
ORIGINAL RESEARCH
published: 25 August 2021

doi: 10.3389/fphys.2021.673819

Frontiers in Physiology | www.frontiersin.org 1 August 2021 | Volume 12 | Article 673819

Edited by:

Axel Loewe,

Karlsruhe Institute of Technology (KIT),

Germany

Reviewed by:

Hamido Fujita,

Iwate Prefectural University, Japan

Jenny Venton,

National Physical Laboratory,

United Kingdom

*Correspondence:

Ricardo Salinas-Martínez

ricardo.salinas@hillrom.com

Specialty section:

This article was submitted to

Cardiac Electrophysiology,

a section of the journal

Frontiers in Physiology

Received: 28 February 2021

Accepted: 29 July 2021

Published: 25 August 2021

Citation:

Salinas-Martínez R, de Bie J,

Marzocchi N and Sandberg F (2021)

Detection of Brief Episodes of Atrial

Fibrillation Based on

Electrocardiomatrix and Convolutional

Neural Network.

Front. Physiol. 12:673819.

doi: 10.3389/fphys.2021.673819

Detection of Brief Episodes of Atrial
Fibrillation Based on
Electrocardiomatrix and
Convolutional Neural Network
Ricardo Salinas-Martínez 1,2*, Johannes de Bie 1, Nicoletta Marzocchi 1 and

Frida Sandberg 2

1Mortara Instrument Europe s.r.l., Bologna, Italy, 2Department of Biomedical Engineering, Lund University, Lund, Sweden

Background: Brief episodes of atrial fibrillation (AF) may evolve into longer AF episodes

increasing the chances of thrombus formation, stroke, and death. Classical methods

for AF detection investigate rhythm irregularity or P-wave absence in the ECG, while

deep learning approaches profit from the availability of annotated ECG databases to

learn discriminatory features linked to different diagnosis. However, some deep learning

approaches do not provide analysis of the features used for classification. This paper

introduces a convolutional neural network (CNN) approach for automatic detection of

brief AF episodes based on electrocardiomatrix-images (ECM-images) aiming to link

deep learning to features with clinical meaning.

Materials and Methods: The CNN is trained using two databases: the Long-Term

Atrial Fibrillation and the MIT-BIH Normal Sinus Rhythm, and tested on three databases:

the MIT-BIH Atrial Fibrillation, the MIT-BIH Arrhythmia, and the Monzino-AF. Detection of

AF is done using a sliding window of 10 beats plus 3 s. Performance is quantified using

both standard classification metrics and the EC57 standard for arrhythmia detection.

Layer-wise relevance propagation analysis was applied to link the decisions made by the

CNN to clinical characteristics in the ECG.

Results: For all three testing databases, episode sensitivity was greater than

80.22, 89.66, and 97.45% for AF episodes shorter than 15, 30 s, and for all

episodes, respectively.

Conclusions: Rhythm and morphological characteristics of the electrocardiogram can

be learned by a CNN from ECM-images for the detection of brief episodes of AF.

Keywords: atrial fibrillation, brief atrial fibrillation, convolutional neural network, interpretability, atrial fibrillation

detection, layer-wise relevance propagation, long-term ECG

1. INTRODUCTION

Atrial fibrillation (AF) is the most common heart rhythm disorder found in clinical practice, and it
is highly correlated with stroke (Wolf et al., 1991). Guidelines for the management of AF episodes
lasting more than 30 s are available (Hindricks et al., 2020). However, less information is known
for episodes shorter than 30 s, frequently known as brief AF. Atrial fibrillation is a progressive

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.673819
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.673819&domain=pdf&date_stamp=2021-08-25
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ricardo.salinas@hillrom.com
https://doi.org/10.3389/fphys.2021.673819
https://www.frontiersin.org/articles/10.3389/fphys.2021.673819/full


Salinas-Martínez et al. Detection of Brief Atrial Fibrillation

arrhythmia for which even brief episodes could represent a
risk factor for thrombus formation and stroke (Healey et al.,
2012). Additionally, in case of delayed management of such brief
episodes, they may evolve into longer AF episodes (Hindricks
et al., 2020). For this reason, it is a clinical recommendation
to monitor stroke patients with long-term ECG recordings
to assess the presence of brief AF episodes (Hindricks et al.,
2020). However, manual revision of large amounts of ECG data
is highly time-consuming, might be influenced by reviewers’
subjectivity, and represents a significant financial burden in
healthcare (Lee et al., 2008; Kim et al., 2011; Ball et al., 2013). To
avoid these problems, different approaches for AF detection have
been proposed based on ECG rhythm and morphology analysis,
compact representation of the ECG for visual inspection, and
deep learning (DL) techniques (Hagiwara et al., 2018; Rizwan
et al., 2020).

Atrial fibrillation detectors based on rhythm information rely
on different detection metrics. For instance, Zhou et al. (2015),
Lake and Moorman (2011), and Petrėnas et al. (2015) developed
methods based on entropy metrics; Lee et al. (2013) presented
a linear system approach for AF detection by exploring the
difference in spectral coherence of the RR intervals present in
two continuous time windows; Huang et al. (2010) proposed
an approach based on the histogram of the RR interval series.
Nevertheless, some of these approaches require a data buffer of
at least 1 min for adequate performance. Other authors have
proposed to combine rhythm and morphological information
as the detection window is reduced. For instance, de Carvalho
et al. (2012) applied the spectral entropy for determining f wave
presence; Babaeizadeh et al. (2009) investigated the absence
of P waves by measuring the similarity between the samples
in two consecutive PR intervals. Conversely, Ladavich and
Ghoraani (2015), Ródenas et al. (2015), and Ródenas et al.
(2017) only explored whether P waves are absent and left out
all rhythm information. However, the detectors accounting for
morphological information have not been completely capable of
characterizing the atrial activity, which is commonly obscured by
noise, leading to similar performances as those accounting for
rhythm (Sörnmo, 2018).

In terms of ECG visual inspection, Li et al. (2015) proposed the
electrocardiomatrix (ECM) for visualization of long-term ECG
recordings by presenting the information in a compact, two-
dimensional, form while preserving morphology and rhythm
characteristics. This approach is intended to simplify manual
review of ECG recordings for AF detection and to reduce the
workload for reviewers. Implementing this technique, Lee et al.
(2018) concluded that the ECM technique is a reliable method
for accurate detection of AF when ECM-images of long-term
ECG recordings are analyzed by experienced ECG-reader. The
detection is made after the alignment of detected R peaks. Such
alignment facilitates evaluating whether or not they are preceded
by P waves. Additionally, aligning the R peaks in the ECM
enables detection of rhythm irregularity present in long-term
recordings. However, it remains unclear whether ECM can be
used for automatic detection of brief AF episodes.

Deep learning (DL) techniques can reduce the workload in
decision-making tasks, leading to faster and more consistent

decisions while releasing human resources for other tasks. In
this sense, increased computational power and the availability
of ECG databases with clinical annotations have driven
the development of DL techniques for unsupervised ECG
analysis (Parvaneh et al., 2019; Somani et al., 2021). For
the detection of AF different DL methodologies have been
proposed, including hierarchical attention networks (Mousavi
et al., 2020), long short-term memory (Faust et al., 2018;
Andersen et al., 2019; Dang et al., 2019; Jin et al., 2020),
convolutional neural network (CNN) (He et al., 2018; Xia et al.,
2018; Lai et al., 2019; Huang and Wu, 2020; Zhang et al.,
2020), and approaches combining recurrent neural networks
with CNN (Fujita and Cimr, 2019; Shi et al., 2020; Wang,
2020). Some of these approaches are trained with raw ECG
signals (Dang et al., 2019; Huang and Wu, 2020; Jin et al.,
2020; Mousavi et al., 2020; Shi et al., 2020; Wang, 2020),
or with series of RR intervals (Faust et al., 2018; Andersen
et al., 2019; Dang et al., 2019; Lai et al., 2019), while some
others utilize time-frequency domain information extracted
from the ECG. For the latter, different transformations have
been used to create time-frequency images from the ECG
such as the spectrogram (Xia et al., 2018), the scalogram (He
et al., 2018; Jin et al., 2020), and the stationary wavelet
transform (Xia et al., 2018; Zhang et al., 2020).

One drawback of some DL approaches for AF detection is that
they are trained and tested with intra-patient subsets of the same
database, increasing the chances of overfitting (He et al., 2018;
Xia et al., 2018; Dang et al., 2019; Fujita and Cimr, 2019; Lai et al.,
2019; Huang and Wu, 2020; Mousavi et al., 2020; Shi et al., 2020;
Wang, 2020; Zhang et al., 2020). In this sense, further approaches
should consider to train, validate, and test the hyperparameters
in the network following a inter-patient approach, i.e., perform
the validation and testing with records that have not been used
during the training process.

Deep learning techniques have been frequently considered
as “black boxes,” not providing information about the decision
process. The lack of transparency and explainability could be
addressed by investigating which part of the input data is more
relevant for the classification. Such analysis could support the
adequate functioning of the system (Montavon et al., 2018; Samek
et al., 2019), and it could also help detecting biases in the
model or data. In this context, Bach et al. (2015) proposed the
layer-wise relevance propagation (LRP) technique to analyze the
decisions made by deep neural networks. The LRP propagates
the prediction score backward through the model using a set
of local redistribution rules. This technique can be applied
to DL systems providing interpretation with respect to the
input (Binder et al., 2018). Layer-wise relevance propagation was
applied in brain-computer imaging to analyze factors leading to
low-confidence decisions made by a neural network (Sturm et al.,
2016). Similarly, LRP has been applied to interpret the decisions
of a non-linear machine learning method in biomechanical gait
analysis (Horst et al., 2019), and therapy decisions in healthcare
applications (Yang et al., 2018) providing insights on the overall
decision process of DL systems. Such analysis technique could be
applied to DL systems for AF detection as interpretability of these
approaches is becoming critical in the medical context.
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Despite the great advances in automatic ECG interpretation,
detection of brief AF episodes in long-term ECG recordings
remains an open challenge, both for classical and DL techniques,
due to their paroxysmal and intermittent nature. Classical
methods investigate rhythm irregularity or P-wave absence in
the ECG, while DL approaches profit from the availability of
annotated ECG databases to learn discriminatory features linked
to different diagnoses. However, some DL approaches do not
consider inter-patient evaluation, and are tested on a small
subset of ECG records; increasing the chances of overfitting.
Additionally, many of the DL approaches do not provide analysis
of the features used for the classification. This paper investigates
whether ECM-images and CNN can be used together for
detecting brief episodes of AF. The study also investigates the
influence of leads used for training as well as the performance
on databases not used in the training process. Finally, we
implemented the LRP technique to evaluate whether the network
is capable of learning the well-known characteristics of AF from
ECM-images.

2. MATERIALS AND METHODS

This section provides a detailed specification of the databases
utilized during the study as well as the methodology for the
generation of the ECM-images. Next, a full description of the
CNN architecture and the process for the LRP analysis is
provided. Finally, the metrics used for evaluation are presented.

2.1. Databases
Four public databases available at PhysioNet (Goldberger
et al., 2000), and one proprietary database are used in this
study. All databases are provided with manual annotations
for different rhythms following the standard syntaxis used by
Physionet (Goldberger et al., 2000). A general description of the
databases is presented in Table 1.

The Long-Term Atrial Fibrillation (LTAFDB) contains 84
two-lead long-term ECG records, lasting from 24 to 25 h
and sampled at 128 Hz, from patients with paroxysmal or
persistent AF (Petrutiu et al., 2007). The MIT-BIH Normal
Sinus Rhythm (NSRDB) consist of 18 two-lead long-term ECG
records, lasting from 23 to 26 h, and acquired with a sampling
frequency of 128 Hz, from patients without any significant
arrhythmia (Goldberger et al., 2000). The MIT-BIH Atrial
Fibrillation (AFDB) is a set of 25 two-lead long-term ECG
records lasting 10 h acquired with a sampling frequency of
250 Hz, from patients with AF, mostly paroxysmal, (Moody,
1983). The records 00735 and 03665 from the AFDB, including
only rhythm information, are excluded in this study. The
MIT-BIH Arrhythmia database (Arrhythmia DB) contains 48
two-lead records including a variety of rare but clinically
important cardiac conditions (Moody and Mark, 2001). Each
of the 48 records is slightly over 30 min long and was
sampled at 360 Hz. The proprietary Monzino-AF database
(Monzino-AF DB) includes 38 records from 35 patients, 12
lead telemetry monitoring ECG records with total database-
duration of 61 h, sampled at a rate of 500 Hz. This database
is useful to evaluate performance using different leads. The

TABLE 1 | General description of databases used in the study.

Database LTAFDB NSRDB AFDB Arrhythmia

DB

Monzino-

AF DB

Subjects 47 18 – 47 35

Records used (total) 84 18 23 (25) 48 38

Records with NSR 2 18 0 28 9

Records with AF 82 0 23 8 26

Records with other

arrhythmias

0 0 0 12 3

Channels 2 2 2 2 9

Total duration 1,960 h 437 h 234 h 24 h 61 h

Number of ECMs in

non-AF

768,124 347,670 60,866 9,495 6,689

Number of ECMs in AF 1,052,506 0 54,459 1,077 24,272

Utility Training Training Testing Testing Testing

records were collected following the declaration of Helsinki,
in the Ventricular Intensive Care (VIC) unit for the intensive
treatment of ventricular arrhythmias (at Centro Cardiologico
Monzino) specialized in the treatment of patients with heart
disease with severe arrhythmias. Patients admitted to the VIC
unit are usually treated with a transcatheter ablation to control
their severe recurrent arrhythmias. This procedure is performed
using special probes called electrocatheters or, less often, using
a surgical approach. During hospitalization ECG of patients is
continuously monitored either in the pre- and post- operative
period. The records are manually annotated for AF by expert
ECG-readers from Hillrom, and reviewed by clinical experts
within the company, asking for advice to cardiologist whenever
needed. The LTAFDB and the NSRDB are used for training
and validation, whereas the AFDB, the Arrhythmia DB and the
Monzino-AF DB are used for testing.

2.2. Electrocardiomatrix
The ECG signal is upsampled to 500 Hz using the xform tool
from Physionet (Goldberger et al., 2000). The upsampling is
needed to fulfill the requirements of the VERITASTM algorithm
by Hillrom which is used for beat detection. The commercial
VERITASTM algorithm is cleared by the U.S. Food & Drug
Administration. Next, linear phase filtering is performed using
a forth order highpass Butterworth filter with cutoff frequency of
0.5 Hz to reduce baseline wander. Finally, the signal is confined
in amplitude by thresholding to±1 mV. All beats detected by the
VERITASTM algorithm, including ectopic beats, are considered in
the process of generating the ECM-images.

The ECM-images are constructed from ECG segments
containing 10 beats plus 2.5 s after the last detected beat and
0.5 s before the first detected beat. From each segment, 10
subsegments of 3.0 s length, partially overlapping, are derived, for
which the i:th subsegment starts 0.5 s before the R peak of the i:th
detected beat, 1 ≤ i ≤ 10. Next, the ten subsegments are aligned
vertically and stored as amatrix, hereinafter the ECM. Finally, the
aligned subsegments in the ECM are downsampled to: (1) 125 Hz
in the interval [0, 0.5] s, (2) 50 Hz in the interval [0.5, 3.0] s.

Frontiers in Physiology | www.frontiersin.org 3 August 2021 | Volume 12 | Article 673819

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Salinas-Martínez et al. Detection of Brief Atrial Fibrillation

FIGURE 1 | Generation of the ECM-image from an ECG segment labeled as non-AF. Segment taken from channel 1 of the record 04015 in the AFDB. The segment

corresponds to the time interval [4,567, 4,578] s. On the top: ECG segment containing 10 beats (labeled with red numbers) plus 2.5 s after the last beat, and 0.5 s

before the first beat. Bottom left: ECM containing the 10 subsegments aligned vertically, the corresponding beats from the ECM segment are labeled in red numbers.

Bottom right: ECM-image.

The downsampled ECM of dimensions 10×219 is treated as
an intensity one-channel image, referred to as the ECM-image.
The main motivation for the two-sections downsampling is to
maintain on the left side of the ECM-image a high time resolution
in the P wave interval, which is normally 120 ms before every
detected beat, and removing redundant information on the right
side of the ECM-image keeping only local rhythm patterns.
Figure 1 depicts the process of generating an ECM-image.

The ECM-images are generated for all records and all channels
of each database. A binary labeling is considered; the ECM-
images are labeled as AF if 50% or more of the corresponding
ECG segment was annotated as AF, otherwise it was labeled as
non-AF. For the training and validation dataset, the non-AF class
contains ECM-images from ECG segments from healthy subjects
in normal sinus rhythm (NSR), while the AF class contains ECG
segments from patients in AF. For the test dataset, the AF class
contains ECM-images from patients in AF, while the non-AF
class contains ECG segments from patients with other cardiac

arrhythmias as well as patients in NSR, see Table 1. For the
records used during training and validation, the ECM-images
are generated from 5 beats overlapping windows whereas non-
overlapping windows are used for the ECM-images used for
testing, cf. Table 1. The former was done to augment the number
of ECM-images in the training process, and the latter to mimic a
clinical situation in the testing stage.

2.3. Convolutional Neural Network
Convolutional neural networks were proposed by Fukushima
and Miyake (1982), and later boosted by LeCun et al. (1998).
The structure of the network is commonly composed of a
set of different layers with specific purposes. The input layer
receives the information to be classified. The convolutional
layers, gathering a set of sliding kernels, filter the data to extract
characteristic features. The pooling layers reduce the number
of features and provide robustness to variability present in the
input. Activation functions such as ReLu introduce a non-linear
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FIGURE 2 | Architecture of the CNN used in the study. Hidden layer 2 contains the same set of elements as hidden layer 1.

behavior to the network to improved characterization of complex
data. Fully connected layers weight all learned features, from
the previous layer, providing a feature distribution to further
layers. The softmax function maps the multidimensional output
from the previous layer into a set of values in the range [0,1],
each element in the output of the softmax layer represents the
likelihood for the input to belong to each of the classes. Finally,
the classification layer assigns the input to the class with the
highest likelihood computed in the softmax layer. Additionally,
it is a common practice to include a batch normalization block to
allow higher learning rates and make the network less sensitive
to initialization settings (Ioffe and Szegedy, 2015). The essence of
training a neural network is to automatically tune the weights, w,
in the kernels of the different layers so that the network correctly
performs a specific task. This tuning is done following the back-
propagation algorithm (LeCun et al., 1998) which is based on the
error rate for each iteration.

The architecture of the CNN used in this study is described in
Figure 2 and Table 2. It is composed of 3 convolutional layers,
3 batch normalization layers, 3 ReLu activation layers, 2 max
pooling layers, 1 fully connected layers, 1 softmax layer, and
1 classification layer (Goodfellow et al., 2016). This architecture
was selected as a trade-off between performance and number
of trainable parameters during the training stage. In our CNN,
the input is an ECM-image, and the output of the softmax layer
provides two values representing the likelihood for the ECM-
image to belong to the classes AF and non-AF, respectively.
Finally, the classification layer assigns the input to the class
with the highest likelihood. Three-fold cross-validation was
performed to train the CNN with datasets selected manually,
such that validation data were always taken from different
patients than training data. During the cross-validation a subset
of 80% of the ECMs created from the LTAFDB and the NSRDB
was used for training and the remaining 20% was used for
validation. To assure that the training subsets were balanced,

TABLE 2 | Properties of the CNN.

Layer Kernel size (H, L, W) Stride (H, L) Activations

Input - - 10 × 219 × 1

Convolutiona 1 (3, 9, 10) (1, 1) 10 × 219 × 10

Batch Normalization 1 - - 10 × 219 × 10

ReLu activation 1 - - 10 × 219 × 10

Max Pooling 1 (3, 3, 10) (1, 2) 10 × 110 × 10

Convolutiona 2 (3, 9, 15) (1, 2) 10 × 110 × 15

Batch Normalization 2 - - 10 × 110 × 15

ReLu activation 2 - - 10 × 110 × 15

Max Pooling 2 (3, 3, 15) (2, 2) 5 × 55 × 15

Convolutiona 3 (2, 4, 20) (2, 2) 3 × 28 × 20

Batch Normalization 3 - - 3 × 28 × 20

ReLu activation 3 - - 3 × 28 × 20

Fully Connected - - 1 × 1 × 2

Softmax - - 1 × 1 × 2

Output - - 1 × 1 × 2

Letters H, L, and W stand for height, length, and width, respectively.

Zero padding was used on the edges on all layers.

we randomly excluded the surplus of the class with more ECM-
images, i.e. for the training subset 1 there are ∼ 1.6811 × 106

ECM-images in the AF class, and ∼ 1.7699× 106 in the non-AF
class, therefore, 1.6811×106 ECM-images from the non-AF class
are randomly selected and used for training. This process resulted
in three different trained networks with the same architecture but
different learnable parameters (Net 1, Net 2, Net 3). The binary
output of each CNN classifies the ECM-images either as non-AF
or AF. A final classification is done by majority of votes (MoV)
from the three networks (Net 1, Net 2, Net 3). In this sense, the
resulting classifications from each network are contrasted with
each other, and each ECM-image is placed in the class with MoV.
A total of 10,217 learnable parameters are contemplated in the
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network. Batches of 3,000 ECM-images are used to speed up the
training process (Ioffe and Szegedy, 2015), randomly shuffling the
batches on each of the epochs considered. During the training
and validation phase we noticed no significant improvement in
accuracy after the third epoch, for this reason only 3 epochs were
used for training the network. The CNN is trained using the
function trainNetwork included in the Deep Learning Toolbox
from MATLAB (The MathWorks, 2019). The stochastic gradient
descent with momentum is used to minimize the binary cross-
entropy function used as cost function, therefore, maximizing
the classification accuracy. The following parameters were set:
learning rate of 0.01, L2 regularization factor of 0.0001, and
momentum contribution of 0.9.

2.4. Layer-Wise Relevance Propagation
The underlying reasoning behind the classification process
of CNNs is considered as a “black-box” not providing
information about the basis for the decisions. To overcome
the lack of transparency of the CNN, we applied the LRP
methodology (Bach et al., 2015) to provide a way of explaining
and interpreting the automated decisions. The overall objective
of LRP is to analyze the prediction made by the CNN based
on the independent contribution of all elements in the input, in
our case, the input is an ECM-image and each pixel represents a
single element.

Let L + 1 be the number of layers in the CNN where the last
layer is the classification layer. Then, the first relevance score,
R(L), is the element with the largest score in the output of the
softmax layer, i.e., the L:th layer. The other element in the output
of the softmax layer is not of interest because it is not used for
classifying the input. Next, we propagate R(L) to the previous
layers following a set of propagation rules in order to compute
the relevance scores for the lower layers such that

R(L) =
NL−1∑

n=1

R(L−1)
n . (1)

where NL−1 is the number of neurons in layer L − 1, and

R
(L−1)
n is the relevance score of neuron n in layer L − 1. Positive

values of R
(L−1)
n implies that the neuron n contributes to the

decision, whereas negative values of R
(L−1)
n implies that the

neuron contributes against the decision.

A relevance score R
(l)
n is associated to each neuron n in layer

l. The relevance score R
(l−1)
k

for neuron k in layer l − 1, which is
closer to the input layer, can be computed based on the relevance
scores of the neurons in layer l using the following equation.

R
(l−1)
k

=
Nl∑

n=1

anwn,k

ǫ +
∑

0,k anwn,k
R(l)n , (2)

where wn,k ∈ R are connection weights between neuron n and
neuron k, and an ∈ R is the activation of neuron n. The sum∑

0,n runs over all neurons in layer l − 1, plus the bias neuron
w0,k for which a0 = 1. Equation (2) is known as the Epsilon
Rule (LRP-ǫ) since it includes a small positive term ǫ that absorbs

some negative relevance contributions to the activation of neuron
k (Bach et al., 2015). As ǫ becomes larger only the most relevant
activations survive the absorption.

The LRP process generates a relevance score for every pixel
of the input ECM-image, these scores are collected in a matrix
with same dimensions as the ECM-image, i.e., 10 × 219. The
matrix provides information about how relevant a pixel was for
the CNN to make the decision. In this sense, a score above
zero indicates that the pixel contributed to the decision while a
score below zero indicates that the pixel contributed against the
decision. Then, the matrix is treated as an intensity one-channel
image, hereinafter the LRP-image, for visualization, see Figure 3.
To facilitate the interpretation of the LRP-image, we produced
two images from it. The first one for the interval [0,0.5] s (i.e.,
[1,63] columns at 125 Hz, leftside-LRP) and the other from
[0.5,3.0] s (i.e., [64,219] columns at 50 Hz, rightside-LRP), in
accordance with the two-sections downsampling in section 2.2.
These images were computed as an average from the ten rows in
the LRP-image by remapping its information to the ECG segment
in time domain, in other words, reversing the process for creating
the ECM-images, cf. Figure 1. In this sense, we aligned the rows
in the LRP-image with each other making sure that the beats
present in each row are aligned. Finally, the absolute relevance
was computed by averaging the aligned relevance scores in the
rows. This process was made individually for each side; leftside-
LRP and rightside-LRP.

2.5. Evaluation Metrics
The capacity of the CNN to classify the ECM-images is
evaluated by determining the number of ECM-images correctly
classified as AF (true positives, TP), the number of ECM-
images correctly classified as non-AF (true negatives, TN), the
number of ECM-images falsely classified as AF (false positives,
FP), and the number of ECM-images falsely classified as non-
AF (false negatives, FN). Some commonly used performance
metrics that can be computed from the previously listed counts
are: accuracy (Acc), sensitivity (Se), specificity (Sp), positive
predictive value (PPV), F1-score (F1), and Matthews correlation
coefficient (Mcc). These metrics are defined in Equations (3)–
(8). The metrics in Equations (3)–(7) take values in the interval
[0,1], where 1 corresponds to perfect performance. However,
Mcc in Equation (8) takes values in the interval [−1,1]. To
facilitate comparison of the Mcc score to the other metrics,
the Mcc is normalized to the interval [0,1]. The Acc score
quantifies the proportion of correct classifications among the
total number of classifications. Sensitivity and specificity measure
the proportion of positives that are correctly identified and the
proportion of negatives that are correctly identified, respectively.
The proportion of TP that are identified among all positive
classifications (i.e., TP + FP) is captured by the PPV score. The
harmonic mean of PPV and Se is represented by F1, and theMcc
score is a balanced measure which accounts for true and false
positives and negatives.

Acc = TP + TN

TP + TN + FP + FN
, (3)

Se = TP

TP + FN
, (4)
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FIGURE 3 | Illustration of the LRP procedure. Relevance from each neuron propagates to neurons in a lower layer.

Sp = TN

TN + FP
, (5)

PPV = TP

TP + FP
, (6)

F1 = 2× TP

2× TP + FP + FN
, (7)

Mcc = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

. (8)

The EC57 standard (Association for the Advancement ofMedical
Instrumentation, 2012) is a guideline for testing and reporting
performance results of algorithms for cardiac rhythm and ST-
segmentmeasurements. Furthermore, this standard is recognized
by the U.S. Food & Drug Administration as a consensus standard
for medical devices. The EC57 standard emphasizes that record-
by-record results should be presented, and recommends to report
the results for each channel individually. The EC57 standard also
recommends to include statistics describing the performance of
the detector on the entire database as a whole (gross statistics)
when analyzing records where the total number of events is
small. Further, the EC57 standard emphasizes the importance of
reporting statistics for the number of episodes detected as well
as the total duration of the episodes. The performance metrics
suggested by the EC57 standard are: episode sensitivity (SeEpi),
episode positive predictive value (PPVEpi), duration sensitivity
(SeDur), and duration positive predictive value (PPVDur) defined
as follow:

SeEpi =
TPEpi

TPEpi + FNEpi
, (9)

PPVEpi =
TPEpi

TPEpi + FPEpi
, (10)

SeDur =
TAF ∩ T̂AF

TAF
, (11)

PPVDur =
TAF ∩ T̂AF

T̂AF

, (12)

where TPEpi are the number of correctly detected AF episodes,
FNEpi are the number of undetected AF episodes, FPEpi are the
number of incorrectly detected AF episodes, TAF is the total

duration of AF manually annotated, and T̂AF is the total duration
of AF detected by the algorithm.

3. RESULTS

In this section we present the classification performance of the
CNN in terms of the metrics listed in Equations (3)–(8). Next,
we describe the application of the LRP methodology to provide
interpretability to the decision process of the CNN, showing
how clinical features such as rhythm irregularity and waveforms
are taken into account to make the classification. Finally, each
classified ECM-image is remapped to its original time-domain,
hence, labeling each sample in the ECG signal. These labels are

basis for TPepi, FNepi, FPepi, and T̂AF which are used to obtain
SeEpi, PPVEpi, SeDur , and PPVDur .

We also investigated the performance of the network when
short ECG signals from a high number of patients are
used for training the network. For this purpose, we used
the CINC/Physionet 2017 database (Goldberger et al., 2000).
A detailed description of the database, and the resulting
performance are included in the Supplementary Material.

3.1. Training and Validation of the CNN
Using both channels of the NSRDB and LTAFDB, 2231588
and 2105012 ECM-images were generated for non-AF and AF,
respectively, and used for training and validation as described
in section 2.3. For the validation subset of ECM-images, Acc =
91.28 ± 0.76% (mean ± std) across the three networks was
achieved. A similar score was obtained for Mcc but the F1 score
was slightly lower with larger variability between Net1, Net2,
and Net3. The performance achieved on the validation subsets
is summarized in Table 3.

TABLE 3 | ECM-images classification performance from CNN on the validation

subsets from the NSRDB and LTAFDB.

Acc Se Sp PPV F1 Mcc

Net 1 92.12 90.57 93.37 91.70 91.13 92.03

Net 2 91.04 98.58 87.44 78.96 87.69 91.00

Net 3 90.66 92.95 87.96 90.13 91.52 90.59

Mean 91.28 94.04 89.59 86.93 90.11 91.21

Std 0.76 4.11 3.29 6.95 2.11 0.74
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3.2. Classification Performance of the CNN
For each channel of the AFDB, 60,866 and 54,459 ECM-images
were generated for non-AF and AF, respectively. This dataset
was used for testing the performance of the network on each
channel. Similarly, for each channel of the Arrhythmia DB,
a total of 9,495 and 1,077 ECM-images were generated
for non-AF and AF, respectively, and used for testing the
proposed method. Lastly, the network was tested on each lead
of the Monzino-AF DB for which 6,689 and 24,272 ECM-
images resulted for non-AF and AF, respectively. It is worth
noting that the datasets generated from the Arrhythmia DB
and the Monzino-AF DB are highly unbalanced while for
the AFDB there is a similar number of ECM-images for
both classes.

For channel 1 of the AFDB, Acc = 84.84 ± 1.20% across the
three networks was obtained during testing while for channel 2,
Acc = 87.88±3.05% was obtained. The MoV accuracy was 86.46
and 89.99% for channel 1 and channel 2, respectively, indicating a
large agreement between the trained networks. Given the similar
amount of ECM-images for each class for this database, Mcc
provides similar results to Acc, while F1 resulted in a lower
score due to the low number of TP, also reflected in the low Se.
Table 4 summarizes the performance of the presented approach
on the AFDB.

Next, we tested the network on the Arrhythmia DB for which
the MoV accuracy was 79.29% and 81.33% for channel 1 and 2,
respectively. It should be pointed out that for the Arrhythmia DB
some non-AF ECM-images are generated from ECG segments
with cardiac arrhythmias, cf. Table 1. The reduced accuracy
achieved in comparison to that obtained on the AFDB is mostly

due to FPs resulting from ECM-images in the non-AF class
containing other cardiac arrhythmias. For this database, theMcc
score is lower than Acc as expected for unbalanced classes while
F1 score is notably reduced due to a considerable number of FPs.
Table 5 presents the performancemetrics for the Arrhythmia DB.

The results from the proprietary Monzino-AF DB show that
lead II allows more accurate classification than lead I. This
observation is not possible from the results from the AFDB and
the Arrhythmia DB, for which channel 1 and channel 2 are
undefined. Interestingly, ECM-images from lead V5 achieved the
highest performance for Acc, F1, and Mcc over all other leads.
Table 6 shows the MoV performance for the Monzino-AF DB.
Similarly to the results from the Arrhythmia DB, the Mcc was
lower than Acc due to unbalanced classes. However, F1 surpasses
both Acc andMcc since there are many more ECM-images in the
AF class for this database. The lowest Acc, F1, and Mcc over all
three databases are obtained for the Arrhythmia DB indicating

TABLE 6 | Majority of voting ECM-image classification performance on

Monzino-AF DB.

Lead I II III V1 V2 V3 V4 V5 V6

Acc 81.22 87.02 89.08 81.57 78.81 76.51 88.00 90.69 84.69

Se 80.53 88.30 89.68 77.87 75.70 73.67 88.69 92.44 85.44

Sp 83.70 82.37 86.90 94.98 90.09 86.83 85.48 84.33 81.99

PPV 94.72 94.79 96.13 98.25 96.52 95.30 95.68 95.54 94.51

F1 87.05 91.43 92.79 86.88 84.85 83.10 92.06 93.97 89.74

Mcc 78.04 82.77 85.55 80.90 77.82 75.47 84.25 86.92 80.53

TABLE 4 | ECM-images classification performance on AFDB.

Channel 1 Channel 2

Acc Se Sp PPV F1 Mcc Acc Se Sp PPV F1 Mcc

Net 1 86.21 73.88 97.25 96.01 83.50 86.92 88.13 82.91 92.80 91.15 86.83 88.18

Net 2 84.35 73.02 94.48 92.21 81.50 84.82 90.80 86.97 94.23 93.09 89.93 90.82

Net 3 83.96 77.37 89.87 87.23 82.00 84.02 84.71 83.82 85.50 83.80 83.81 84.66

Mean 84.84 74.76 93.87 91.82 82.34 85.25 87.88 84.56 90.84 89.35 86.86 87.88

Std 1.20 2.30 3.73 4.40 1.04 1.50 3.05 2.13 4.68 4.90 3.06 3.09

MoV 86.46 75.92 95.88 94.29 84.11 86.92 89.99 86.56 93.07 91.78 89.09 89.99

TABLE 5 | ECM-images classification performance on Arrhythmia DB.

Channel 1 Channel 2

Acc Se Sp PPV F1 Mcc Acc Se Sp PPV F1 Mcc

Net 1 79.78 98.98 77.60 33.39 49.93 75.22 82.79 87.56 82.25 35.88 50.90 74.43

Net 2 77.61 96.47 75.47 30.85 46.75 73.35 77.95 81.24 77.58 29.13 42.88 69.73

Net 3 75.77 98.61 73.18 29.43 45.33 72.90 77.79 87.37 76.70 29.84 44.49 71.18

Mean 77.72 98.02 75.42 31.22 47.34 73.82 79.51 85.39 78.85 31.62 46.09 71.78

Std 2.01 1.35 2.21 2.01 2.36 1.23 2.84 3.59 2.98 3.71 4.24 2.41

MoV 79.29 99.16 77.04 32.88 49.39 74.98 81.33 88.21 80.55 33.96 49.04 73.57
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FIGURE 4 | From top to bottom: ECM-image labeled as AF and correctly classified as AF, heatmap image resulting from the LRP process, rightside-LRP, and

leftside-LRP. The rightside-LRP mainly highlights the detection of the QRS complexes while the leftside-LRP captures morphological information used for the

classification.

that non-AF arrhythmias represent a significant confounding
factor for the CNN when making the classification.

3.3. Layer-Wise Relevance Propagation
Scores
To provide interpretability to the decision made by the CNN, we
applied the LRP technique to highlight the most relevant pixels
in the ECM-image for the classification. The output of the LRP
process is a matrix containing relevance scores for each pixel
of the ECM-image used as input. Next, from the LRP-image,
we created the leftside- and rightside-LRP images, as described
in section 2.4, to facilitate interpretation. In general, these two
images highlight the capacity of the CNN to extract features
related to clinical concepts such as waveforms, see Figures 4–6.
Figure 4 shows an example of an ECM-image labeled as AF and
correctly classified as AF together with its corresponding LRP-
image. The ECM-image highlights the irregularity of the rhythm
as the QRS complexes from the ECG segment do not result in
a regular pattern. This behavior is taken into account by the
CNN to make the correct classification as shown in the rightside-
LRP image where the QRS complexes are given high relevance
scores. Figure 5 shows an ECM-image labeled as non-AF and
correctly classified as non-AF as well as the corresponding LRP-
image. In this case, the ECM-image presents a regular pattern
with vertical stripes resulting from the regular rhythm present
in the ECG segment. Once again, the QRS complexes are given

high relevance scores, as shown in the rightside- and leftside-LRP
images. Additionally, for the non-AF ECM-images, P waves are
also given high relevance scores in both images. Finally, Figure 6
illustrates an ECM-image labeled as non-AF and incorrectly
classified as AF. This example shows how non-AF arrhythmias
is a strong confounding factor highlighting the irregularity of the
QRS complexes in bigeminy episodes.

3.4. Performance for AF Detection
Following the EC57 standard, duration and episode gross
statistics for all three testing databases are presented in Table 7.
It is worth noting the high similarity between SeDur and PPVDur

in Table 7 and Se, and PPV in Tables 4–6. This observation is
linked to the fact that non-overlapping ECG segments of very
short duration were used for creating the ECM-images, providing
also a high resolution comparison with the manual annotations.
Closer inspection of Table 7 shows the importance of reporting
both duration and episode statistics. In the case of the AFDB
we can infer that the present approach for representing the ECG
segments as ECM-images enables detection of most AF episodes
(high SeEpi) which is very important when assessing long-term
ECG recordings. As for the duration sensitivity, a low SeDur score
indicates that not the full duration of an AF episode was detected
but only a fraction of it. On the contrary, the low PPVEpi score
indicates a high FPepi, caused by a large number of incorrectly
detected AF episodes of short duration. Finally, the high PPVDur
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FIGURE 5 | From top to bottom: ECM-image labeled as non-AF and correctly classified as non-AF, heatmap image resulting from the LRP process, rightside-LRP,

and leftside-LRP. The rightside-LRP mainly highlights the detection of the QRS complexes while the leftside-LRP captures morphological information used for the

classification.

score indicates that most of the AF episodes detected by the
algorithm were correct. A similar behavior is observed for the
Arrhythmia DB and the Monzino-AF DB.

We also assessed the capacity of the network for the detection
of brief AF episodes. For this purpose we focus on the sensitivity
achieved on episodes shorter than a particular duration. The
same ECM-images generated previously were used for this
analysis (cf. section 2.2). After classification, the images were
remapped to their original time-domain to label each sample.
From the manual annotations, Table 8 reports the number of
AF episodes present in each dataset as well as the number of
episodes that are shorter than 10, 15, 20, 30, 60, 90, and 120 s,
respectively. Figure 7 presents SeEpi achieved on brief episodes
for the different testing databases. For the public databases, SeEpi
above 66.67% was achieved for episodes shorter than 10 s which
was increasing as longer episodes were considered, and reaching
amaximum above 97.45%when all episodes were studied. On the
other hand, for the Monzino-AF DB only leads I and II seem to
provide SeEpi higher than 83.33% for episodes shorter than 10 s
increasing up to 98.08% when all episodes are considered.

4. DISCUSSION

In this study, we presented a new approach for AF detection
making use of ECM-images and CNN. The construction of
the ECM-images is based on detected beats and knowledge
about ECG waveform characteristics. In the present study,

a commercial algorithm that is routinely used in clinical
practice was used for beat detection. All beats detected by the
algorithm including ectopic beats were considered, suggesting
that accurate beat detection is not critical to the performance
of the method. The proposed approach combines features with
clinical meaning (cf. Figures 4–6) and deep learning reaching
performance accuracy above 81.33% for all testing databases
when selecting the best performing channel, cf. Tables 4–6. Next,
we analyzed the decision process of the CNN following the
LRP methodology. The results from the LRP analysis suggest
that the discriminatory features extracted by the CNN account
classical non-AF characteristics such as RR interval regularity
and P wave presence. Finally, we assessed the performance of
the proposed methodology following the EC57 standard, first
considering all AF episodes and then accounting only for brief
episodes. We achieved SeEpi above 97.45% when all AF episodes
were considered, and above 66.67% for brief AF episodes shorter
than 10 s increasing as the length of the episodes gets longer over
the three testing databases, cf. Figure 7.

The ECM technique is a method to transform the ECG
information into a two-dimensional representation. We applied
this technique by truncating, downsampling, and shifting the
ECG signal. The main advantages of using the ECM-images as
input to the CNN are reduced computational complexity and
improved interpretability. This was achieved by analyzing images
of only 2,190 pixels created directly from the ECG signals. One
drawback of this approach is that the duration of the ECG

Frontiers in Physiology | www.frontiersin.org 10 August 2021 | Volume 12 | Article 673819

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Salinas-Martínez et al. Detection of Brief Atrial Fibrillation

FIGURE 6 | From top to bottom: ECM-image labeled as non-AF and misclassified as AF, heatmap image resulting from the LRP process, rightside-LRP, and

leftside-LRP. Premature beats are interpreted as irregular rhythm by the network resulting in a FP prediction.

TABLE 7 | Gross duration- and episode-performance on the different testing data

bases.

AFDB Arrhythmia DB

Channel 1 2 1 2

SeDur 75.95 86.71 95.32 85.26

PPVDur 93.40 89.85 31.50 31.05

SeEpi 96.73 97.45 98.13 90.65

PPVEpi 80.15 61.10 8.32 12.99

Monzino-AF DB

Lead I II III V1 V2 V3 V4 V5 V6

SeDur 78.35 86.25 88.12 74.35 72.70 70.51 86.54 90.14 82.96

PPVDur 93.99 93.28 95.66 97.76 95.39 94.25 94.86 94.62 93.75

SeEpi 94.23 98.08 86.54 86.54 82.69 82.69 90.38 92.31 86.54

PPVEpi 81.24 72.40 79.73 87.88 86.09 81.53 76.12 64.68 78.84

The low PPV values for the Arrhythmia DB are due to FPs resulting from segments

containing other cardiac arrhythmias.

segment used to create the ECM-image does not correspond to
a fixed length since they are created from a fixed number of
beats. The mean ± std duration of the ECG segments generated
from the testing databases is 9.55 ± 1.54 s, 10.10 ± 1.74 s,
9.24 ± 1.93 s for the AFDB, Arrhythmia DB, and the Monzino-
AF DB, respectively. The ECM-images are capable of preserving

TABLE 8 | Number of AF episodes present in the databases that are shorter than

a particular duration.

Database < 10 s < 15 s < 20 s < 30 s < 60 s < 90 s < 120 s All

AFDB 24 31 45 58 95 132 153 275

Arrhythmia DB 41 52 57 64 80 80 86 107

Monzino-AF DB 6 8 8 10 13 16 16 52

morphology and rhythm characteristics of the ECGmaking them
useful when classifying the ECM-images as AF or non-AF.

Accuracy and F1 score are among the most popular adopted
metrics in binary classification tasks. However, when the classes
in the datasets are unbalanced (i.e., the number of elements in
one class is much larger than the number of elements in the other
class),Acc and F1 scores tend to be inflated. Therefore, in order to
address this issue, it has been suggested to report theMcc score as
it does not seem to be influenced by unbalanced classes (Chicco
and Jurman, 2020; Butkuviene et al., 2021). Additionally, F1
score has the disadvantages that it varies when swapping the
classes, and that it is independent from TN predictions (Chicco
and Jurman, 2020). These two behaviors were observed for the
Arrhythmia DB and the Monzino-AF DB, as these datasets are
unbalanced for AF and non-AF. From the Arrhythmia DB and
Monzino-AF DB results we noticed that Acc is not robust to
unbalanced datasets resulting in higher scores than Mcc which
handles unbalanced datasets. For the Arrhythmia DB, for which
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FIGURE 7 | Episode sensitivity achieved on the episodes shorter than a particular duration present in: (left) channel 1 (Ch1) and channel 2 (Ch2) of the AFDB and

Arrhythmia DB (ADB), respectively, and (right) leads I, II, III, V1, V2, V3, V4, V5, and V6 of the Monzino-AF DB.

the number of elements in the non-AF is higher, the F1 score
is very low, while it is higher for the Monzino-AF DB which
has more elements in the AF class. This behavior would be the
opposite if the positive class (AF) is renamed negative (non-AF)
and vice versa because the F1 score is independent from the
number of elements correctly classified as negative.

To evaluate the performance of the proposed methodology,
we first tested the network on two public databases: (1) AFDB
which is the most commonly used database to evaluate the
performance of AF detectors, and (2) Arrhythmia DB which
contains a large amount of brief AF episodes, see Table 8. Results
in Tables 4, 5 highlight how non-AF arrhythmias influence
the classification of ECM-images; lower Mcc is achieved when
evaluating the Arrhythmia DB. Direct comparison of the other
parameters in these two tables is not simple because the
dataset of ECM-images generated from the Arrhythmia DB is
highly unbalanced.

Next, the network was tested on the proprietary Monzino-
AF DB to evaluate the performance on the different leads
since the public databases did not provide enough information
on the lead configuration. For the Monzino-AF DB the best
classification was achieved using lead V5. This was most
likely because high relevance was given by the network to
the QRS complexes (i.e., rhythm irregularity) for making the

classification leading lead V5 to better performance as this is
one of the lateral leads capturing ventricular activity. It should
be noted that the network was trained using 2-channels ECGs.
Training the network using 12-lead ECG may have resulted
in better performance for lead V1 where the atrial activity is
more pronounced. Interestingly, among all leads in theMonzino-
AF DB, SeEpi is highest for lead II while the best SeDur is achieved
on lead V5 (see Table 7). These results are consistent with the
ones presented in Table 6. In this case, SeDur is analogous to
the classification made by the CNN for which non-overlapping
ECM-images created from short ECG segments are used as input.

The implementation of a CNN to automatically detect AF
episodes from the ECM-images did not outperform manual
evaluation of ECM-images for detecting AF episodes (Lee et al.,
2018). In that study the authors showed that manual inspection
of ECM-images provides sensitivity of 99.2%, and specificity of
99.8% when detecting AF episodes in the AFDB in contrast to
the 86.7 and 93.4% achieved using the CNN in this present study
for SeDur and PPVDur , respectively. However, Lee et al. manually
reviewed ECM-images created from the full long-term ECG
recordings facilitating the detection of changes in rhythm and
the presence of P waves. This represents a more time-consuming
task for the reviewer. Moreover, it is important to mention that
the record 04936 was excluded from the analysis made by Lee
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et al. because it contains a large number of paroxysmal episodes
of AF. We also compared the performance of our method against
the coefficient of sample entropy (COSEn) method by Lake and
Moorman (2011). The COSEn is based on the RR-interval series
and allows classification of short ECG segments by maximizing
a decision threshold. From this analysis, we noticed that the
COSEn performs with high accuracy when classifying long ECG
segments. One limitation of the COSEn method is the detection
of brief AF episodes. A detailed description of this analysis is
presented in the Supplementary Material.

The AFDB have been used for tuning the optimal design
parameters of different approaches for automatic detection of AF.
For example, Dash et al. (2009) implemented a detector tuning a
set of thresholds to identify AF episodes based on the randomness
and variability of the RR intervals. The authors utilized a
detection window of 128 beats with an average transition delay of
only 18 beats, achievingAcc = 99.10%. Similarly, Lee et al. (2013)
introduced amethod based on time-varying coherence functions,
for which Acc = 97.91% and Acc = 92.22% were achieved for
detection windows of 128- and 12-beats, respectively. Another
detector based on short RR-time series was presented by Lake and
Moorman (2011), in which the coefficient of sample entropy was
calculated once per hour using 12-beats, reaching Se = 91.00%
and Sp = 94.00%. Approaches trained with the AFDB that assess
the presence of the P-wave also allow detection of brief episodes
of AF. For instance, P-wave absence was investigated using nine
morphological and statistical features (Ladavich and Ghoraani,
2015). Using windows of seven beats from 20 records of the
AFDB, the authors reported Se = 98.09% and Sp = 91.66%.
On the contrary, Ródenas et al. (2015) and Ródenas et al. (2017)
assessed the presence of the P-wave by measuring the wavelet
entropy (WE) from the median TQ interval and the variability
of the TQ interval series, respectively. For the former, the WE
of 10 beats was used to make the detection with an average
delay of 5 beats, resulting in Acc = 95.28%. For the latter, the
variability of 15 beats was measured for detecting an AF episode
with average delay of 13 beats, reaching Acc = 96.43%. One
problem when investigating P-wave morphology is dealing with
noisy records. In fact, for the studies from Ladavich andGhoraani
(2015), Ródenas et al. (2015), and Ródenas et al. (2017) manual
revision of the data was needed before running the experiments.

Deep learning approaches trained and tested with subsets
of the AFDB have considered different techniques. Faust
et al. (2018) implemented a bidirectional long short-term
memory (LSTM) network fed by sequence of 100 RR-intervals,
they used data from 20 records of the AFDB for training and
10-fold cross-validation with the remaining 3 records for testing
the model for which they reported Acc = 99.77%. The authors
didn’t provide the list of records used for testing so as to facilitate
comparison. Similarly, Andersen et al. (2019) proposed a CNN-
LSTM working with sequences of 30 RR-intervals. The model
was trained and tested with the records in the AFDB (18 for
testing and 5 for training, not listed). Additionally, it was also
tested on the Arrhythmia DB and the NSRDB. The outputs of the
CNN-LSTM model were postprocessed to reduce the number of
false onsets and offsets applying a median filter to the prediction
output. The performance reported on the testing subset from the

AFDB was Acc = 97.80 ± 0.61% while for the Arrhythmia DB
they achieved Acc = 87.40%. It is also worth noting that the size
of the data buffers used in these studies precludes detection of
brief AF episodes. Further, note that the presented values of Acc
are not directly comparable to our results, since the results were
based on subsets of the AFDB.

One DL approach considering ECG segments of 5 s duration
was presented by Xia et al. (2018). For this study, twenty three
records of the AFDB were used for training and validation using
a cross-validation approach for which subsets with proportion
9:1 were randomly selected, for which segments from one patient
could be used both for training and validation (intra-patient
results). Performances achieving Acc = 98.29% and Acc =
98.63% were reported for two CNNs with similar architecture
but different input, respectively. He et al. (2018) utilized ECG
segments containing 5 beats for which the network was trained
and tested using a subset of the AFDB, records 00735, 03665,
04936, and 05091 were excluded. Following an inter-patient
testing approach, the authors first balanced the number of 5 beats
segments included in each class (61,924 for non-AF, and 100,612
for AF) by randomly selecting 50,000 segments for each class.
Next, subsets for training and testing were selected with portion
4:1 reaching Acc = 98.29%. In the approach by Jin et al. (2020).
ECG signals were divided into 5 s ECG segments, resulting in
60,401 and 89,659 segments for AF and non-AF, respectively. To
validate the performance of the method, the authors considered
both intra- and inter-patient evaluation using the AFDB. For
the intra-patients experiments, they used 90% of the data for
training and 10% for testing reaching Acc = 98.51%. For
the inter-patient evaluation with Acc = 95.15%, 4 records
selected randomly were used for testing and the rest for training.
However, the authors did not mention the records used for each
stage, and used unbalanced datasets for training and validation.
In the study by Mousavi et al. (2020) the input was a 5 s ECG-
segment including the location of the heartbeats, and waveforms
present in the segment. The network was trained and tested
with the AFDB, for which 66,939 and 100,483 segments were
created for AF and non-AF, respectively. The authors randomly
drew the same number of samples (66,939) for both AF and
non-AF classes. Performance was presented for both intra- and
inter-patient evaluation. For the intra-patient evaluation, 10-fold
cross-validation was implemented, using 9-folds for training and
1-fold for validation, reaching Acc = 98.83%. For the inter-
patient evaluation Acc = 81.54% was achieved. No report on the
records used for each stage was included.

A limitation of the previously mentioned DL approaches
trained, validated, and tested the network based on subsets from
the same database, not mentioning the records used for each
stage, and disregarded a significant amount of data for balancing
the classes (Faust et al., 2018; He et al., 2018; Xia et al., 2018;
Andersen et al., 2019; Jin et al., 2020; Mousavi et al., 2020).
Additionally, some studies only present results for intra-patient
evaluation which are likely to be inflated, as shown in Mousavi
et al. (2020). From the results obtained in our study it is clear
that datasets used for training and testing play an important
role when evaluating the network. Results presented in Table 3

suggest that different training datasets result in slightly different
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validation performance while Table 4 highlights the importance
of testing the system with databases not involved in the training
and validation process, simulating a real clinical situation.

In this study, we created the ECM-images from short segments
of ECG with the purpose of detecting brief AF episodes. To
quantify the detection performance for brief AF episodes, we
measured SeEpi, following the EC57 standard on annotated AF
episodes with short duration, cf. Table 8. The results in Figure 7

show that SeEpi improves above 80% as the length of the AF
episodes is greater than 15 s. The ability to detect brief AF
episodes, i.e., high SeEpi, is important especially when analyzing
signals coming from long-term recordings, as the automatic
detection of AF represents a powerful guidance for physicians
when manually assessing such records to provide a more
accurate and faster diagnosis. In this sense, the methodology
proposed in this study is capable of detecting 79.17, 97.56,
and 83.33% of the AF episodes shorter than 10 s present
in the AFDB, the Arrhythmia DB, and the Monzino-AF DB,
respectively, cf. Figure 7. For the Monzino-AF DB, the best
performance was achieved on leads I and II. One possible
explanation is perhaps that channels in the LTAFDB and the
NSRDB very likely correspond to leads I and II, and therefore
the network is more sensitive to the characteristic waveforms
of these leads. It is important to note that there are only
very few brief episodes in the Monzino-AF DB, therefore, any
misclassification has an important impact on the sensitivity
metric. The resulting SeEpi increases as the duration of the
AF episodes that are considered for the analysis increases
reaching its maximum value on all three testing databases
above 97.45% when all AF episodes are considered, cf. Figure 7.
It is worth mentioning that these brief AF episodes are
detected in long-term ECG recordings of at least 30 min,
cf. Table 1.

Many techniques have been proposed to address the complex
interpretability of DL approaches such as CNN. Some proposals
provide explanations by integrating a large number of local
gradient estimates (Smilkov et al., 2017; Sundararajan et al.,
2017). Other techniques accounts for a coarser estimation of
the effect from a patch-like perturbation (Zeiler and Fergus,
2014; Zintgraf et al., 2017). Further methods involve the
optimization of some local surrogate model (Ribeiro et al.,
2016), or of the explanation itself (Fong and Vedaldi, 2017).
Such techniques involve multiple neural network evaluations,
resulting in computationally expensive processes (Samek et al.,
2019). To the best of our knowledge, only two studies in
the literature have attempt to present an interpretation of the
extracted features from the ECG signals that were considered for
the detection of AF (Jin et al., 2020; Mousavi et al., 2020). Jin
et al. used attention mechanism to explore the impact of ECG
segments at different times on the final prediction, illustrating
the most relevant segments of the ECG signal used as input,
while Mousavi et al. provided an empirical interpretation of the
network, based on hierarchical attention, showing the important
waveforms of the ECG signal used to make the predictions by
considering the weights obtained for the different inputs. In
this study, we applied the LRP technique (Bach et al., 2015) to
provide fast and reliable explanation as this technique operates

by simply propagating the prediction backwards in the neural
network following a set of propagation rules, cf. Figure 3.
Another advantage of the LRP is the one single parameter
that needs to be tuned, i.e. ǫ. In our experiments, we set
ǫ = 1 as a good balance to remove noise elements in the
explanation and keep only the most relevant features (Bach
et al., 2015). The output from the LRP is a matrix of relevance
scores which can be treated as an intensity one-channel image,
i.e. LRP-image, showing how important a particular pixel is
for the classification. The goal of this analysis is to provide
enough evidence to support the CNN classifications, linking
the most relevant characteristics from the ECM-image to a
clinical interpretation from a machine learning point of view.
The rightside-LRP shows that this area in the ECM-images was
used by the CNN to extract rhythm characteristics highlighting
mainly the QRS complexes of the segment. On the other hand,
the leftside-LRP highlights different waveforms in the 0.5 s before
each heartbeat. It can be seen that positive relevance is given
for QRS complex and P wave while T wave from the previous
heartbeat (if present in the 0.5 s before the QRS complex) was
given negative relevance, cf. Figure 5. These results are in line
with the motivation we used for the two-section downsampling
considered when creating the ECM-images; the left side was
intended to preserve morphology information while the right
side to capture rhythm information. Finally, it is also shown
how non-AF arrhythmias and changes in the morphology of
the ECG are a strong confounding factors for the network,
cf. Figure 6 and Table 5. The results of this analysis suggests
that the CNN has been trained to take into account clinical
features of AF, like P-wave absence and rhythm irregularity, for
the classification.

5. LIMITATIONS

The CNN was trained on data from a limited number of
patients, c.f. Table 1. Increasing the training set may improve
the generalizability and hence the performance in other ECG
databases. Additionally, only a small number of brief AF episodes
was investigated, c.f. Table 8, and the results need to be verified
in a larger study population. The proposed methodology relies
on automatically detected beats provided by a commercial
algorithm. It should be emphasized that accuracy of the beat
detector may influence the results.

6. CONCLUSION

In this study, we have developed a deep learning approach
for detection of brief AF episodes based on ECM-images and
CNN. The compact two-dimensional representation of the
ECM, preserving morphological and rhythm characteristics of
the ECG, allows automatic detection of brief AF episodes.
To reduce the chances of overfitting, we tested the proposed
method on three databases not used for training: MIT-
BIH Atrial Fibrillation, MITH-BIH Arrhythmia, and the
Monzino-AF. The ability of the system to detect such brief
episodes was assessed by computing SeEpi. Results showed that
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SeEpi > 80.65% is achieved when episodes shorter than
15 s are considered while SeEpi > 89.66% is reached when
accounting for episodes shorter than 30 s. Finally, the LRP
analysis showed that the CNN takes clinical features, such as
RR irregularity and P wave absence, into account to classify
AF episodes.
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