in liver,
intestinal tissue, and intracellular vesicles in proximal tubules
and collecting ducts (Elkjær et al., 2001). In salmonids and the
Japanese medaka both aqp8aa and aqp8ab paralogs are present in
kidney, although regulatory responses are modest in response to
salinity (Tipsmark et al., 2010; Kim et al., 2014; Madsen et al.,
2014). The predominant location of AQP8 paralogs (aqp8aa,
aqp8ab and aqp8b) is in the liver and intestine of euryhaline
teleosts (Engelund et al., 2013). Since none of the paralogs in
the kidney of euryhaline species seems particularly responsive
to salinity, and protein levels remained unchanged from FW
to SW the aqp8 might be constitutively expressed, rather than
associated with hyper- or hypo- osmoregulation (Engelund and
Madsen, 2015; Madsen et al., 2015). AQP8b is basolaterally
and laterally located in proximal and distal tubules in rainbow
trout and Atlantic salmon (Engelund and Madsen, 2011, 2015;
Figures 4A,B), possibly serving as a transcellular exit pathway for
reabsorbed water to re-enter the extracellular fluids.

Aquaporin 10
In mammals, AQP10 is not expressed in kidney, but rather
located in apical membranes of the small intestine and
suggested to participate in the transport of small solutes
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(Hatakeyama et al., 2001). In the kidney of the stenohaline
zebrafish, aqp10 is expressed as two paralogs, aqp10a and
aqp10b (Cerdà and Finn, 2010). Functional assays using Xenopus
oocytes showed that teleost aqp10 likely is capable of water,
glycerol and urea uptake (Santos et al., 2004; MacIver et al.,
2009). In euryhaline species only aqp10b has been discovered,
and reports on mRNA expression are contradictory. Following
transfer of Japanese and European eel to SW, aqp10b levels
were downregulated (MacIver et al., 2009) whilst in Atlantic
salmon a fivefold increase was found 8 days post SW transfer
(Tipsmark et al., 2010). However, in a later study, Engelund and
Madsen (2015) were unable to confirm similar upregulation of
aqp10b expression following SW transfer. This was consistent
with no upregulation of AQP10 at the protein level following SW
exposure, suggesting that the AQP10b may have dual regulation,
being active independent of external salinity. In eels and Atlantic
salmon, the AQP10b channels are located on the apical, sub-
apical and lateral membranes of the proximal tubule cells
(Figure 4A), suggesting that they facilitate both exit and entry
pathways for transcellular water transport (MacIver et al., 2009;
Tingaud-Sequeira et al., 2010; Engelund and Madsen, 2015). In
summary, while information on the role AQP10 in kidney water
transport is limited and unclear, it is likely important for both
FW- and SW-acclimated fish.

Other AQP‘S in Euryhaline Species
Several other aquaporins, including AQP2, Aquaglyceroporins
7 and 9, AQP11a and AQP12, are either present in the teleost
kidney but unresponsive to salinity changes, or else described
only in mammals (Engelund and Madsen, 2011, 2015).

Paracellular Transport and
Tight-Junction Proteins (Claudins)
Tight junctions proteins (claudins) may supplement AQP-
mediated transporters (addressed above) in water transport
where they provide a paracellular route. In the gills a large review
has been dedicated to the importance of paracellular permeability
with respect to environmental factors (Chasiotis et al., 2012).
In the kidney of euryhaline teleosts, there is little information
on water transport by claudins but CLDN2 have been observed
to create water pores in the mouse proximal renal tubules
(Rosenthal et al., 2010; Schnermann et al., 2013). CLDN2 has not
been investigated in the fish kidney. CLDN15a has been identified
in salmon, but its permeability properties remains unknown
(Madsen et al., 2020). The authors also discuss the possible
involvement of other tight junction claudins (CLDN3, CLDN7,
CLDN8, CLDN10, CLDN12, CLDN28, CLDN30) in paracellular
transport of both mono and divalent ions (see following section).

Summary of AQPs and Their Relation to
Ion Transport
Engelund and co-authors have contributed extensively to our
current understanding of aquaporins in all osmoregulatory
organs of euryhaline teleosts, including the possible involvement
of other tight junction claudins (CLDN3, CLDN7, CLDN8,
CLDN10, CLDN12, CLDN28, and CLDN30) in paracellular

transport of both mono and divalent ions (see papers by
Engelund and Madsen, 2011; Madsen et al., 2015, 2020).
Nevertheless, the current review highlights the lack of knowledge
on the distribution and role(s) of AQPs in water and ion transport
in the teleost kidney (Figures 4A,B). The close linkages between
the transport of Na+, Cl− and water in proximal tubules and
reabsorption in distal segments are crucial aspects for future
studies. The prevailing hypothesis, at least in euryhaline species,
is that AQPs likely serve a fundamental role in transcellular water
transport in nephron tubules (Madsen et al., 2015). However, very
few AQPs have been located in the distal tubules and collecting
duct of fish where the primary functions are reabsorption
of monovalent ions. Presumably, lack of water channels here
would be adaptive for life in FW, allowing for minimal water
reabsorption and thus facilitate excretion of excess water. In
contrast, permeability to water in these segments would be crucial
for water absorption in SW, so as to facilitate a low volume of
isotonic urine rich in Mg2+, Ca2+ and SO4

2− (Beyenbach, 2004).
Functional connections between AQPs, claudins, monovalent ion
handling (previous section), and divalent ion handling (see next
section) are a rich area for future investigation in the kidney of
euryhaline fish (Schnermann et al., 2013; Gong and Hou, 2017;
Madsen et al., 2020).

DIVALENT IONS AND THE KNOWN
TRANSPORTERS IN THE KIDNEY OF
EURYHALINE FISH

The concentrations of Mg2+, SO4
2−, and Ca2+ in SW may

be up to 100-fold greater than in FW. Vertebrates in general
maintain relatively constant concentrations of these divalent ions
(1–3 mM) in their extracellular fluids, so SW fish must excrete
them by producing urine which contains high concentrations
(See Table 1; Smith, 1930; Beyenbach, 2004; Marshall and Grosell,
2005). The kidney is the main excretion pathway, thus euryhaline
fish must shift from reabsorption in FW to net secretion in
SW, largely via the proximal tubules (Cliff and Beyenbach, 1992;
Beyenbach, 1995; Renfro, 1999). To date, only a few euryhaline
species are studied, so much of our assumptions are drawn
from comparative knowledge from mammalian kidney models.
(Markovich, 2001; Dawson et al., 2003; Markovich and Aronson,
2007; Arjona et al., 2019; Chen et al., 2020).

SULFATE (SO4
2−) TRANSPORT

Urine concentrations of SO4
2− have been used as a marker for

renal failure in humans, thus the transport pathways have been
widely examined in the mammalian kidney (Markovich, 2001;
Dawson et al., 2003; Markovich and Aronson, 2007). In FW,
SO4

2− concentrations are generally low (< 1.0 mM) while in SW,
SO4

2− is the second most abundant anion (approx. 26 mM). FW
teleosts actively take up SO4

2− from the environment, whereas
in SW, there is an unavoidable influx of SO4

2− through the gills,
and perhaps slight uptake in the gut: 97% of the excess SO4

2−

is excreted through the kidney (Watanabe and Takei, 2012).
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Plasma SO4
2− concentrations close to 1 mM must be maintained,

regardless of the external environment, so species migrating from
FW to SW must make a regulatory shift from renal reabsorption
to secretion (Watanabe and Takei, 2011a). The regulation of
SO4

2− has been addressed in flounder, goosefish, eel, pufferfish,
rainbow trout and killifish (Hickman, 1968a; Hickman, 1968b;
Renfro and Pritchard, 1983; Cliff and Beyenbach, 1992; Renfro
et al., 1999; Pelis and Renfro, 2003; Katoh et al., 2006; Kato
et al., 2009; Watanabe and Takei, 2011a), with the most extensive
investigations in eel and pufferfish (Nakada et al., 2005; Kato et al.,
2009; Watanabe and Takei, 2011a,b; Kato and Watanabe, 2016).

Solute Carrier Family 26 Member 6
(SLC26A6; Apical Transport)
In the mammalian kidney, the SLC26A6 transporter has been
localized to apical membranes of proximal tubules where it
is suggested to exchange numerous anions: oxalate/SO4

2−,

Cl−/formate, Cl−/oxalate, oxalate/formate, oxalate/oxalate,
Cl−/HCO3

− and Cl−/OH− (Markovich, 2001; Markovich and
Aronson, 2007). In teleosts, the SLC26A6A, SLC26A6B and
SLC26A6C paralogs have been described in eel and pufferfish,
all of which have been localized to the apical membrane of
proximal tubule cells (Kato et al., 2009; Watanabe and Takei,
2011b; Figure 5). In the fish kidney, the prevailing hypothesis has
largely been the apparent ability of SO4

2− transport to be driven
by a Cl− gradient (Renfro and Pritchard, 1983; Renfro et al.,
1999), which does not occur in the mammalian kidney where it
is primarily transported using Na+ (Na+/SO4

2−, cotransport) or
exchanged for HCO3

− (SO4
2−/HCO3

−, exchanger) (Markovich,
2001; Burckhardt and Burckhardt, 2003). This has been further
strengthened by electrophysical studies revealing a 50-200
fold higher electrogenic transport of the SLC26A6A in the eel
across cell membrane when expressed in Xenopus oocytes (Kato
et al., 2009; Watanabe and Takei, 2011b), thereby displaying
the highest SO4

2− transport activity in the SLC26A6 family.
Furthermore, apical localization of SLC26A6A to the proximal
tubules concurrent with elevated mRNA levels in both SW eel
and pufferfish indicates a predominant role of this transporter in
SO4

2− secretion (Kato et al., 2009; Watanabe and Takei, 2011b;
Figure 5B). Possible exchange of SO4

2− against Cl− by this
mechanism has been linked to an increase in plasma Cl− levels
in SW, presumably coupled with an unknown Cl− sensor in the
circulatory system that in turn upregulates slc26a6a (Watanabe
and Takei, 2011a) which is located apically in the membrane of
proximal tubules (Watanabe and Takei, 2011b), thus facilitating
a decrease in plasma SO4

2− concentrations by secretion into
the tubular lumen (Watanabe and Takei, 2011a,b). The recent
findings in SW eel and pufferfish resonate well with in vivo
studies on SO4

2− transport in the kidney, explaining production
of an isotonic urine rich in SO4

2− (Hickman, 1968b; Renfro and
Pritchard, 1983; Renfro, 1999). The other two paralogs in teleost
fish, the SLC26A6B and SLC26A6C, have been localized to the
apical side of the renal proximal tubule but with no apparent
differences in mRNA abundance between FW and SW in eel
and pufferfish (Kato et al., 2009; Watanabe and Takei, 2011b;
Figures 5C,D). Similar to the SLC26A6A, the SLC26A6B also

elicited considerable currents for Cl−/SO4
2− transport across

the cell membrane of Xenopus oocytes, though no activity was
observed in the SLC26A6C.

To date, these paralogs are teleost-specific (Kato et al., 2009;
Watanabe and Takei, 2011b) and only one single SLC26A6 has
been found in mammals and Chondrichthyes (Markovich and
Aronson, 2007; Hasegawa et al., 2016). In teleosts, all three
paralogs have been localized apically in renal proximal segments
I (SLC26A6A and SLC26A6C) and II (SLC26A6B), respectively
(Watanabe and Takei, 2011b) (Figures 5C,D). The expression
and presence of SLC26A6B and SLC26A6C in the apical proximal
tubule of both FW and SW acclimated fish points to a possible
involvement in entry or exit of SO4

2−, depending on the need for
absorption or secretion.

Solute Carrier Family 13 Member 1
(Slc13a1; Apical Transport)
In the mammalian kidney, the SLC13A1 transporter, also referred
to as the Na+/SO4

2−cotransporter (NaSi-1), is located in the
apical membrane of proximal tubules (Lötscher et al., 1996).
The exact stoichiometry has not been found, only that it is an
electrogenic, pH-insensitive, high affinity Na+-dependent SO4

2−

transporter with a substrate preference for both SO4
2− (Km

93 µM) and Na+ (Km 16–24 mM), and important for the
reabsorption of SO4

2− (Markovich and Aronson, 2007). During
FW acclimation in eels, reabsorption of SO4

2− in the kidney
involves both an apical SLC13A1 and basolateral SLC26A1
transporter (Figure 5A; Nakada et al., 2005). A universal role
of the SlC13A1 in reabsorbing sulfate in FW teleosts is still
under debate as slc13a1 expression was not detected in FW
pufferfish (Kato et al., 2009). The electrophysical properties
of SLC13A1 have yet to be determined, but are assumed
to be similar to its mammalian counterpart (Busch et al.,
1994). In eels, the electrogenic membrane potential established
by the NKA pump enables the SLC13A1 cotransporter to
reabsorb Na+ and SO4

2− (Figure 5A). Once entering the
cell, the SO4

2− is further exchanged against 2HCO3
− into

the blood using the basolateral SLC26A1 transporter (Nakada
et al., 2005; Figure 5A). As pointed out by the authors, this
model is partly based on the mammalian counterpart and
FW eels are the only euryhaline species where the SLC13A1
has been detected in the kidney (Kato and Watanabe, 2016).
Moreover, eels seems to have much higher plasma SO4

2−

concentration in FW (Farrell and Lutz, 1975) compared to
other euryhaline species examined (Watanabe and Takei, 2012).
The absorptive features of the SLC13A1 transporter in the
eel might reflect such elevated plasma SO4

2− levels, since
both chum salmon (Oncorhynchus keta) and tilapia have
low levels of SO4

2−, and no SLC13A1 transporter has been
identified in these species (Watanabe and Takei, 2012). The
SLC13A1 likely facilitates elevated plasma SO4

2− levels, probably
particular important for FW eels, because this species lacks
active Cl− uptake at the gills (Nakada et al., 2005; Kato and
Watanabe, 2016). Nevertheless, how reabsorption of SO4

2− in
the kidney is accomplished in other euryhaline species remains
to be determined.
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FIGURE 5 | Schematic overview showing localization and mechanism of SO4
2− transport in FW (A) and SW (B, C and D) teleosts. (A) SLC13A1 is located on

apical membranes, co-transporting 3Na+/SO4
2−, while SLC26A1 is an electroneutral SO4

2−/HCO3
− exchanger located on basolateral membranes, driven by Na+,

K+-ATPase (NKA) creating a transmembrane Na+ gradient. This transport is located in proximal tubule cells. (B) SLC26A6A is an electrogenic SO4
2−/Cl−

exchanger located apically, while the SLC26A1 are able to switch the exchange ratio in SW so that it exchanges SO4
2−/HCO3

− in the opposite direction of FW.
NKA creates an electronegative potential in the cell, favoring the transport in SW. (C and D) (only showing location) The apical SLC26A6C, SLC26A6A and the
basolateral SLC26A1 are located in proximal tubule I (PI), while SLC26A6B are found apical in the proximal tubule II (PII), respectively. The exchange ratios for
SLC26A6B and SLC26A6C are not known. Models based on Nakada et al. (2005) (FW), Kato et al. (2009) (SW) and Watanabe and Takei (2011b) (SW).

Solute Carrier Family 26 Member 1
(Slc26a1; Basolateral Transport)
The solute carrier family 26 member 1 (SLC26A1) or sat-1
is a SO4

2−/anion exchanger mediating SO4
2− transport into

extracellular fluid across the basolateral membrane in exchange
for HCO3

− in mammals (Karniski et al., 1998). However, it was
later argued that this exchange could move in both directions,
mediating cellular exit or entry of SO4

2− to or from the blood,
depending on either apically located SLC13A1 or apically located

SLC26A6 (Markovich, 2001). Recent discoveries have revealed
a similar mode of transport for the SLC26A1 in the euryhaline
teleosts, with the SLC26A1 being the most probable candidate
for basolateral transport of SO4

2− in the kidneys of both FW
and SW fish (Nakada et al., 2005; Kato et al., 2009; Watanabe
and Takei, 2011a,b; (Figures 5A,B). Reabsorption of SO4

2− in
eels is attributed to the combined actions of the apical SLC13A1
(previous section) and basolateral SLC26A1 (current section)
whereas SO4

2− secretion is attributed to the combined action of
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the apical SLC26A6A (previous section) and basolateral SLC26A1
(current section). The SLC26A6A further facilitates SO4

2−

excretion from the cell into the lumen (Figure 5B). (Kato et al.,
2009; Watanabe and Takei, 2011a,b). The electroneutral SLC26A1
transporter serves a role in excretion of SO4

2−, exchanging
2HCO3

−/SO4
2− from the cell to the blood in SW (Katoh et al.,

2006; Kato et al., 2009; Figure 5B). Similar to the mammalian
basolateral SLC26A1 transporter (Markovich, 2001; Markovich
and Aronson, 2007), the teleost ortholog SLC26A1 transporter
moves 2 HCO3

− in exchange for reabsorption of 1 SO4
2− in

FW eels (Nakada et al., 2005; Figure 5A). The SLC26A1 seems
to play a role in the movement of SO4

2− in both directions,
either exiting or entering the cell at the basolateral side in FW or
SW environments, respectively (Nakada et al., 2005; Kato et al.,
2009; Watanabe and Takei, 2011a; Kato and Watanabe, 2016;
Figures 5A,B).

Summary and Knowledge Gaps in SO4
2−

Transport
The reabsorption of SO4

2− in FW fish is facilitated by an apical
SLC13A1 and a basolateral SLC26A1 transporter (Nakada et al.,
2005; Figure 5A). In SW fish, SLC26A6A are the most probable
candidate for apical transporters involved in SO4

2− secretion
(Figure 5B), but SLC26A6B and SLC26A6C may also be involved
(Figures 5C,D). The NKA located in the basolateral membrane
of proximal tubules (see NKA section) provides the driving
force for the electrogenic Cl−/SO4

2− exchanger (SLC26A6A) by
increasing intracellular negative membrane potential (Kato et al.,
2009). Finally, a basolateral electroneutral SLC26A1 exchanger
for the export of SO4

2− in exchange for HCO3
− probably occurs

in both directions for FW and SW fish (Nakada et al., 2005; Kato
et al., 2009; Figures 5A,B). There is a need for further studies
on the transporters involved in both SO4

2− reabsorption in FW
and secretion in SW, especially characterization of orthologs. Few
species have been investigated concerning SO4

2− transport and
several assumptions are still based on the mammalian model. In
addition, transport pathways to reabsorb SO4

2− in FW are still in
dispute and have only been verified in the eel.

MAGNESIUM (MG2+) TRANSPORT

In mammals Mg2+ is reabsorbed in the proximal tubule (25%),
the thick ascending limb of the loop of Henle (70%) and in the
distal tubule (remainder) by transcellular transport via transient
receptor potential melastatin type 6 (TRPM6) and Mg2+

channels (Voets et al., 2004). As for other divalent ions, Mg2+

transporters in the mammalian kidney have received attention
due their potential involvement in pathological conditions,
though knowledge gaps remain (Arjona et al., 2019; Chen et al.,
2020). In teleosts, the current understanding of Mg2+ transport
is even more limited, with only a few studies addressing the
mechanisms involved (Oikari and Rankin, 1985; Chandra et al.,
1997; Beyenbach, 2004; Islam et al., 2013, 2014; Kodzhahinchev
et al., 2017).

Marine teleosts maintain relatively stable plasma Mg2+

concentrations at roughly 1.3 mM (Table 1), which require active

regulation given the high Mg2+ level in SW (∼53 mM) (Smith,
1930; Hickman, 1968b; Hickman and Trump, 1969; Beyenbach,
2004; Marshall and Grosell, 2005). As marine fish excrete even
higher Mg2+ concentrations (∼57–167 mM) in the urine, this ion
needs to be effectively concentrated many-fold from the plasma
to urine by the renal system. Secretion of Mg2+ by the tubules is
thought to occur by basolateral entry along an electrical gradient
coupled with apical vesical exocytosis into the lumen (Bijvelds
et al., 1997; Renfro, 1999). In addition, a Na+/Mg2+ exchanger
has been hypothesized to aid in Mg2+ secretion (Renfro, 1999).
To date, two transport families responsible for Mg2+ transport
have been identified in fish (Figure 6).

Solute Carrier Family 41 Member 1
(SLC41A1)
The solute carrier family 41 member 1 (SLC41A1) are thought
to largely facilitate cellular Mg2+ extrusion via Na+/Mg2+

exchange in mammals, while their potential role in reabsorption
remains unclear (Arjona et al., 2018). Xenopus oocytes expressing
mammalian SLC41A1 exhibited a Mg2+ channel activity
(Goytain and Quamme, 2005). Conversely, characterization
of human SLC41A1 in HEK293 cells suggests 2Na+/Mg2+

FIGURE 6 | Schematic overview showing localization and mechanisms of
Mg2+ transport in SW teleosts. The SLC41A1 have been localized to
intracellular vesicles that are dispersed apically in the cell of proximal tubule I.
In fish, the 2 Na+/Mg2+ exchange rate has not been verified but has been
demonstrated in the human model. The CNNM3 exhibits a lateral localization
in both proximal tubules I and II. The specific exchange ratio of 2 Na+/Mg2+

are again based on the human model whereas the function in fish is still
speculative at this point. An apical Cl− channel that produce a lumen-negative
transepithelial potential and a basolateral Mg2+ channel for transport into the
cell are necessary but yet not identified in the fish kidney. The CNNM2 has
been linked to Mg2+ reabsorption in FW fish however the mechanisms are so
premature in the fish model that no overview has been given at this point.
Models are based on the papers of Islam et al. (2013), Islam et al. (2014).
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exchange, representing a different mode of transport of Mg2+

(Kolisek et al., 2012; Mastrototaro et al., 2015).
In teleosts, the SLC41A1 transporter has been apically

localized to vacuoles in proximal tubules and suggested to be
involved in Mg2+ secretion (Islam et al., 2013; Kodzhahinchev
et al., 2017). In the kidney of the euryhaline pufferfish, slc41a1
mRNA levels were substantially elevated in SW compared to FW
in proximal tubule II, thus indicating a predominant role in SW
environments (Islam et al., 2013). The suggested use of vacuolar
transport to secrete Mg2+ against a tubule concentration gradient
would probably involve actin filament assembly modulating
vesicular trafficking of Mg2+ and exocytosis to the tubule
lumen (Hickman and Trump, 1969; Renfro and Shustock, 1985;
Chandra et al., 1997; Renfro, 1999; Figure 6). Although Mg2+

is normally reabsorbed from the urine in FW fish, in rainbow
trout fed a Mg2+- enriched diet, there was active secretion (Oikari
and Rankin, 1985; Bucking et al., 2010) and increased SLC41A1
mRNA levels in FW goldfish (Carassius auratus) exposed to high
dietary and environmental Mg2+ (Kodzhahinchev et al., 2017).
Therefore, it appears that Mg2+ can be regulated in relation to
changes in both external salinity and diet, likely through the
SLC41A1 transporter (Figure 6).

Islam et al. (2013) and Kodzhahinchev et al. (2017) are the first
studies to confirm that the SLC41A1 is responsible for vesicular
trafficking. Since the SLC41A1 was localized to vacuoles in the
apical cytoplasm in proximal tubule II, Mg2+ is likely transported
from cytosol to the vacuole lumen, and then later exocytosed into
the urine (Islam et al., 2013; Figure 6). In contrast, FW rainbow
trout brush border membrane vesicles of proximal tubules have
been suggested to drive Mg2+ reabsorption by an electrical
gradient (Freire et al., 1996). The suggestion that SLC41A1
exchanges 2Na+/Mg2+, in fish, similar to the mammalian
counterpart, has yet to be confirmed (Islam et al., 2013).

The Cyclin M Family (CNNM Family)
The CNNM family also plays a vital role in Mg2+ homeostasis in
most organisms and is highly conserved evolutionarily (Funato
and Miki, 2019). Within the CNNM family, the CNNM1 has been
linked to Mg2+ efflux, the CNNM4 group has been proposed to
be Na+/Mg2+ exchangers secreting Mg2+, while CNNM2 has
been linked to reabsorption in mammals.

Several members of the CNNM family appear to undertake
specific roles in Mg2+ regulation during salinity changes in
euryhaline fish. The reciprocal upregulation and downregulation
of cnnm2 transporters in the kidney of FW- and SW-acclimated
mefugu (Takifuga obscurus), respectively, suggest a role in Mg2+

retention in FW (Islam et al., 2014). The stenohaline FW zebrafish
fed a Mg2+-deficient diet displayed elevated cnnm2 mRNA levels,
which further points to a role in Mg2+-reabsorption in FW
(Arjona et al., 2013). This is consistent with Mg2+ transport in
other FW teleosts (Renfro and Shustock, 1985; Bijvelds et al.,
1997; Chandra et al., 1997; Beyenbach, 2000) and the reabsorptive
function of CNNM2 in mammals (Quamme, 1997; Stuiver et al.,
2011; Giménez-Mascarell et al., 2018). Moreover, upregulation of
the cnnm3 transporter in SW-acclimated mefugu kidney points
to a possible role in Mg2+ secretion across the basolateral

membrane of the proximal tubule (Islam et al., 2014). This
supports the consensus that CNNM3 has a predominant role in
Mg2+ secretion in SW-acclimated fish (Beyenbach et al., 1986;
Beyenbach, 1995, 2004; Chandra et al., 1997; Figure 6).

Summary and Knowledge Gaps in Mg2+

Transport
In summary, the CNNM2 transporters are currently the most
likely candidates for Mg2+ reabsorption, while SLC41A1 and
CNNM3 are the most likely candidates for secretion, thus
combating high Mg2+ levels in SW (Figure 6). A potential model
for Mg2+ transport in FW has yet to be proposed. In mammals,
the CNNM family has been linked to Na+/Mg2+ exchange,
though this mode of transport still remains an open question in
fish. Hickman and Trump (1969) initially proposed that Mg2+

may be linked to water transport by vesicular trafficking in
marine teleost nephrons, probably accomplished by an apical
located SLC41A1 in vacuoles of proximal tubules (Islam et al.,
2013), likely by exocytosis into the tubule lumen. The rapid
and marked urinary responses to altered salinity, to Mg2+-rich
diets and to Mg2+ infusions, are all very convincing evidence of
euryhaline fishes ability to switch rapidly between absorption and
secretion (Oikari and Rankin, 1985; Bucking et al., 2010; Arjona
et al., 2013; Kodzhahinchev et al., 2017). Clearly, euryhaline
fish are excellent models for the regulation of Mg2+ transport.
Currently no Mg2+ channels have been discovered in teleosts,
whereas these serve as key proteins for transcellular transport of
Mg2+ in mammals, referred to as TRPM6 and TRPM7 channels.
Their dysfunction has been linked to hypermagnesemia and
secondary hypocalcaemia (Schlingmann et al., 2002, 2007). In
mammals, reabsorption of Mg2+ has been linked to paracellular
transport through tight junction proteins in the claudin protein
family 16 and 19 (De Baaij et al., 2012; Claverie-Martin, 2015;
Gong and Hou, 2017). Future comparative analysis of teleost
claudins (barrier function) CNNM, SLC41, TRPM6 and TRPM7
families in euryhaline species will be informative.

CALCIUM

Extracellular fluid Ca2+ concentration is tightly regulated in
most vertebrates. In terrestrial vertebrates, Ca2+ is largely
acquired from the diet where whole body Ca2+ homeostasis is
tightly regulated by the intestinal uptake and renal excretion
(Bindels, 1993; Bronner, 2003). As for Mg2+, most studies
addressing transport mechanisms of Ca2+ have been motivated
by pathological conditions in humans (On et al., 2008; Gotoh
et al., 2015).

Calcium (Ca2+) levels in FW range between 0.01–3 mM while
SW contains approximately 10 mM (Table 1). In contrast to
terrestrial vertebrates, the teleost gills and skin are the main sites
of Ca2+ uptake; 20-46% originates from gills in FW while the
rest is thought to be taken up across the skin (Perry and Wood,
1985; McCormick et al., 1992; Marshall et al., 1995), depending
on the developmental stage as larva have higher uptake in the skin
when the gills are not fully developed (Hwang, 1996). Fish usually
display relatively stable plasma Ca2+ levels of approximately
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1.5 mM in both FW and SW (Marshall and Grosell, 2005)
(Table 1). In FW fish, the kidney generally reabsorbs Ca2+,
whereas in SW fish, excess Ca2+ is secreted, with the urine of SW
fish containing relatively high and variable Ca2+ concentrations
(7.5–39 mM) (Smith, 1930; Wilson et al., 2002; Marshall and
Grosell, 2005). However, dietary loading in FW trout resulted in
greater Ca2+ excretion in the urine due to either less reabsorption
from the filtrate, or to increased secretion (Bucking et al., 2010).
Several transporters and channels have a potential involvement
in Ca2+ regulation in the teleost kidney.

Sodium-Calcium Exchangers (NCX)
The sodium-calcium exchanger (NCX) is a membrane protein
within the solute carrier family 8 (SLC8) (Khananshvili, 2013). In
humans, the NCX family is involved in cellular Ca2+ homeostasis
in the intestine, heart, skeletal muscle and nervous system
(Loffing et al., 2001; On et al., 2008; Khananshvili, 2013; Liao et al.,
2019). Currently, three NCX exchangers have been implicated in
Ca2+ transport, NCX1, NCX2 and NCX3 (Khananshvili, 2013).
Only NCX1 and NCX2 are located in the distal segment of
the mammalian kidney and suggested to be involved in Ca2+

reabsorption by basolateral electrogenic 3Na+/Ca2+ exchange in
the distal segment (Gotoh et al., 2015; Van Der Hagen et al.,
2015; Moor and Bonny, 2016). Although several ncx genes have
been identified in zebrafish and Pufferfish (Liao et al., 2007; Islam
et al., 2011), virtually nothing is known about the regulation and
functions of NCX transporters in the teleost kidney.

Sodium-Calcium Exchanger 1 (NCX1)
In mammals, NCX1 is considered to be essential for basolateral
Ca2+ transport for both reabsorption and secretion in the
mammalian distal convoluted tubule (White et al., 1996;
Magyar et al., 2002). In zebrafish, torafugu and mefugu
pufferfish, the ncx1b is expressed in several organs, including the
osmoregulatory gill and kidney (Liao et al., 2007; Islam et al.,
2011), while the ncx1a is expressed only in the torafugu kidney
but not in the mefugu and zebrafish kidney (Islam et al., 2011).
Information on NCX1 isoform regulation and function in the
teleost kidney is sparce. Nevertheless, based on the mammalian
model, one may hypothesize that a basolateral NCX1 is involved
in Ca2+ reabsorption in FW fish (Figure 7A).

The Sodium-Calcium Exchanger 2a
(NCX2a)
The ncx2a is abundantly expressed in the kidney of SW pufferfish,
but not in FW zebrafish (Liao et al., 2007). NCX2a is vital
for renal Ca2+ secretion across the apical membranes into the
proximal tubule lumen in conjunction with a Na+−dependent
exchange, thus playing a significant role in regulating whole
body Ca2+ homeostasis in SW teleosts (Islam et al., 2011;
Figure 7B). Interestingly, thermodynamic calculations suggest
that the NCX2a may facilitate reabsorption of Ca2+ when
primary urine Ca2+ concentration is higher than intracellular
Ca2+ and intracellular Na+ is high (Islam et al., 2011), permitting
great plasticity in efflux and influx of Ca2+ in teleost kidney.

Plasma Membrane Ca2+ ATPase (PMCA)
and Epithelial Calcium Channel (ECaC)
In the mammalian distal convoluted tubule, plasma membrane
Ca2+-ATPase (PMCA) may mediate Ca2+ transport, thus
playing a role in regulating intracellular Ca2+ concentrations
(Magyar et al., 2002). The mammalian PMCA consists of four
genes, with PMCA1 and PMCA4 being ubiquitously expressed,
while PMCA2 and PMCA3 is more tissue-specific (Domi et al.,
2007). The pump consists of mainly four domains; the A-domain
(or cytoplasmic domain) is important for phosphorylation
processes, the P-domain contains the catalytic core of the pump,
the N-domain is an important part of the ATP binding site, and
finally the calmodulin-binding domain (CaM-BD) is where the
inhibitory binding site is found, freeing it from autoinhibition
(Gong et al., 2018). The PMCA pump has not been well studied
in fish. In the kidney, PCMA isoform regulation could be a
important regulatory mechanism of Ca2+ transport. However,
Ca2+ regulation related to dietary Ca2+ and environmental levels
points to an involvement of both a Na+/Ca2+ exchanger (NCX;
previous section) and the Ca2+ ATPase pump in reabsorption in
fishes (Verbost et al., 1994; Flik et al., 1996; Figure 7A). Further,
a decrease in the Ca2+ ATPase enzyme activity in the kidney
of tilapia during FW to SW transfer was assumed to reflect a
reduced requirement for Ca2+ reabsorption. Although plasma
membrane Ca2+ ATPase (PMCA) activity has been measured in
gills, intestine and kidney of teleosts (Sheetal et al., 2018) potential
differential regulation of PCMA isoforms remains elusive.

The ECaC is known as a member of the transient receptor
potential (TRP) family in which two have been identified (TRPV5
and TRPV6 channels) (Peng et al., 2018). The ECaCs have been
suggested to be similar to the TRPV5 and TRPV6 channels found
in mammals. In fish gills ECaC appears to play a key role in Ca2+

uptake (Perry et al., 2003; Shahsavarani et al., 2006; Figure 7A).
In the lake sturgeon (Acipencer fulvescens), ECac expression was
detected in the kidney but at much lower expression levels than in
gills. Nevertheless, ECaC expression increased in both kidney and
gills of sturgeon when exposed to high water calcium conditions
while no increase were observed under low calcium levels (Allen
et al., 2011). This contradicts upregulation of ECaC under low
calcium levels in teleosts. One explanation can be that the high
Ca2+ conditions was grater than in vivo circulating Ca2+ levels of
the lake sturgeon. Apart from the study by Allen and co-authors
little is known about the ECaC in the FW fish kidney.

Summary for Ca2+ Transport
While the roles of the gills and intestine in Ca2+ transport
are relatively well characterized (Marshall, 2002; Wilson et al.,
2002; Shahsavarani et al., 2006; Liao et al., 2007; Bucking et al.,
2010; Kodzhahinchev et al., 2018), Ca2+ transport mechanisms
in the teleost kidney remain poorly understood. Nevertheless,
the dominant role of NCX1 in Ca2+ reabsorption in mammals
and the presence of NCX1 in FW zebrafish suggest a similar
reabsorptive role in FW- acclimated fish. Ca2+, like Mg2+, may
be transported paracellularly in mammals by claudin proteins
involved in barrier function (Moor and Bonny, 2016; Gong and
Hou, 2017). In teleosts, however, most studies have focused on the
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FIGURE 7 | Schematic overview showing localization and mechanisms of Ca2+ transport in FW (A) and SW (B) teleosts. (A) In FW fish, the apically located Ca2+

channel (ECaC/TRPV5/6) and the basolaterally located NCX1 exchanger Na+/Ca2+ (NCX1, exchange ratio unknown) likely play a role in reabsorption of Ca2+ in the
fish kidney. The plasma-membrane Ca2+ - ATPase also aids in mediating Ca2+ transport from the cytosol to extracellular space, which have been reporter to have
high enzyme activity in FW kidney. Thus, models are based on mechanisms in the fish gill and the mammalian kidney model. Understanding of the exact
mechanisms is still very limited in the FW teleost kidney. (B) In SW fish, the secretion of Ca2+ is mediated by the NCX2a in proximal tubule II exchanging Na+/Ca2+

at the apical membrane. The negative membrane potential and the low intracellular Na+ concentration generated by the Na+ - K+ -ATPase (NKA) are likely the
driving forces for this transport. A basolateral Ca2+ channel is necessary but has not yet been verified in the fish kidney. Models are based on the papers of Perry
et al. (2003); Shahsavarani et al. (2006), Islam et al. (2011), and Sheetal et al. (2018).

gills. Therefore, future investigations should focus on the kidney,
especially for NCX, ECaC, claudins, and Ca2+ ATPase (PMCA)
(Flik et al., 1996; Pan et al., 2005; Liao et al., 2007) to elucidate how
euryhaline teleosts accomplish Ca2+ homeostasis in both FW and
SW environments.

FUTURE RESEARCH DIRECTIONS

Many aspects of tubular transport in the kidney of euryhaline
species are complex and remain elusive at the gene and
molecular level. Further, the integration of known aspects of
renal physiology at the macro level with emerging opportunities
provided by modern genetic and molecular methods could
further illuminate the role and regulation of the many transporter
pathways located in the fish kidney. The localization of all known
transporters in teleosts is outlined in both FW (Figure 8A) and
SW (Figure 8B).

Expression Profiling Along the Nephron
Section-specific profiling of gene and protein expression along
the length of the fish nephron where sections are separated by
either manual (Fehsenfeld and Wood, 2018) or laser capture
micro-dissection (Madsen et al., 2020) is promising in providing
detailed location and expression profiles of relevant transporters
involved in solute and water transport in proximal versus distal
tubules. Combined with the application of scanning ion-selective
electrode technique (SIET) and experimental treatments (e.g.,

Fehsenfeld et al., 2019), these approaches should be pursued with
a range of euryhaline species and treatments.

Integrative Studies on the Kidney‘s
Functional Role in Osmoregulation
Unfortunately, recent advances in immunochemical and
molecular approaches have been accompanied by a decline in
the application of whole organism physiological approaches to
understanding renal function in fish. Only by simultaneously
collecting urine, measuring its flow rate (UFR) and composition,
as well as the glomerular filtration rate (GFR) by which it was
formed, can the experimenter determine rates of secretion
and reabsorption of different solutes (e.g., Lawrence et al.,
2015). This becomes a powerful approach when combined with
section-specific transporter mRNA and protein localization
by means of in situ hybridization and immunocytochemistry,
both of which are useful in determining cellular localization.
Several transporters for ion and water regulation addressed in
the current review are probably located and function in the
same cell(s). Colocalization of transporters will be important for
understanding the cooperative effort of different transporters
in individual cells throughout the nephron. Future studies
should also take a more holistic view, including the integrated
osmoregulatory roles of the gill, intestine and kidney as they
work in conjunction to maintain overall homeostasis. For
example, an overwhelming fraction of the studies on renal
function in fish have been performed on fasted animals, whereas
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FIGURE 8 | Overview summary of localization of the transporters involved in ion and water transport in euryhaline FW (A) and SW (B) teleosts. Based on the current
molecular analysis in teleosts, locations in the nephron are presented in FW and SW environments. For the following transporters, the experimental analysis has not
distinguished between proximal tubule I and II; AQP1aa, AQP1ab, AQP3a, AQP8b, AQP10b, SLC13A1. The NKCC in proximal tubule I/II and distal/collecting duct
are based on the detection of a general NKCC antibody which do not distinguish between NKCC1 and NKCC2. The NKCC2 was later detected only in the distal
tubule of FW fish and not in the proximal tubule I or II. The NKCC1 may therefore be present in proximal tubules, but specific antibodies still need to verify this. The
remaining transporters have been located specifically to the segments presented here in FW (A) and SW (B) conditions. So far, only NCC (FW) and NKCC2 (SW)
have been located in the collecting duct, but likely have a reabsorbtive function (Na+, Cl-, water) similar to that observed in the collecting tubule. Apical (orange),
basolateral (dark red), and multiple locations (black).

we now know that nutrients and ions in the diet have marked
effects on transport functions in the intestine, gills, and kidney
(Wood and Bucking, 2011).

Comparative Studies on Mammals and
Teleosts
New findings on transporters in the mammalian kidney should
be pursued to find homologies in the fish kidney. Mammalian
research is more extensive and better funded due to the
requirement for understanding the many underlying pathological

conditions of renal physiology in humans. Benefits may also
flow in the other direction: the plasticity of euryhaline fish, and
their ability to adapt to very different ionic environments may
provide powerful experimental models to explain regulation and
abnormalities of ion and water transport in the mammalian
kidney. This may also help understanding how stenohaline
fish, that regulate in a much narrower salinity range will
cope with changes in salinity related global climate change.
Furthermore, euryhaline species that have undergone additional
whole genome duplications (WGD) provide intriguing models
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to study the regulation of paralog genes and their corresponding
proteins (Bailey et al., 1978; Houston and Macqueen, 2019).

Applications for Aquaculture (Diseases,
Water Quality, and Diet)
Traditionally, some of the most devastating diseases attacking
euryhaline species in aquaculture have been kidney diseases –
for example proliferative kidney disease (PKD; Hedrick et al.,
1993), bacterial kidney disease (BKD; Fryer and Sanders, 1981),
nephrocalcinosis (Fivelstad et al., 2018), and haemorrhagic smolt
syndrome (HSS; Byrne et al., 1998). The implementation of
effective recirculating aquaculture systems (RAS) and increasing
intensification in modern aquaculture is arguably an important
driver in the increasing prevalence of adverse effects on fish
(Tang et al., 2009; Dalsgaard et al., 2013; Skov, 2019). Such
adverse effects are even more prevalent and challenging when
farming species, for instance salmonids, that require specific
environmental conditions for development (photoperiod,
temperature, salinity) to set their developmental trajectories
during their lifecycle (Stefansson et al., 1993; Duncan et al.,
1999; Fjelldal et al., 2011; Imsland et al., 2014; Strand et al.,
2018). Further, innovations in commercial feed, including
supplementation with a variety of electrolytes will increase
pressures on renal function. Indeed, dietary Na+, Cl−, Ca2+,
Mg2+, and phosphate all have potential implications for growth,

health status, acid-base balance, and osmoregulation in fish
(Salman and Eddy, 1988; Sugiura and Ferraris, 2004; Bucking
and Wood, 2007; Ferreira and Baldisserotto, 2007; Cooper
and Wilson, 2008; Bucking et al., 2010; Wood and Bucking,
2011; Bucking et al., 2013; Kodzhahinchev et al., 2017). Thus,
increasing our mechanistic knowledge of the kidney‘s role in
osmoregulation from organismal through molecular levels will
be critical in addressing these issues, and thereby protecting and
promoting aquacultural productivity of euryhaline species such
as eel, tilapia and salmonids.
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