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Skeletal muscle function deficits associated with advancing age are due to several 
physiological and morphological changes including loss of muscle size and quality 
(conceptualized as a reduction in the intrinsic force-generating capacity of a muscle when 
adjusted for muscle size). Several factors can contribute to loss of muscle quality, including 
denervation, excitation-contraction uncoupling, increased fibrosis, and myosteatosis 
(excessive levels of inter- and intramuscular adipose tissue and intramyocellular lipids). 
These factors also adversely affect metabolic function. There is a major unmet need for 
tools to rapidly and easily assess muscle mass and quality in clinical settings with minimal 
patient and provider burden. Herein, we discuss the potential for electrical impedance 
myography (EIM) as a tool to evaluate muscle mass and quality in older adults. EIM applies 
weak, non-detectible (e.g., 400 μA), mutifrequency (e.g., 1 kHz–1 MHz) electrical currents 
to a muscle (or muscle group) through two excitation electrodes, and resulting voltages 
are measured via two sense electrodes. Measurements are fast (~5 s/muscle), simple to 
perform, and unaffected by factors such as hydration that may affect other simple 
measures of muscle status. After nearly 2 decades of study, EIM has been shown to 
reflect muscle health status, including the presence of atrophy, fibrosis, and fatty infiltration, 
in a variety of conditions (e.g., developmental growth and maturation, conditioning/
deconditioning, and obesity) and neuromuscular diseases states [e.g., amyotrophic lateral 
sclerosis (ALS) and muscular dystrophies]. In this article, we describe prior work and 
current evidence of EIM’s potential utility as a measure of muscle health in aging and 
geriatric medicine.
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INTRODUCTION

By 2050, the world’s population aged 60  years and older (the 
World Health Organization’s cut-off point for an older adult) 
is expected to total 2  billion (22% of the total population), 
up from 900  million (12% of the total population) in 2015 
(U.N., 2017). Forty-two percent of older adults have one or 
more physical limitations in performing daily tasks that are 
essential for independence (Seeman et  al., 2010). Age-related 
muscle wasting, weakness, and diminished muscle quality are 
important contributors to these physical impairments (Rantanen 
et  al., 1998, 1999, 2000, 2002; Rantanen, 2003; Syddall et  al., 
2003; Visser et  al., 2005; Sasaki et  al., 2007; Leong et  al., 2015; 
Duchowny, 2019; McGrath et al., 2019a,b; Jyvakorpi et al., 2020; 
Warzecha et  al., 2020). This age-related degeneration of the 
muscular (or more precisely neuromuscular) system is commonly 
referred to as “sarcopenia” or, more conceptually, pathological 
age-related skeletal muscle function deficits (Cruz-Jentoft et al., 
2010, 2019; Correa-de-Araujo et al., 2017, 2020). While voluntary 
muscle strength can be  relatively easily assessed (e.g., handgrip 
dynamometry), it is heavily influenced by the integrity of the 
nervous system and, as such, does not necessarily reflect muscle 
status or health per se (Carson, 2018). It is far more 
challenging to quantify muscle mass and even more so muscle 
compositional quality [e.g., myosteatosis (fat infiltration), fibrosis] 
and contractile quality (e.g., intrinsic force-generating capacity 
normalized to muscle mass, which is also referred to as muscle 
quality or specific force). Quantitative measures of muscle mass, 
compositional quality, and contractile quality that can 
be  readily and rapidly applied in the clinic are lacking. 
Accordingly, there have been recent calls for development and 
validation of clinically feasible assessment tools to reliably 
evaluate muscle mass and indices of quality in various settings 
(Correa-de-Araujo et  al., 2017; Buckinx et  al., 2018).

Imaging modalities, including MRI, computed tomography 
(CT), dual-energy x-ray absorptiometry (DXA), and quantitative 
ultrasonography can be  used to obtain insight into muscle size 
and composition (Clark et  al., 2006, 2007; Harris-Love et  al., 
2014; Erlandson et  al., 2016; Correa-de-Araujo et  al., 2017). 
Arguably, imaging by MRI or CT is the current gold-standard 
approach for assessing muscle mass (Engstrom et  al., 1991; 
Morse et  al., 2007; Clark et  al., 2018). Similarly, MRI and CT 
can be  used to assess fat infiltration of muscle as an index of 
muscle compositional quality (Rozenberg et  al., 2017; Engelke 
et  al., 2018; Correa-de-Araujo et  al., 2020). While MRI and 
CT are highly accurate and repeatable, they are expensive, housed 
in a separate facility, and require extensive post-processing that 
dramatically limits their clinical utility. These challenges severely 
limit access, real-time screening, and decision-making in the clinic.

In contrast to MRI and CT, DXA, quantitative ultrasound 
as well as bioelectrical impedance analysis (BIA), are more 
clinically practical techniques for estimating muscle mass and 
composition. For instance, DXA-derived estimates of lean body 
mass strongly correlate with MRI (r  =  0.88) and CT 
(r = 0.77–0.95) measures of skeletal muscle volume (Kim et al., 
2002; Maden-Wilkinson et  al., 2013; Heymsfield et  al., 2014). 
However, there is evidence that repeated scans increase 

measurement error (Hind and Oldroyd, 2013; Knapp et  al., 
2015) and that DXA-derived measures of change in mass over 
time correlate poorly with MRI- or CT-derived changes in 
mass/volume (Nelson et al., 1996; Hansen et al., 2007; Delmonico 
et al., 2008; Lee and Kuk, 2013; Tavoian et al., 2019). Moreover, 
DXA instrumentation is still relatively expensive and requires 
significant physical space, making it less likely to be  adopted 
for in-office, widespread testing. BIA, on the other hand, has 
many attractive practical features and has the potential to be  a 
point-of-care test (e.g., BIA is very inexpensive, portable, does 
not require highly trained or experienced personnel; Buckinx 
et  al., 2018). Unfortunately, BIA also has major limitations 
that have precluded its adoption, which are discussed in more 
detail below (Buckinx et  al., 2018). Quantitative ultrasound 
can provide indices of muscle size (e.g., thickness and cross-
sectional area; Nijholt et  al., 2017), as well as proxy estimates 
of muscle compositional quality (e.g., echogenicity; Reimers 
et  al., 1993; Sipila and Suominen, 1993; Harris-Love et  al., 
2014). For instance, a recent systematic review concluded that 
ultrasound is a reliable and valid tool for the assessment of 
muscle size in older adults (Nijholt et  al., 2017). Moreover, 
echogenicity was recently reported to be  associated with 
intermuscular adipose tissue estimates obtained via CT imaging 
in older men (r  =  0.73) as well as with measures of muscle 
strength (r-values of ~ 0.4–0.5; Harris-Love et al., 2018). Findings 
of this nature are particularly notable since ultrasound equipment 
is often available. However, quantitative ultrasound has limitations 
that to date appear to have curbed its adoption (e.g., dependence 
on psychomotor skills of the examiner; Bazzocchi et  al., 2016; 
Correa-de-Araujo et  al., 2017).

There are several other technologies/approaches that can 
provide insight into compositional and contractile muscle quality. 
For instance, muscle biopsy can yield direct, detailed, and 
insightful information related to muscle composition. However, 
muscle biopsy cannot be  applied widely for muscle condition 
assessment due to its invasive nature and the specialized analyses 
required, and is subject to sampling error since only a very 
small piece of muscle tissue is obtained. As a measure of 
muscle contractile quality, electrically stimulated muscle force 
recordings can provide data related to contractile function 
(Clark et  al., 2006). While useful for research applications, 
however, electrically stimulated evaluations of contractile function 
have not been widely adopted clinically for a number of reasons 
(e.g., it is painful and may not be tolerated by some individuals 
in routine use) despite the technique being readily available 
for more than a half-century.

Accordingly, there is a well-recognized unmet medical need 
for technologies that permit rapid assessment of muscle mass 
and indices of muscle quality in clinical settings with minimal 
patient and provider burden (Correa-de-Araujo et  al., 2017). 
Here, we discuss the potential for electrical impedance myography 
(EIM) outcomes, such as resistance, reactance, and phase angle 
as a function of input current frequency, to assess age-related 
skeletal muscle function deficits. EIM has been extensively 
researched for nearly 2 decades, and has been shown to reflect 
muscle condition, including presence of atrophy and fatty 
infiltration (Li et  al., 2015; Rutkove and Sanchez, 2019) and 
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is sensitive to simple deconditioning (Tarulli et al., 2009; Rutkove 
et  al., 2017; Roy et  al., 2020). Although EIM is not widely 
discussed in the aging and sarcopenia fields, there is a strong 
conceptual framework underlying its potential utility for assessing 
age-related skeletal muscle deficits.

BASIC MEASUREMENT PRINCIPLES OF 
BIOIMPEDANCE TECHNOLOGIES

Since the mid-to-late 20th century, specialized electrical 
impedance methods have found value in a variety of medical 
and scientific applications, beyond BIA discussed above. For 
instance, electrical impedance has well-established utility for 
assessing cardiac output (Lorne et  al., 2014), neonatal lung 
monitoring (Brown, 2003), tumor imaging (Toso et  al., 2000; 
Phillips, 2013), and assessing skin lesions (Aberg et  al., 2003). 
Electrical impedance methods can also be  applied for more 
basic scientific purposes, such as determining the actual electrical 
properties of tissues and fluids (Gabriel et  al., 1996a,b,c).

Body tissues (i.e., muscle) impact the flow of electrical 
current. Tissue properties can be  determined by applying an 
alternating current to muscle tissue and measuring electrical 
properties of the generated voltage, namely amplitude and time 
lag with respect to the applied current. The body tissues actually 
become components in the electrical circuit and change in 
current amplitude is associated with resistive behavior of the 
tissue, that is, the passive compositional structures including 
free water, connective tissue, and fat (Rutkove and Sanchez, 
2019). The time lag of the current is related to capacitive/
reactive components, mainly the myofiber membranes (at the 
frequencies of current typically used), which act as distributed 
capacitors (Rutkove and Sanchez, 2019). Thus, measuring the 
electrical properties of voltage (resistance, reactance, and phase 
angle) relative to the applied current across a broad range of 
frequencies can yield rich information about muscle structure 
and integrity. For a full discussion on the electrical engineering 
principals and mathematics underlying EIM, please see the 
recent review from Rutkove and Sanchez (2019).

Impedance values are influenced by other factors beyond 
the intrinsic electrical properties of skeletal muscle being 
assessed (e.g., conductivity1 and relative permittivity2). These 
factors include electrode characteristics and arrangement (e.g., 
size, material, distance, and shape) and conductor volume 
(i.e., volume of the limb and position). As such, it is critical 
to collect EIM data in a standardized fashion. Moreover, while 
challenging, it is also possible to assess the degree of anisotropy 
of the tissue. Skeletal muscle tissue is a highly anisotropic 
due its highly organized cellular and fascicular structure, which 
results in current flowing more easily along the fibers than 

1 The degree to which a specified material conducts electricity, calculated as 
the ratio of the current density in the material to the electric field that causes 
the flow of current. It is the reciprocal of the resistivity.
2 The ability of a material to store electrical potential energy under the influence 
of an electric field measured by the ratio of the capacitance of a capacitor 
with the material as dielectric to its capacitance with vacuum as dielectric.

across them (Epstein and Foster, 1983). Assuming direct 
electrode-to-muscle contact, an anisotropy ratio can 
be  calculated (Chin et  al., 2008; Kwon et  al., 2017), whereby 
a value of 1.0 indicates a completely isotropic material, and 
skeletal muscle with a greater difference between the two 
directions (i.e., resistance of the impedance measured in 
longitudinal and transverse directions) will have a smaller 
anisotropy ratio.

BIOELECTRICAL IMPEDANCE ANALYSIS 
Vs. ELECTRICAL IMPEDANCE 
MYOGRAPHY

By far, the most cost-effective and easily applied approach 
currently available for estimating lean body mass and muscle 
mass is whole-body BIA. One simple way of thinking about 
EIM is as an improved and enhanced form of BIA. EIM 
and BIA use the same basic principle of electrical bioimpedance 
to assess body condition. However, whole-body BIA measures 
a huge segment of the body at once. Thus, measurements 
of skeletal muscle, which are of primary interest in studies 
of aging and sarcopenia, are diluted by many additional 
tissues, including abdominal fat, bone, gut and bladder 
contents, and major organs (Androutsos et  al., 2015). BIA 
also is strongly impacted by hydration level since electrical 
current will always follow the path of least resistance – 
generally along conductive fluid filled large veins and arteries 
(O’Brien et  al., 2002; Oppliger and Bartok, 2002). Joint 
replacements can also potentially impact BIA results (Stehaug 
et  al., 2017; Wagner, 2020). Another drawback is that BIA 
is commonly based on simplistic models in which the torso 
and limbs are modeled as simple cylinders, thus greatly 
limiting accuracy and reliability. For instance, agreement 
between appendicular lean mass assessed by established DXA 
measures and predicted by BIA is poor [ICC  =  0.37 (95%CI: 
0.25–0.48)] (Buckinx et  al., 2015). BIA is therefore generally 
considered to have limited sensitivity to muscle mass in 
sarcopenia (Reiter et  al., 2019).

Some researchers have advocated for “segmental BIA” 
(Ling et  al., 2011), in which electrodes are placed in multiple 
regions or on specific limbs. This likely improves upon the 
whole-body form of BIA, but segmental BIA is still highly 
dependent on hydration status as large veins and arteries still 
remain a factor. In addition, joint position has a major impact, 
as joint movement can alter electrical current flow in 
unpredictable ways (Rutkove, 2009). Moreover, segmental BIA 
can be somewhat ungainly to perform since it involves placement 
of single electrodes in multiple locations. While EIM has its 
limitations (discussed in more detail below), it circumvents 
the major challenges of whole-body and segmental BIA 
approaches (Table  1). Critically, EIM is relatively unaffected 
by hydration status (Jia et  al., 2014). This is likely because 
EIM current flow never reaches the low resistance paths of 
major veins and arteries (Jafarpoor et  al., 2013). Also, since 
current is restricted to muscles, other factors, including 
gut contents, joint position, and joint replacements do not 
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come into play. Moreover, EIM can provide information on 
specific muscles or muscle groups and remove added uncertainties 
of varying inter-electrode distances that impact all other forms 
of BIA (Sanchez and Rutkove, 2017). Most importantly, EIM 
is extremely fast and flexible, taking only seconds to perform.

While this review focuses almost exclusively on surface EIM 
methods, it is also possible to perform EIM using needle 
electrodes placed directly in the muscle (Kwon et  al., 2018). 
This approach has certain benefits, including the ability to 
measure muscle directly, but given that it is still early in its 
development, and its invasive nature and potential for sampling 
error, it is potentially not as relevant to the sarcopenic community. 
Thus, EIM via needle electrode interrogation is not discussed 
further here.

COULD ELECTRICAL IMPEDANCE 
MYOGRAPHY BE  A FEASIBLE TOOL TO 
EVALUATE AGE-RELATED SKELETAL 
MUSCLE FUNCTION DEFICITS?

As in all bioimpedance-based technologies, in EIM, a weak, 
non-detectible (e.g., 400  μA), high frequency (e.g., 
1  kHz–1  MHz) electrical current is applied to an area of 
tissue through two excitation electrodes using multiple input 
frequencies, and resulting voltages are measured via two sense 
electrodes (Rutkove and Sanchez, 2019). In EIM, electrical 
current (Figure  1, black sinusoid) is applied via two outer 
surface electrodes, generating a voltage measured by two inner 
electrodes (Figure 1, red sinusoid). Both intra-rater and inter-rater 
reliability across sessions have been reported. These data suggest 
that when care is taken to position the electrodes in the same 
place, the between-day repeatability for phase angle and resistance 
is very high in multiple muscles (r-values 0.94–0.98; Rutkove 
et al., 2006; Martinez-Gonzalez et al., 2020). Moreover, alterations 
in values with a shift in electrode position are fairly modest 

for small distances, with variations in phase values generally 
being less than 10% (Rutkove et  al., 2005).

Changes in sarcopenic muscle are characterized by increased 
non-contractile tissue (e.g., increased myosteatosis) and smaller 
myocytes (i.e., atrophied myofibers; Figure  1, bottom panel). 
Here, the presence of increasing connective tissue, fat, and 
muscle fiber atrophy alters resistance and reactance. Thus, EIM 
is sensitive to microscopic morphological changes in tissue, 
including cell density and size and other tissue features such 
as fibrosis and myosteatosis. Because there is a strong frequency 
dependence of EIM signals, performing EIM measurements 
across a range of frequencies enhances tissue characterization 
(Figure  2; Table  2; Esper et  al., 2006).

While EIM has not yet gained significant attention in the 
aging field, a significant number of animal (>50) and human 
(>150) studies on primary and secondary muscle disorders 
have been published in the extant literature over the past 
20  years. This literature base includes studies comparing EIM 
to muscle histology (Jafarpoor et  al., 2013; Arnold et  al., 2017; 
Kapur et  al., 2018a,b; Mortreux et  al., 2019; Pandeya et  al., 
2021), theoretical studies assessing current flow (Wang et  al., 
2011; Pacheck et  al., 2016; Kwon et  al., 2019), and clinical 
studies showing EIM’s sensitivity to disease progression and 
loss of muscle function (Esper et  al., 2006; Garmirian et  al., 
2009; Li et  al., 2015; Rutkove et  al., 2017; Shefner et  al., 2018; 
Roy et al., 2020). While these investigations are from a relatively 
small group of investigators and have involved seriously 
debilitating neuromuscular conditions, they underscore the 
potential utility of EIM in disorders that impact muscle health, 
such as age-related skeletal muscle function deficits.

Two recent longitudinal studies, one in adults with 
amyotrophic lateral sclerosis (ALS; Shefner et  al., 2018) and 
one in boys with Duchene muscular dystrophy (DMD; Rutkove 
et  al., 2017), examined disease progression (rate of change 
over time) in these conditions and compared EIM to other 
functional measures. In both studies, EIM was highly sensitive 
to disease change and muscle function loss and correlated 
with standard clinical measures of disease progression. Moreover, 
in the DMD study, initiation of corticosteroids significantly 
improved EIM values, consistent with corticosteroids’ known 
clinical benefit (Rutkove et  al., 2017).

Moreover, the sensitivity of EIM far surpassed that of standard 
clinical measures, shown by marked reductions in sample sizes 
needed for future clinical studies, indicating the utility of EIM 
as a biomarker for future trials. In the case of DMD, EIM 
results were similar to those reported previously using MRI 
(Willcocks et  al., 2016). While aging does not wreak such 
severe injury upon skeletal muscle condition as ALS and DMD, 
there are many parallels, including myofiber atrophy and fatty 
infiltration. Importantly, however, EIM is also sensitive to disuse 
atrophy (Tarulli et  al., 2009). For instance, EIM data were 
obtained from the tibialis anterior muscles of 10 individuals, 
and the phase at 50  kHz was ~30% lower in immobilized 
legs when compared to the non-immobilized leg (Tarulli et al., 
2009). When normal mobility was restored, the phase of the 
casted leg increased relative to its initial measurement 
(Tarulli et  al., 2009). This finding is consistent with rodent 

TABLE 1 | Whole-body bioelectrical impedance analysis (BIA) vs. segmental BIA 
vs. electrical muscle impedance (EIM).

Factor Whole body BIA Segmental BIA EIM

Impact of hydration Very high High Negligible
Reliance on 
models

High High None (only raw 
data used)

Body position High Moderate Negligible
Joint position Moderate High Negligible
Joint replacements Mild Moderate, if 

nearby
Negligible

Gut contents Moderate None None
Abdominal fat Moderate None None
Consistency of 
interelectrode 
distances

Slight Moderate None (electrode 
position 
predetermined)

Muscle specificity None Limited High
Anisotropy 
assessment

Not possible Not possible Readily achievable

Speed of 
measurement

About 5 min 5 min 20 s per muscle

Cost Low Low Low
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studies involving spaceflight and hind limb unloading 
(Li et  al., 2013; Sung et  al., 2013a; Semple et  al., 2020). Thus, 
EIM could have utility in assessing age-related skeletal 

muscle deficits. Below, we  highlight a series of studies that 
provide evidence for the utility of EIM in assessing muscle 
size, composition, and contractile quality in a variety of 
neuromuscular diseases and conditions.

EIM IS ASSOCIATED WITH MYOFIBER 
CROSS-SECTIONAL AREA IN MICE

Relying on the biophysical basis of EIM, prediction modeling 
approaches could theoretically leverage multifrequency impedance 
reactance measures to accurately estimate various characteristics 
of skeletal muscle, including size. Thus, Kapur et  al. recently 
sought to determine whether EIM could be used to approximate 

A

B

FIGURE 1 | Basic concepts underlying impedance measurements of healthy muscle (A) and sarcopenic muscle (B) characterized by increased non-contractile 
tissue (e.g., increased myosteatosis) and smaller myocytes (i.e., atrophied myofibers).

TABLE 2 | Impedance-compositional relationships in skeletal muscle.

Muscle alteration Impedance parameter

Myofiber atrophy Increasing resistance, decreasing 
reactance values in 30–100 kHz range

Fatty infiltration Increasing resistance at 300 kHz–
1 MHz, decreasing anisotropic ratio

Intracellular abnormalities1 Elevations in 1–2 MHz resistance and 
reactance values

1e.g., glycogen accumulation and vacuole formation.

FIGURE 2 | Multifrequency electrical impedance myography (EIM) provides 
improved tissue characterization in comparison to single frequency EIM. As 
illustrated here, progressive muscle atrophy yields markedly different tissue 
reactance, which varies depending on the frequency of the applied electric 
current. The middle dashed line represents an intermediate state of the muscle.
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FIGURE 4 | Prediction of muscle triglyceride content using EIM data in the 
db/db mouse model of obesity (triglyceride; Pandeya et al., 2021). Figure 
recreated based on data from Pandeya et al. (2021) Muscle and Nerve, 63: 
127–140, 2021.

myofiber size using standard prediction modeling approaches 
(Kapur et al., 2018b). Here, wild-type immature mice of varying 
ages (to provide a range of healthy fiber sizes; Figure  3, upper 
panel) underwent EIM with a needle electrode array (given 
their very small size) placed in the gastrocnemius, and myofiber 
size was subsequently quantified. The multifrequency impedance 
reactance signature matured along with the animal (Figure  3, 
bottom left panel). Advanced data analytics, including the least 
absolute shrinkage and selection operator (Lasso), utilized 240 
EIM parameters obtained with each measurement to provide 
an excellent approximation of mean muscle fiber size across 
all groups (~90% explained variance; Figure  3, bottom right 
panel). A similar study was also completed for ALS using a 
surface electrode array (Kapur et  al., 2018b).

EIM Provides a Means of Quantifying Fat 
and Connective Tissue Deposition
Using a similar Lasso technique to that described above, EIM 
values were recently shown to tightly correlate with muscle 
triglyceride content in the db/db mouse model of obesity 
(Figure  4; Pandeya et  al., 2021) and connective tissue content 
in the mdx muscular dystrophy mouse model (Li et  al., 2014). 
In both cases, raw impedance parameters were significantly 
associated with actual tissue characteristics (correlation 
coefficients ranging from 0.65 to 0.85).

A

B C

FIGURE 3 | Example of using EIM data to predict muscle fiber size. (A) A group of immature mice aged 5–35 days (p15–p35) underwent EIM measurements, 
were euthanized, and were histologically assessed [note increasing fiber size with increasing age; sections were stained with collagen VI antibodies to identify 
the cell membranes (red) and 4', 6- diamidino-2-phenylindole (DAPI) to stain nuclei (blue)]. (B) Age-related changes are readily observed in the reactance 
signatures (note the numbers represent the age of the animals in days). (C) Using data from all 41 frequencies in a stepwise multiple regression analysis, EIM 
data predict myofiber size with remarkable accuracy (r = 0.95). From Kapur et al. (2018b) Muscle and Nerve, 58: 106–113, 2018. Reprinted with permission by 
John Wiley Sons.
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EIM is Associated With Contractility and 
Contractile Quality
Data obtained from groups of ALS and wild type mice have 
demonstrated that EIM parameters (e.g., 50  kHz phase and 
central frequency, the latter being a reactance-based measure 
derived from multifrequency data) are associated with maximum 
force production using electrical stimulation of the posterior 
tibial nerve (Li et  al., 2016). EIM measures have also been 
associated with indices of muscle quality (e.g., echo intensity 
from ultrasonography, strength normalized to muscle mass) in 
humans (Longo et  al., 2020). The explained variances for these 
single EIM measures predicting contractile force and indices of 
muscle quality have ranged 36–77% and will improve as machine 
learning approaches develop predictive algorithms leveraging 
numerous EIM measures obtained across multiple frequencies.

Age-Related Changes in EIM Parameters
Few studies have examined age-related changes in EIM parameters 
(Aaron et  al., 2006; Kortman et  al., 2013; Arnold et  al., 2017; 
Hobson-Webb et  al., 2018). One study obtained EIM 
measurements from the quadriceps and tibialis anterior of 100 
healthy adults aged 18–90  years (Aaron et  al., 2006). In this 
study, a quadratic reduction was observed between the EIM 
50-kHz phase and increasing age for both muscle groups, with 
a noted rapid decline starting at ~60  years (Figure  5). This 
study also longitudinally examined a small group of older adults 
(n  =  4) over time (3–5  years), and a notable reduction in 
phase values was observed in all subjects. In a similar follow-up 
experiment, Kortman et  al. (2013) obtained EIM data (7 upper 
extremity and 7 lower extremity muscles) from 38 individuals 
aged 19–50 years and 41 individuals aged 60–85 years. Although 
the phase values were similar in both groups, reactance and 
resistance values were ~25% lower in the lower extremities of 
older individuals than in younger individuals, whereas changes 
in upper extremity values were not significantly different. This 
is consistent with prior work suggesting that aging results in 
more marked degenerative changes in muscle form and function 
in the lower extremities when compared to the upper extremities 
(Janssen et  al., 2000; Clark and Taylor, 2011).

More recently, Arnold et  al. (2017) and Hobson-Webb et  al. 
(2018) examined the potential utility of EIM to assess age-related 
changes in muscle health. Arnold et  al. (2017) compared EIM 
with other standard measures of muscle structure and function 
in aged and young mice. EIM demonstrated significantly lower 
50-kHz impedance phase and reactance values as well as reduced 
multifrequency parameters in aged animals. EIM parameters 
showed good correlation with reduced standard physiological 
and electrophysiological measures of muscle health in aged 
mice (e.g., EIM phase and reactance were significantly associated 
with normalized grip strength, muscle mass, and measures of 
electrically stimulated contractility). Hobson-Webb et al. (2018) 
evaluated 27 older adults (mean age: 72  years) and noted 
exceptionally high intra- and inter-rater reliability for EIM data 
obtained from the rectus femoris/vastus intermedius muscle 
complex (r  =  0.98=0.99). Moreover, they reported significant 
associations between EIM measures of 50 and 200 kHz resistance 

and phase values on normalized leg extensor muscle strength 
and timed up and go test performance. They also observed 
strong associations between EIM parameters and DXA-derived 
measures of upper thigh lean mass (e.g., 200-KHz phase r = 0.72).

While data related to aging and sarcopenia are limited, 
they suggest that EIM can detect age-related skeletal muscle 
changes and may represent a convenient and valuable method 
of quantifying skeletal muscle function deficits in older adults. 
To further expand on the data supporting the potential utility 
for EIM to detect age-related skeletal muscle function deficits, 
in Figure  6, we  present original data from young (6  months; 
n  =  8) and old (26  months; n  =  7) F344 rats. These findings 
demonstrate that both 50 KHz phase and reactance obtained 
from needle EIM are lower in older vs. younger rats 
(Figures  6A,B). More importantly, these EIM parameters were 
associated with measures of muscle mass (Figures  6C,D), 
muscle strength (Figures  6E,F), and muscle contractility 
(Figures  6G,H).

DISCUSSION

Limitations and Future Directions
In our opinion, there are several limitations of surface EIM 
that should be  noted. The first limitation surrounds contact 

A

B

FIGURE 5 | Quadriceps (A) and tibialis anterior (B) muscles display a 
reduction in the 50-KHz phase measured using EIM. Lines represent 
quadratic fits to the combined male–female data for each muscle. Data 
represent the spatially averaged phase (θavg). From Aaron et al. (2006) 
Physiological Measurement, 953–959. Reprinted with permission by IOP 
Publishing.
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FIGURE 6 | Electrical impedance myography at 50 kHz current frequency detects altered phase angle and reactance in the gastrocnemius muscles of aged rats, 
and these alterations correlate with muscle status. (A,B) Phase angle and reactance were significantly decreased in aged (26 months) vs. young (6 months) F344 
rats (unpaired t test, p = 0.0076 and p = 0.0002, respectively). Resistance was not significantly altered in aged rats (data not shown, unpaired t test p = 0.1207). 
(C–H) Phase and reactance show significant correlations with gastrocnemius wet muscle mass, in vivo plantarflexion contractile torque during stimulation at 125 Hz, 
and hindlimb grip strength (torque and grip normalized to body mass; r = Pearson correlation coefficients). **p < 0.01, ***p < 0.001. The EIM data presented herein 
are original data. This data were obtained from the same rats that have been more fully described and characterized for other age-related neuromuscular 
physiological impairments by Padilla et al. (in press).
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artifact issues. Contact artifacts can be  easily identified and 
successfully dealt with, usually by application of more saline 
to the skin, but result in distorted values if disregarded. 
Another limitation is the impact of the subcutaneous fat 
layer. Depending on the size of the muscle studied relative 
to the array, the applied current will flow through skin 
and subcutaneous fat and impact surface impedance values. 
There are commercially available units with electrodes 
designed, based on finite element method modeling (Jafarpoor 
et  al., 2013), to reduce the issue of subcutaneous adiposity, 
but it is impossible to fully remove the influence of fat. 
In general, reactance values are less affected than resistance 
values (Sung et  al., 2013b). It remains theoretically possible 
that the impact of fat could be  further reduced by using 
two sets of electrodes in combination with machine learning 
approaches. However, it is likely that at a certain level of 
obesity, surface EIM simply may not work well. Indeed, 
modeling work has indicated that once subcutaneous fat 
reaches about 5-cm (~ 2-in) in thickness, very little current 
will penetrate the muscle using the standard electrode 
arrangements and inter-electrode distances (Jafarpoor et  al., 
2013). Still, there is no reason that an electrode array with 
greater inter-electrode distances could not be  developed for 
such individuals. Similarly, current surface EIM electrode 
configurations are not able to measure the true anisotropy 
of muscle tissue well. Nonetheless, because current flow is 
directionally dependent (i.e., anisotropy; Garmirian et  al., 
2009), conceptually the degree of anisotropy could also 
be  an indicator of muscle health status in older adults, as 
myofiber atrophy and increased deposition of isotropic 
material such as fat and connective tissue will result in 
decreasing anisotropy. This remains an area for further 
investigation. Another limitation is that EIM is currently 
best suited for studying superficial muscles. However, 
increasing separation of the electrodes would lead to deeper 
muscle penetration, so it remains theoretically possible to 
measure deeper muscles. Lastly, the causal factor that EIM 
aims to measure the volume conductor properties of muscle 
with the underlying concept being that the health/disease 
state of muscle can be  assessed indirectly by measuring its 
surface electrical impedance. These volume conduction 
properties are determined the muscles actual material 
properties, namely the conductivity and relative permittivity, 
but these are not directly measured by EIM. Rather, resistance 
and reactance values are measured, which are not true 
skeletal muscle properties per se (Sanchez et al., 2020). These 
may be  impacted by the subcutaneous fat layer and shape 
and size of the area being measured. For example, two 
people may have identical muscle composition and 
microstructure and identical subcutaneous fat thickness. But 
because one person had a larger frame and a corresponding 
greater biceps mass than the other, the EIM resistance 
and reactance values (but less so the phase) would 
be  somewhat different.

We should explicitly note that we  are not suggesting that 
EIM should be  clinically adopted to assess skeletal muscle 
function deficits in older adults. Clinical adoption, at this time 

at least, is premature as the there is a lack of convincing human 
data to warrant the uptake of the method. Moreover, interpretation 
would be  very limited. However, we  are advocating for more 
attention and research be  devoted to examining the potential 
for EIM to be  used to assess skeletal muscle health in aging. 
If this data were supportive of its clinical utility, then it is 
clear that EIM has notable benefits in that it is very inexpensive, 
quick, portable, and easy to apply. The most critical next step 
for development of EIM as a quantitative way to assess skeletal 
muscle function deficits in older adults is, arguably, translation 
of current multi-frequency data relating to resistance, reactance, 
and phase to more easily understand and common metrics of 
muscle health (e.g., muscle mass, composition). One of the 
likely reasons EIM has not gained much attention in the 
sarcopenia field is that these impedance values are not directly 
reflective of common key outcome variables in clinical studies 
(e.g., muscle mass and indices of muscle quality). We  postulate 
that EIM measurements could be  combined with machine 
learning approaches to develop prediction equations for these 
common key outcome variables indicative of muscle health.

Conclusion
We posed the question of whether EIM could be  a feasible 
tool to evaluate age-related skeletal muscle function deficits. 
Although we  cannot answer this question at this time with 
certainty, based on the theoretical underpinnings and 
experimental data discussed above, we  believe that EIM has 
an immense amount to offer – particularly when one considers 
its speed, cost, ease of use as well as the small size and 
portability of equipment – to quantifying age-related skeletal 
muscle deficits. Because EIM provides spectral and anisotropic 
data on muscle composition, we  postulate that deep learning 
techniques to extract all information buried within the impedance 
data set could be  leveraged to optimize its ability to assess 
muscle size, contractility, and composition, the critical features 
of aged and sarcopenic muscle. We  are not suggesting that 
EIM yet be  clinically adopted, but we  are advocating for more 
attention and research be  devoted to examining the potential 
for EIM to be  used to assess skeletal muscle health in aging.
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