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Human aging is associated with a decline of physical and cognitive function and
high susceptibility to chronic diseases, which is influenced by genetics, epigenetics,
environmental, and socio-economic status. In order to identify the factors that modulate
the aging process, established measures of aging mechanisms are required, that are
both robust and feasible in humans. It is also necessary to connect these measures to
the phenotypes of aging and their functional consequences. In this review, we focus on
how this has been addressed from an epidemiologic perspective using proteomics. The
key aspects of epidemiological models of aging can be incorporated into proteomics
and other omics which can provide critical detailed information on the molecular and
biological processes that change with age, thus unveiling underlying mechanisms that
drive multiple chronic conditions and frailty, and ideally facilitating the identification of
new effective approaches for prevention and treatment.

Keywords: aging models, proteomics, biological pathways, epidemiological models, longitudinal cross-sectional,
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INTRODUCTION

Understanding the aging process has been an important goal for humans since ancient history.
However, only recently, biomedical research started considering aging as causally related to most
chronic diseases and decline of physical and cognitive function (Sierra, 2016; Kaeberlein, 2017;
Caballero Mora and Rodriguez Mañas, 2018). Recent evidence suggests that the rate of biological
aging can be modified and that slowing down aging can substantially improve individuals’ health
over their life-span. For example, studies in animal models demonstrated that longevity and health-
span can be modified by genetic manipulation and pharmacological interventions. As these new
concepts are acknowledged, and the proportion of the elderly population increases worldwide,
the need to understand the biology of aging has taken center stage in the medical field and
translated into the geroscience paradigm (Sanders et al., 2012; Sierra, 2016). Geroscience is an
interdisciplinary field that seeks to define the biological mechanisms by which the aging process
causes age-related diseases and disorders (Kaeberlein, 2017). Prevention of chronic disease based
on the control of risk factors has led to the progressive reduction of morbidity and mortality over the
past 50 years. However, with increasing frequency of multimorbidity in the population, prevention
focused on specific diseases is unlikely to produce substantial improvements in population health.
In fact, even if single diseases could be cured, the development of other age-related diseases
in susceptible individuals would minimize its advantages (Kaeberlein, 2017). As an alternative
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approach, geroscience shifts the focus toward assessing the rate of
aging as the driving risk factor for chronic disease and proposes
that only slowing down aging can substantially improve both life-
span and health-span (Sierra, 2016; Kaeberlein, 2017).

The operational translation of the geroscience paradigm
requires the development of technology to assess aging’s
biological underpinnings (Ferrucci et al., 2018, 2020). We
hypothesize the existence of a network that encompasses many
homeostatic mechanisms at molecular and cellular levels, in
which the interplay and progressive imbalance between damage
accumulation and effectiveness of the maintenance machinery
determine the pace of aging and, over the long term, drive the
emergence of the phenotypes and functional declines typical of
“normal aging,” such as wrinkling of the skin or the decline in lean
body mass. When this process is accelerated by environmental
factors or coupled to specific genetic susceptibility, the severity
of damage emerges clinically as diseases or geriatric syndromes.
Slowing down this chain of events as soon as possible would
have enormous clinical potentials to enhance health and expand
health-span. However, research is needed to establish measures of
aging mechanisms that are both robust and feasible in humans as
well as to connect these measures to the phenotypes of aging and
their functional consequences. In this review, particular focus will
be given to how this has been addressed from an epidemiologic
perspective using proteomics.

As a premise to such a discussion, it is important to
understand how the field of aging research has evolved over the
last decades. The study of biomarkers in medicine and geriatrics
emerged during the 1970s (Sacher and Trucco, 1962; Woodbury,
1977) as an attempt to find tools to test hypotheses about
the underlying mechanisms of aging. For example, Woodbury
and colleagues proposed a random-walk model to understand
the aging process, incorporating the longitudinal trends of
biomarkers relevant to mortality (Woodbury, 1977). Vaupel
et al. (1979) proposed the frailty model to address the issue
of population heterogeneity. In this kind of frailty model,
statisticians translate the heterogeneity by specifying multivariate
failure time conditional on an unobserved construct, frailty,
which can be both group and subject-specific. Other authors
proposed that frailty is characterized by increased individual
vulnerability to endogenous and exogenous stressors from aging-
associated decline in reserve and function across multiple
physiological systems (Xue, 2011; Buta et al., 2016; Takeda et al.,
2020). The concept of frailty later evolved from a statistical
construct to a clinical entity, and several operational definitions
were proposed in the literature and generated a robust discussion
in the field. The two most used sets of frailty criteria are the
Fried’s Frailty Phenotype (Fried et al., 2001) and Rockwood and
Mitnitski’s Frailty Index of cumulative deficits (Mitnitski et al.,
2001; Caballero Mora and Rodriguez Mañas, 2018). The Fried
frailty model is based on a pre-hypothesized cycle of physical
frailty, which covers energy expenditure and intake, change
in muscle mass and quality, decreasing resting metabolic rate,
as well as physical functions and is quantified based on five
criteria that may be measured in a clinical setting. Rockwood
and Mitnitski proposed to quantify frailty as an accumulation of
deficits (Caballero Mora and Rodriguez Mañas, 2018), a model

that can be easily implemented for both research and clinical
purposes. A shift in the central framework of aging research
occurred in 2013, when two important papers hypothesized
that the failure of a limited number of biological mechanisms
are responsible for aging and sparked great enthusiasm in the
field (Lopez-Otin et al., 2013; Kennedy et al., 2014). However,
measures of these mechanisms are still in development and
without standardized metrics, it is difficult to ascertain whether
dysfunction of these mechanisms predicts clinical parameters
of aging, such as multimorbidity or disability. The outcome
definition of this research is also problematic, as it fails
to capture the complexity of clinical presentations in aged
individuals. Beyond inflammation and obesity, no risk factor for
multimorbidity development has been identified to date. With an
improvement in high-throughput -omics technology, including
transcriptomics, proteomics and metabolomics, can provide
critical detailed studies on the molecular and biological processes
that change with age, unveiling underlying mechanisms that drive
multiple chronic conditions and frailty, and ideally facilitating the
identification of the new effective approaches for prevention and
treatment (da Costa et al., 2016; Takeda et al., 2020).

EPIDEMIOLOGICAL MODELS OF AGING
RESEARCH

Comparison Between Cross-Sectional
and Longitudinal Models of Aging
As the cost of “-omics” becomes increasingly affordable, their
use in large epidemiological studies becomes very common.
However, adaptation of epidemiological designs to this new
technology is still a work in progress. For studies focused on
the biology of aging, where questions are often centered on
differences that occur across the life course, a key choice is a
decision between cross-sectional and longitudinal designs and
both models present challenges.

Cross-Sectional Designs
In cross-sectional studies, participants are assessed at a single
timepoint where time can be defined as a single calendar time
frame or specified chronological age cohort. Cross-sectional
studies are often nested in existing longitudinal cohorts. For
example, Tanaka et al. (2020a) studied plasma protein levels
in samples of participants evaluated at baseline (1998-2000)
in the “Invecchiare in Chianti” (Aging in the Chianti Area,
InCHIANTI) study, a community-based cohort study that has
been followed longitudinally over more than two decades.
Generally, cross-sectional studies can be performed relatively
quickly on large populations. In the field of aging research,
cross-sectional studies are often the only approach to compare
individuals dispersed over a wide age-range, but these studies are
vulnerable to biases that may be less frequently observed with
other designs. The most important problem is distinguishing the
effect of aging from secular trends. For example, let us assume
that an investigator wants to compare individuals of different
ages, such as 20, 50, 90, and 105 years old (Figure 1). These
individuals were 20 years old in very different epochs, up to
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FIGURE 1 | Past exposure to different environments affects the trajectories of aging and may bias the interpretation of cross-sectional studies. Let us assume that
an investigator wants to compare individuals of different ages, such as 20, 50, 90, and 105. These individuals were 20 years old in very different historical epochs,
which are as far apart as 85 years, characterized by extremely diverse access to food, stress, pollution and many other characteristics. Here, age- differences are
indistinguishable from differences due to very different historical exposures.

85 years apart, where the early adulthood was characterized by
extremely diverse access to food, stress, pollution and many other
characteristics. Thus, having a different age also means different
environmental challenges. At the extreme of this concept, the
105 years old participants may have more disease than the
50 years old not because of the age difference, but because at
the age of 50 they had nutritional deprivation that is not present
in the current 50 years old participant. Ergo, in cross-sectional
studies, age differences are indistinguishable from differences
due to secular trends. A historical example is the study that
compared adults who were in utero during the Dutch Hunger
Winter to controls born in other years. There was a clear and
significant effect of the intrauterine environment on outcomes
in later life, with higher likelihood of a metabolic syndrome
phenotypes (Tobi et al., 2018).

Age effects from cross-sectional studies are also affected by
selective attrition or loss to follow-up. An example is illustrated
in Figure 2 using data from the Baltimore Longitudinal Study
of Aging (BLSA). The rate of change in multimorbidity with
age estimated from longitudinal data is much steeper than
what can be estimated using baseline data. In general, because
mortality is more likely to occur at older ages, correlations with
age may be attenuated because participants whose values are
both within one extreme of distribution and consistent with
earlier mortality are unobserved (Figure 3). In spite of these
limitations, cross-sectional studies are frequently used, and as
long as their limitations are accounted for, they are useful tools
in the study of aging.

Longitudinal Designs
In contrast to cross-sectional studies, in longitudinal studies,
participants are assessed repeatedly. Ideally, observations are

equally spaced, but different time dimensions and metrics have
been used and can be handled by statistical methods. High
frequency of follow-up and long observation are often desirable
in order to capture meaningful change in the dimensions of
interest but can be cost-prohibitive and may increase the risk of
loss to follow-up. In longitudinal studies of human aging, the
time axis and nature of follow up are strongly influenced by
life-span, physiologic events (e.g., menopause), disease processes,
and social or behavioral milestones such as retirement. In the
BLSA, a continuously enrolled study of community-dwelling
adults designed to study the aging process, the period between
study visits is dependent on the age of the participant: individuals
<60 years old are seen every 4 years, participants 60-79 years
are observed every 2 years, and participants ≥80 years of age,
a period when rapid declines in health may occur, are followed
up annually (Kuo et al., 2020). Because longitudinal studies are
costly, labor-intensive, and the time required to produce results is
long, investigators often introduce new measures within ongoing
studies or use stored specimens for biological variables that
can be correlated with phenotypic and outcomes information
already collected. Identifying nested subsets of participants with
appropriate follow-up patterns may be difficult, and length of
storage may introduce a systematic bias in sample quality. These
problems should be carefully evaluated in pilot studies, and to
some extent, their effect can be blunted by appropriate statistical
adjustment. Overall, longitudinal studies should be considered
the tool of choice for studying aging.

Modeling Healthy Aging as Compared to
Normal Aging
Research into the biological mechanism of aging has both
expanded and transformed. As mentioned above, the geroscience
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FIGURE 2 | Age effects from cross-sectional studies are affected by selective attrition or loss to follow-up. Data from the BLSA show the relationship between age
and multimorbidity. Estimates from longitudinal data in each cohort are much steeper than estimates obtained from baseline data only. In general, because mortality
is more likely to occur at older ages, correlations with age may be attenuated because participants whose values are at the extreme of a distribution disappear from
the population, and their hypothetical data are not observed (Figure 1).

paradigm postulates that most chronic diseases and impairment
in older adults are connected to the biological mechanisms
of aging and that interventions that target these mechanisms
will prevent disease and increase health-span (Sierra, 2016).
Inherent in this paradigm is the assumption that aging and
disease mechanisms may be distinguished, and the biology of
aging research has increasingly focused on a set of putative

FIGURE 3 | Association between age and a hypothetical outcome when all
values of the outcome are observed (gray) and when values below a threshold
(blue line) more frequently exceeded at older ages are not observed (red).

mechanisms of aging, described as “pillars” or “hallmarks” of
aging. However, many aging mechanisms may also be observed in
overt disease independent of age. For example, while differences
in DNA methylation, an epigenetic change, have been closely
linked to aging phenotypes, the epigenome is also dysregulated
in cancer and other diseases (Cavalli and Heard, 2019). It is
appealing to turn to “healthy” populations to isolate and fully
characterize mechanisms of aging. To pursue this strategy, key
questions must be answered. How should the term ‘healthy’ be
operationalized? Is health for the purposes of a study defined by
the absence of disability, the absence of disease, clinical laboratory
values within the normal range, self-reported health, or meeting
fitness and functional testing thresholds? Further, does a given
definition of health have the same meaning in all age groups? It
is plausible that definitions such as “disease free” might induce a
selection bias, as described for a cross-sectional study above, for
example, if younger individuals who will develop the disease later
in life are compared with older participants who have remained
disease-free over the life course. However, in the context of
careful study design and rigorous selection criteria, the evaluation
of biomarkers may reveal subtle and meaningful age-associated
variability in a healthy population that would be undetected in
study samples drawn from ‘normal’ aging populations where
aging and disease are intertwined.

Assessing and Modeling Health-Span:
The Compression of Morbidity
As mentioned earlier in this review, at least theoretically, there
are substantial advantages in targeting the process that causes
increased susceptibility to diseases for therapeutic purposes
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FIGURE 4 | Health-span and life-span. The concept of “health-span”
schematically divides life-span into “healthy” and a period of life characterized
by chronic conditions and/or physical and cognitive impairment (A,B).
Although this rigid classification is attractive, it fails to recognize that
trajectories of health are substantially more complex and periods of
deteriorating health and function are interlaced with a period of recovery and
relative well-being (C). Thus, while a definition of health-span would be very
useful, it has been difficult to operationalize, and no widely recognized
definition is available at this stage.

instead of implementing prevention for specific diseases, one by
one (Newman et al., 2020). Similarly, especially when working
with the older population, it is useful to consider developing
diseases and disability as part of the same process (Fabbri
et al., 2015; Newman et al., 2020). Under these assumptions,
we can hypothesize that longitudinal trajectories of health are
characterized by continuous decline (Kuo et al., 2020). We
can define “health expectancy” as the period of life before
health deteriorates below a predefined threshold and “unhealthy
expectancy” as the period of life between the end of health
expectancy and death (Kuo et al., 2020; Newman et al., 2020).
For some diseases, this definition is adequate. For example,
in dementia, most patients evolve across progressively more

severe levels of cognitive impairment, and the reversal from
this condition is a relatively rare (e.g., dementia due to
normal pressure hydrocephalus that can be partially reversed by
appropriate treatment) (Borelli et al., 2020). The situation is more
complex for other diseases: many individuals undergo health
status fluctuation, which becomes broader and more frequent in
the last portion of life (Nguyen et al., 2020). Because of such cross-
sectional and longitudinal heterogeneity, no satisfactory health-
span measure is currently available, making it difficult to identify
factors, such as diet or exercise, associated with better health
trajectories over the life-span. At the population level and in a
life-course perspective, the ratio between healthy and unhealthy
expectancy is the best metric of health (Ferrucci et al., 2018;
Liu et al., 2018; Kuo et al., 2020). The ideal outcome is to push
health expectancy as close to life expectancy as possible, a strategy
known by gerontologists as the “compression of morbidity.”

To better illustrate this concept, let us look at Figure 4. The
lines represent the health trajectories of individuals A, B, and
C. A and B have the same life-span, but individual B has a
long health-span because the adverse health conditions happen
late in life. The extension of this concept of health-span at the
population level is shown in Figure 5. The survival curve A is for a
population of individuals that develop health problems earlier in
life and the survival curve B is for a population that stays healthy
until near the end of life. Suppose there is an effective strategy
for slowing down aging, the curve would move from A toward B.
The complexity of defining health-span is that the definition of
health is often not simply the presence or absence of disease. As
presented by the life-span of individual C (Figure 4), people can
often experience measurable deterioration in health, but maintain
enough function to carry out living independently.

Meanwhile, the area above the curve, indicating the portion of
people suffering from multiple conditions, would then decrease
and realize the “compression of morbidity.” Using at least

FIGURE 5 | The compression of morbidity is the “Holy Grail” of gerontologists. Interventions that increase health-span disproportionally more in life span and
compress the decline in health function toward the end of life. Current demographic and epidemiological data show no evidence for “compression” of morbidity but
rather suggest that the period of life characterized by illness and disability is growing at a rate faster than healthy life. Focusing on the treatment of specific diseases
when they become clinically manifest rather than on the promotion of health and resiliency cannot address this situation.
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two age-related diseases as end points of health-span, we have
demonstrated that higher plasma C-reactive protein (CRP) level
is associated with 14% shorter health span for those who are older
than 60 years old (Kuo et al., 2020). An extension from a specific
protein, such as CRP, to discovery proteomics, will provide
an indication of the mechanistic pathways that contribute to
health-span. This unified concept of measuring global health
has generated enthusiasm within epidemiology of aging, as
witnessed by an exponential increase in the number of papers
using health-span as an outcome. However, unlike life-span,
which can be precisely defined as the age of death, capturing
health-span within the boundaries of a rigid definition and in
the context of global health have proved challenging (Newman
et al., 2020). The emergence of a disease may be followed by
the disappearance of signs and symptoms and a relatively long
period of quiescence, such as some rheumatological diseases
(Ellingwood et al., 2019). Also, predisposition to one disease may
have a strong genetic component, and individuals may be subject
to particularly powerful or prolonged environmental exposure
(Rohn, 2014; Belloy et al., 2019).

An important consideration is that the focus on the
phenotype of diseases and damage accumulation does not
address the mechanisms of resilience, repair, and compensation
(Ferrucci et al., 2020). An expanded use of biomarkers in
medicine may potentially capture all aspects of the process
by identifying biomarkers that track loss of resilience and
predict health deterioration and its functional consequences. As
discussed herein, measuring circulating proteins is particularly
advantageous in this context because proteins are terminal
effectors that can be linked directly to biological function
(Ahmad et al., 2018; Tanaka et al., 2020b). Proteomics analysis
in longitudinal studies in conjunction with clinical measures of
health and functional changes may reveal patterns and signatures
predictive of future changes in health and open an early window
to the biological processes that are failing, therefore allowing
precise and personalized interventions.

Heterogeneity in Aging
Most research on aging deals with parameters that either decline
(e.g., muscle strength, hearing) or increase (e.g., inflammatory
markers, systolic blood pressure) with aging. The focus on
“average” fails to recognize the fact that the individuals in
the population become increasingly diverse or “heterogeneous”
with aging. Age-dependent changes in heterogeneity are often
conducted by comparing group means between young and
old individuals. While group averages are informative, another
metric of heterogeneity that is often overlooked is variance or
the spread of a trait across age groups. The conventional wisdom
dictates that for most traits, variance increases with age (Nelson
and Dannefer, 1992). This idea is intuitive, that as individuals
get older, there is an increased diversity as people are exposed
to different environments and experiences and mount resilience
responses to challenges that are even more variable. A recent
study systematically examined the age-associated variance across
thirty-four health characteristics representing eight domains
(physical measures, vital signs, physiological measures, physical
performance, function/disability, chronic conditions, frailty,

laboratory values) (Nguyen et al., 2020). Interestingly, it was
found that variance increased with age overall, but decreased
(e.g., visual acuity, grip strength, Alanine Aminotransferase)
or remained unchanged (CRP, gait speed, diastolic blood
pressure) across age for some characteristics. Another interesting
observation was that across all traits, the change in variance with
age was non-linear, with peak heterogeneity observed at age 70.
The increased variance in aging is also observed at the molecular
level, where studies have shown increase in the variance of gene
expression with age (Somel et al., 2006; Vinuela et al., 2018).

The increased variance in gene expression can be described
as stochastic dysregulation of gene expression resulting from
the accumulation of damage over time. Age-related increase of
heterogeneity of traits associated with changes in health status
may explain the changing average level of that trait with aging.
To explain this concept, Figure 6 displays simulation results of
a certain hypothetical variable is perfectly controlled over the
first years of life, but slowly and progressively, the homeostatic
control becomes less effective, thus increasing variability in this
case, symmetrically around the average (Figure 6, left panel).
Now, let us assume that this hypothetical variable is a “protective
factor,” such as high density lipoprotein (HDL) cholesterol, and
individuals with low values have a higher risk of cardiovascular
mortality or become sick and leave the study. The consequent
unobserved values shown in gray circles in the right panel of
Figure 6 make the longitudinal distribution of age-trajectories
truncated and asymmetrical. A regression line (red) imposed on
this data shows an increase in HDL levels with age. And since this
variable increases with age, we may hypothesize that this factor is
predictive of worsened health status, when in fact, the opposite
is true. Hence, competing mortality and informative censoring
cannot be ignored in the study of biomarkers of aging. Another
important consideration is that variables that show increased
heterogeneity are those with homeostatic controls that weaken
with aging and whose changes are related to adverse age-related
outcomes. Understanding the molecular and epidemiological
bases of variance heterogeneity and how they relate to health-
span is an important area that needs further development.

Proteomics Models in Aging Research
The web of mechanisms underlying the maintenance of health
is exceptionally sophisticated. A complex interaction of genetic,
epigenetic, environmental and stochastic stresses continuously
challenge such equilibrium and are offset by resilience strategies.
The dynamic equilibrium between damage accumulation and
repair may be detected by studying molecular changes in
biological tissues and fluids. Of the different biomarkers, proteins
are possibly the most interesting candidates because they are
directly connected with function and because thousands of them
can be measured in relatively small specimens. Recent studies
suggest that the age-proteome is highly tissue-specific (Ori
et al., 2015; Long, 2020), but few proteins change systematically
with aging across selected tissues, such as the heart, lung and
whole blood, suggesting a tighter co-aging pattern compared to
other tissues such as muscle (Yang et al., 2015). Interestingly,
non-dividing cells within a tissue may be more susceptible to
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FIGURE 6 | Age-related increase of heterogeneity of traits associated with health status may cause changes in average levels of that trait with aging. In the left panel,
a hypothetical variable is perfectly controlled over the first years of life, but slowly and progressively, the homeostatic control becomes less effective, and variability
increases symmetrically around the average (blue line). However, if the hypothetical variable is a “protective factor,” such as HDL-Cholesterol, and a person with low
values has higher risk of cardiovascular disease, the consequent unobserved values show grey circles in the right panel the longitudinal distribution of
age-trajectories truncated and asymmetrical. A linear regression with age (red) shows an increasing level.

changes due to extreme longevity, that agrees with an age-
dependent decline of key regulatory proteins, as it has been
observed (Arrojo et al., 2019). These long-lived proteins are more
vulnerable to damage accumulation and function loss, and the
study of their abundance may not reveal a strong aging signature.

The Rationale for Using Proteomics in
Building System Models in Humans
In the study of human aging, proteomics is often used as
a tool for exploratory analyses or to address questions of
reverse translation. In exploratory studies, the changes in protein
composition of a different tissue with aging may suggest
dysregulated biological pathways. In some instances, the findings
in these studies are confirmatory; for example, a proteomic
analysis performed on muscle biopsies from 58 participants in
a study of the Genetic and Epigenetic Study of Aging Laboratory
Testing (GESTALT) showed that both structural and functional
mitochondrial proteins decline with aging (Ubaida-Mohien et al.,
2019b). However, in the same study, we found a substantial
overrepresentation of proteins from the splicing machinery with
aging, a new and unexpected finding that led to a new hypothesis.
More specifically, in the condition of a relative scarcity of energy,
biological pathways are activated through alternative splicing that
spare energy (i.e., inhibition of protein synthesis) and stimulate
the production of energy (mitochondrial biogenesis, glycolysis).
This hypothesis was verified by confirming that, after adjusting
for potential confounders, splicing proteins were significantly
associated with mitochondrial function assessed by P31 Magnetic
Resonance Spectroscopy (Adelnia et al., 2020). A more recent

approach to proteomics and aging is the development of
“proteomic clocks.” Similar to what has been done with the
methylome, elastic regression or other multivariate methods can
be used to compute a weighted average of protein concentrations
that approximate chronological aging and show deviation from
chronological aging in individuals in a trajectory of deteriorating
health (Lehallier et al., 2019; Tanaka et al., 2020a). Studies are
ongoing to identify proteins that in asymptomatic individuals
predict the development of phenotypes typical of aging, such
dementia (Tanaka et al., 2020b), frailty (Landino et al., 2020) and
many other diseases (Osawa et al., 2020; Tanaka et al., 2020b).

In spite of their potential and the already informative results,
proteomic studies have limitations that need to be considered
for accurate interpretation of their results. Indeed, before
undertaking any substantial proteomics study, determinations of
the instrument, sample, and human subject baseline variability
must be made by preliminary experiments. These sources
of variability must then be minimized by Sierra (2016)
careful calibration of instrument parameters, (Kaeberlein, 2017)
preparation of a pipeline for sample preparation that provides
highly reproducible results, and possibly maximizes the use of
robotics to reduce variability due to human errors, and (Caballero
Mora and Rodriguez Mañas, 2018) identification of internal
controls and standards such as reference samples and purified
proteins and peptides. Similarly, occasionally running reference
standards, or adding purified internal standards to proteomics
runs, are often used in proteomics experiments to minimize
and account for drifts in the measurement system or batch
variability. Another important consideration is the abundance of
the proteins of interest in a given tissue. If a target protein is of
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very low abundance, it may be very difficult to detect reliably by
mass spectrometry. In these cases, some sample enrichment may
be necessary, either by enriching the protein itself in the sample,
for example, by an antibody enrichment, or by selecting specific
cells in which the target protein is highly expressed. Furthermore,
from their translation to their structural or signaling function,
proteins undergo many changes that are only minimally captured
by the current measurements. For example, correct folding,
assemblage, post-translational modifications (PTMs) are essential
for biological activity but require labor-intensive techniques to
be assessed. Protein complex formation can be studied using so-
called interactomics experiments, in which a protein of interest is
‘tagged’ with a label, allowed to be expressed in the cell, and then
captured along with its interacting partners using an antibody
against the tag. All of the interacting partners can then be
identified using mass spectrometry (Burckstummer et al., 2006).
These studies are usually performed in cell lines, but animal
models may also be used. In human subjects, interactomics
studies can also be performed using a ‘cross-linking’ approach,
where a protein mixture is extracted in the native state, and
treated with a cross-linking agent, such as formalin, to bind
interacting partners tightly together (Gotze et al., 2019). The
cross-linked sample can then be processed and the bound
interactors identified. There are also specialized techniques by
which post-translational modifications (PTMs) can be assessed.
In these studies, a sample can be treated with an antibody specific
to a PTM, which will select only proteins with the modification.
Mass spectrometry can then identify all of the proteins while
also confirming the PTM, since the mass shift is directly
observable in the peptide sequence. Until recently, the study
of human aging with proteomics methods was limited to small
sample sizes (Staunton et al., 2012; Santos-Lozano et al., 2020).
Unlike other “-omics” (genomics and transcriptomics) methods,
the analytical efficiency of the traditional proteomics methods
(LC MS/MS, 2Dgel, SRM) are time-consuming, expensive, and
technically demanding. However, some proteome studies use the
‘sample multiplexing’ method, which takes advantage of pooling
multiple isobarically labeled samples (TMT, iTRAQ) to increase
throughput (Gygi et al., 1999; Ubaida-Mohien et al., 2019a).
Recently developed proteomics technologies such as the aptamer-
based arrays (SOMAlogic) or PEA multiplex technology (O-
Link), and others, provide high-multiplexing of sample analysis
but at the cost of a limited set of protein identifications. Despite
the small sample size in proteomics studies and some intrinsic
limitations of the methodology, proteomics studies of aging
have already proven useful, especially when information on
proteomics may be integrated with other -omics and with high
quality phenotyping. For example, small sample size proteomics
age model studies [44, 57, 58] and relatively big sample size
studies [42, 59, 60] and large sample size studies [61-63]
etc. often demonstrate the interplay of phenotypic-genotypic
measurements in aging models. Importantly, both the quantity
of sample available and the protein abundance in those samples
may greatly limit proteomics analyses in terms of depth and
reproducibility, and other laboratory techniques that are typically
not high throughput should be used instead. For example,
muscle aging and sarcopenia have been attributed to age-related

degenerative processes in peripheral nerves and neuromuscular
plaque. Material from neurons and neuromuscular plaque is just
too small in any biopsy specimens to provide robust results
by mass spectrometry analysis. Thus, although signals relate to
denervation and neurogenesis are captured, these signals should
be interpreted with caution. Similarly, stem cells may be very
important for aging, but their numbers are so low that changes in
their proteome are unlikely to be captured from a global muscle
biopsy specimen. Recent development in low-input and even
single-cell proteomics may begin to solve these problems, at some
point in the future (Ctortecka and Mechtler, 2021).

A number of well-developed tools exist to identify proteins
associated with specific traits, evaluate the strength of these
associations, and graphically illustrate these relationships.
However, similar to other “omics,” the biological and
physiological interpretation of these findings remains
problematic. Because of the intrinsic limitation of proteomics not
all the proteins involved in biological pathway(s) are important
for the mechanism studied or will be detected, and for others
they are detected at low concentration. The signal-to-noise
ratio may be too low to detect an association with the trait of
interest. This results in an incomplete proteomic pictures of
important biological pathways. Imagine that biological pathways
are puzzles, and each piece of the puzzle is a protein that belongs
to that pathway. If we have all the pieces of the puzzle, the
identification of the pathway is direct and simple. However, if we
only have a few pieces available, recognizing the pathway may
be complex. The situation is complicated by the fact that most
proteins are not unique but are rather promiscuous between
pathways. Consider the images in Figure 7, the puzzle pieces
that are available on the left image are insufficient to identify
the painting underneath. However, as more pieces are matched,
Leonardo’s “Mona Lisa” identity cannot be mistaken.

Similarly, while it is extremely arduous to make inferences
from a list of proteins associated with a trait of interest
considering them one by one, a specific set of proteins may
contribute in concert to identify a biological process. “Gene
set enrichment analyses” are methods to identify clusters of
genes or proteins that are over-represented among those that
are found associated with a trait of interest. Databases of
these clusters are easily available in the public domain and
were created by a comprehensive compilation of data available
in the literature (Subramanian et al., 2005; Liberzon et al.,
2015). Although every single published analysis on -omics
report some form of “enrichment analysis,” this method has
significant limitations. The genes or proteins included in a cluster
are not “weighted” for importance or specificity. In addition,
the quality of annotation is only as good as the available
literature, which is biased toward certain fields, most notably
cancer biology. This is particularly problematic for the field of
aging research because age-related pathways have only recently
been considered in annotation databases. Examples of using
databases often used for enrichment analyses include the Kyoto
Encyclopedia of Genes and Genomes (KEGG1 ) and Reactome
(Jassal et al., 2020). These databases contain entries for all

1https://www.genome.jp/kegg/pathway.html

Frontiers in Physiology | www.frontiersin.org 8 May 2021 | Volume 12 | Article 674013

https://www.genome.jp/kegg/pathway.html
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-674013 May 31, 2021 Time: 13:55 # 9

Ubaida-Mohien et al. Proteomics and Epidemiological Models of Human Aging

FIGURE 7 | Because of the intrinsic limitation of proteomics, not all the proteins involved in a pathway are important for the mechanism studied and other proteins
are detected but not fully quantifiable. Let us assume that biological pathways are puzzles, and each piece of the puzzle is a protein that belongs to that pathway. If
we have most of the pieces of the puzzle (image on the right), the identification of the pathway is direct and simple: it is the famous Leonardo’s “Mona Lisa.” However,
if we only have a few pieces available, recognizing the pathway may be complex (images center and left). In the study of aging, the situation is even more complex
because many proteins are not unique but are rather promiscuous across pathways and our knowledge of these pathways (like the original paintings) is still limited.

known human reaction pathways, including signaling pathways,
metabolic pathways, and other cellular functions. The protein
entries which are found to be aging-associated can be input into
these databases, and the overlap between the input protein list
and known pathways can be found. Some caution must be applied
when interpreting the results of pathways analyses. First of all,
important biological interactions may occur without substantial
changes in protein concentration. For example, a pathway may
include post-translational modification events among proteins,
such as phosphorylation or ubiquitination cascades. Similarly,
often the dysregulation of biological mechanisms with aging may
be followed by both increase in abundance of certain proteins
and a decline of abundance in other proteins within a pathway,
making the interpretation of the results very difficult. Thus, the
results of the pathways analysis must be manually curated in
order to gain true biological information.

With the growing availability of proteomic and other “-
omics” data in the public domain, it is now possible to correlate
or compare a proteomics dataset with other datasets, either
proteomics or other omics. Many public data repositories of
published proteomics datasets exist such as PRIDE database
(Schwenk et al., 2017; Perez-Riverol et al., 2019; Samaras et al.,
2020), PeptideAtlas (Schwenk et al., 2017), and ProteomicsDB
(Samaras et al., 2020) are all repositories of published proteomics
datasets, and tools (Reisinger et al., 2015; Perez-Riverol et al.,
2017, 2019) are available to mine them. A generated proteomics
dataset can be correlated with public proteomics datasets from
other tissues and other subjects and can also be correlated with
non-proteomics data. For example, gene expression data such
as RNA sequencing or other forms of microarray, stored in
repositories such as Gene Expression Omnibus (Barrett et al.,
2013), can be used to examine the relationship between the

RNA level and protein level of various genes during aging.
Proteomics data can also be annotated using various forms
of metabolomics data, where a change in expression levels
of an enzyme can result in a change in the abundance of
the substrate/product of the enzyme and/or a downstream
metabolite. Indeed, pathways analysis often much more useful
when combined with metabolomic data, because metabolic
pathways depend on the abundances of their components.
Finally, genomic or epigenomic datasets may be used to annotate
proteomics data. Large epigenomic repositories such as that of
the ENCODE project (Davis et al., 2018) contain large amounts
of epigenetic data, which can be used to correlate with the
proteomic level. This genome-level data can be used to correlate
protein-level data with subject genotypes.

Advantages and Disadvantages
Compared to Models That Use Other
“-Omics” as Well as Phenotypic Data
Technological development of high-throughput assays for
molecular biomarkers including genomics, epigenomics,
transcriptomics, metabolomics and proteomics has lead to
the rapid expansion of “-omics” research in aging. With the
completion of the human genome project in 2001 (Venter
et al., 2001), the first wave of -omics research on aging was
conducted using genetic variants in genome-wide association
studies (GWAS) (Melzer et al., 2020). While a handful of
replicated genetic loci have been identified including ApoE
and FOXO3A, large proportions of the variability in aging
and aging traits remain unexplained by GWAS studies. Since
inherited germline variants used in GWAS studies are static,
there may be limitations to the capacity for genetic markers to
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capture the dynamic changes in aging. To this end, the dynamic
nature of other -omics markers make them better candidates for
biomarkers of aging and better tools to measure rates of aging
that can be translated to the clinic. A promising line of research
is developing epigenetic biomarkers where a series of aging
indices were created using varying sets of DNA methylation
sites, which were defined as “epigenetic clocks.” These epigenetic
clocks have shown great promise as predictors of health and
life-span (Levine et al., 2018). There is very little overlap in the
set of CpGs used to construct the different clocks, however,
evaluation of gene expression profiles suggests that the epigenetic
clocks may be capturing genes in common molecular pathways
such as metabolism, immunity and autophagy (Liu et al., 2020).
However, the patterns of DNA methylation do not directly
provide information on which genes are involved that make the
epigenetic clocks powerful predictors of aging. In this respect,
using proteomics in aging is advantageous as this approach
directly measures the functional unit that affects phenotype.
Identification of proteins that change with aging can provide
direct insight into the molecular pathways that are influenced.

Changes of Proteins With Aging:
Biological Pathways Implicated and
Current Models Underpinning the
Mechanistic Association of Aging
The identification of biomarkers that can be integrated with
health outcome has been a priority in aging research for the last
50 years. Prior to the -omics era, this area of research started
by characterizing the relationship between a single biomarker
with aging and age-related health outcomes. For example, IL-
6, perhaps considered one of the first aging biomarkers, was
described as “a cytokine for gerontologists” (Ershler, 1993). IL-
6 is the best characterized biomarker for “inflammaging,” a
chronic low-grade inflammation that develops with advanced
age and contributes to the pathogenesis of age-related diseases
and most recently has been recognized as a core element of
the secretome produced by senescent cells (Lopez-Otin et al.,
2013; Ferrucci and Fabbri, 2018; Franceschi et al., 2018). High
circulating levels of proinflammatory cytokines, such as IL-6 have
been associated both cross-sectionally and prospectively with
major age-related chronic diseases as well as with disability and
frailty (Maggio et al., 2013). The mechanisms of these associations
are unclear and have been connected with down-regulation of
the biological activity of Insulin-like Growth Factor-1 (IGF-
1), which contributes to the decline of muscle strength with
aging (Maggio et al., 2013; Johnson et al., 2020; Moaddel et al.,
2021). A number of other inflammatory biomarkers have been
associated with aging and age-associated health and functional
deterioration, including C-Reactive Protein, Cystatin-C, TNF-
alpha receptors I and II, Interleuking-1 receptor antagonists and
many others (Dinarello, 2006; Jylha et al., 2007; Odden et al.,
2010; Bauernfeind et al., 2016).

Most recently, scientists realized that information on
individual protein levels is insufficient to understand the
complex mechanisms of aging and chronic diseases and the
focus shifted to protein “signatures” or a multi-protein model

(Tanaka et al., 2018; Lehallier et al., 2019; Moaddel et al., 2021).
In our recent study, a weighted average of 76 proteins were
found that correlated with chronological age, and independent
of chronological age predict health outcomes (Tanaka et al.,
2018). Subsequent “proteomic” clocks developed in larger study
populations and using an expanded set of measured proteins
substantially confirmed the top-related proteins. Special mention
should be given to Growth/differentiation factor 15 (GDF15)
a member of the transforming growth factor−β cytokine
superfamily that is strongly correlated with chronological
aging even in healthy individuals, is a strong risk factor for
cardiovascular disease, and strongly predict age-related adverse
health outcomes, including obesity, cancer, neurodegenerative
diseases, metabolic diseases, cognitive impairment and frailty
(Wollert et al., 2017; Cardoso et al., 2018; Tanaka et al., 2018;
Lehallier et al., 2019). The mechanisms by which GDF-15 is
associated with these outcomes are unclear, but appear to be
related to modulation of the inflammatory response and perhaps
regulation of appetite and body composition.

Two recent systematic reviews have identified age-associated
proteins assessed with different methods and with different
matrixes (Johnson et al., 2020; Moaddel et al., 2021). When
enrichment analysis was performed on the list of proteins
identified in these reviews, the biological pathways that emerged
are widely recognized as playing a role in aging (Johnson et al.,
2020; Moaddel et al., 2021). These pathways include the human
complement system, the IGF1 signaling pathway, the PI3K-
Akt-mTOR-signaling pathway, the mitogen-activated protein
kinases (MAPK) signaling pathway, the Hypoxia-inducible factor
1 (HIF-1) signaling pathway, cytokine signaling pathways,
FOXO signaling pathway, Advance glycation end products
(AGE)/receptor AGE (RAGE) pathway, folate metabolism and
mRNA splicing-major pathway. The signaling pathways are
not operating independently of each other but rather are
interconnected with several pathways regulating or co-regulating
each other. For example, IGF-1/AKT pathway co-regulates
the mTOR pathway (Feng and Levine, 2010) and is involved
in an array of different processes, including metabolism, cell
proliferation, survival and synaptic plasticity (Feng and Levine,
2010; Mazucanti et al., 2015). IGF1 binds to the IGF1 receptor,
leading to a conformational change resulting in the activation
of receptor tyrosine kinase activity (Hakuno and Takahashi,
2018). Several substrates are phosphorylated, including insulin
receptor substrates and Src homology collagen (SHC), which
activate phosphatidylinositol 3-kinase (PI 3-K)-Akt signaling
pathway and the Ras-mitogen-activated protein kinase (MAP
kinase) pathway. The Insulin/IGF signaling pathway also triggers
the phosphorylation of FOXO factors via AKT, resulting in the
suppression of FOXO-dependent transcription of target genes
(Floyd et al., 2007; Morris et al., 2015; Chen et al., 2020). mTORC1
inhibits autophagy and regulates mitochondrial function and
glucose metabolism via HIF1α, a critical transcription factor
which plays a role in aging-related pathology including chronic
inflammation, cellular senescence and neoplastic development
(Anisimov, 2015; Ebersole et al., 2018; Alique et al., 2020).
HIF1 activation has been shown to be dependent on RAGE-
mediating signaling (Semba et al., 2010). HIF1α downregulates
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mitochondrial biogenesis, thereby reducing ATP production,
and potentially contributing to the oxidative stress that triggers
the nuclear factor κB (NFkB)-mediated production of cytokines
(Yeo, 2019). NF-κB a major transcription factor that is activated
in many diseases associated with inflammation and aging, such
as arthritis, atherosclerosis, diabetes, Alzheimer’s disease and
Parkinson’s disease (Chen et al., 2020).

Does Accelerated Aging Predict Adverse
Health Outcomes?
A primary goal of biomarker discovery in the field of aging
is measuring the rate of biological aging. In a translational
perspective, measuring accelerated aging would be important to
identify individuals who are ideal targets for interventions aimed
at slowing down the aging process and prevent its consequences
on health, functional status and quality of life. Measuring the
rate of aging can be used to track the effects of behavioral
interventions. For example, are changes in health behavior, such
as smoking cessation or increase of physical activity, associated
with changes in the rate of aging? A measure of the rate of aging
can be used to track the effectiveness of interventions aimed
at slowing down aging and therefore preventing its deleterious
consequences on health and function without having to wait
to directly observe health related outcomes such as disability
or mortality. Ultimately, aggregate biomarkers of aging, such
as the “epigenetic clock” or the proteomic clock will play an
essential role in the design of a new generation of clinical trials
(Figure 8). Geroscience-based interventions will target one or
more putative mechanisms of aging, among those that are already

discovered or some other still undiscovered. A primary aim
will be demonstrating that these interventions have a beneficial
effect on the rate of biological aging estimated by biomarkers
signatures, such as the “epigenetic” or the “proteomic” clock, and
on subclinical pathology such as “arterial stiffness” or “amyloid
accumulation.” A second primary aim will be demonstrating
that changes in biological aging and subclinical pathology
prevents middle-term outcomes important for aging, such as
multimorbidity or lower extremity performance. Finally, these
trials will need to demonstrate that the intervention substantially
changes the trajectory of aging by preventing physical and
cognitive disability and promoting longevity. Substantial work in
the field of aging research is taking place to develop the tools and
identify these trials’ interventions.

CONCLUSION AND FUTURE
PERSPECTIVE

Future Framework for Machine Learning
and Artificial Intelligence in Models of
Aging
As we accumulated an unprecedented amount of biomarkers
data, our ability to process and extract all the hidden data and
information did not grow at a similar rate, and new analytical
techniques are being developed to accomplish this goal. Machine
Learning (ML) algorithms and techniques as part of a broad field
of Artificial Intelligence (AI) have made significant strides and are
widely used in many areas, including healthcare and biomedicine.

FIGURE 8 | Gero-interventions aim to target one or more putative mechanisms of aging among those already discovered, or others still undiscovered. A primary aim
will be demonstrating a beneficial effect on the rate of biological aging estimated by biomarkers signatures, such as the “epigenetic” or the “proteomic” clock, and on
some subclinical pathology such as “arterial stiffness” or “amyloid accumulation.” Another aim will be to demonstrate that changes in biological aging and subclinical
pathology prevent middle-term outcomes important for aging, such as multimorbidity or lower extremity performance. Finally, these trials will need to demonstrate
that the intervention substantially changes the trajectory of aging by preventing physical and cognitive disability and promoting longevity.
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Although sometimes researchers view these concepts as a panacea
for all analytic challenges, one should be mindful of their
limitations and practical constraints. Often times a conventional
association study or exploration of descriptive statistics may
be more situationally appropriate. Where ML/AI really shines
is by making data-driven inferences that may not be readily
observable using standard analysis, using ML methods and
automated processes that learn and interact with humans or other
computing AI. Within the context of biomedical aging research,
we see a few key areas of growth in the adoption of ML/AI to
accelerate scientific progress, especially developing therapeutic
targets. Drugs with a genetic basis are almost twice as likely to
pass a phase of a trial than those without (King et al., 2019).

Many recent efforts in drug development pursue a network or
pathway-based approach for target identification, although many
pathways have implicit biases, particularly those from literature
searches and text mining. Currently, a wealth of multi-omics data
is being generated on an unprecedented scale. With methods
such as network-based clustering, we can build communities of
functionally and phenotypically related genes representing de
novo networks and pathways. Drug developers can target nodes
within these clusters for disruption by pharmaceuticals (Traag
et al., 2019). Additionally, ML model interpretation can help
prioritize interesting biomarkers and targets for future studies.

There are challenges ahead for ML/AI breakthroughs to
achieve these goals and as much impact in the aging domain as in

FIGURE 9 | The development of a new generation of challenging tests that assess resilience is a priority in aging research. These tests may take different forms
ideally but will be targeting mechanisms of aging, such as autophagy, proteostasis response, mitochondrial function and cellular senescence, but also new
phenotypes such as response to changes in temperature or sustained fasting. Depending on the nature of the test, different parameters could be derived as
indicated in the figure.

FIGURE 10 | Mechanisms of resilience that maintain homeostatic stability on the dynamic network of life aim to repair damage at macromolecular, organelle, and
cellular level. However, when the repair is not possible, recycling and replacing these macromolecules, organelles and cells is a suitable alternative. Most of these
strategies of biological resilience requires large amounts of energy that can only be provided through mitochondria oxidative phosphorylation.
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other healthcare areas. Some major challenges are: data diversity
(training the data model with the same demographic diversity in
the age, gender, and racial/ethnic composition of data), strong
machine learning models (the models should be reproducible,
usable, and interpretable for aging research), data privacy and
ethics (deployment of machine learning models with ethical
considerations), domain knowledge and global collaboration
and data sharing. Global data sharing is crucial, considering
the ethnicity and diversity complexities in aging studies; the
only way to developing highly generalizable ML/AI solutions
for aging research is global collaboration and data sharing. We
have mentioned earlier the public domains and data repositories
in proteomics research however, many aging data are still not
available in the public domain. A public aging data deposition
followed by an open science, code sharing, and public analytical
documents allow independent replication of the results, and this
will certainly lead to progress.

Challenges Ahead for a Unified Model for
the Integration of Biological, Phenotypic,
and Functional Measures of Aging
The recent shift of Geroscience paradigms to understand
biological aging and age-related diseases at the molecular level
gives far-reaching hopes that research on aging, from mere
curiosity, will be a driving force of a new era of medicine. A recent
review has described the hallmarks of aging as molecular events
such as genomic instability, loss of proteostasis, deregulated
nutrient sensing, mitochondrial dysfunction, cellular senescence,
stem cell exhaustion, and altered intercellular communication
(Lopez-Otin et al., 2013). Likely many more “hallmarks” will be
discovered in the future, and their interconnection will be better
defined, but the current list is a good starting point. Much work
is needed to interconnect these mechanisms with phenotypic
manifestations of aging, including diseases, multimorbidity as
well as the decline of physical and cognitive function. A roadblock
of this research is our limited ability to measure compensation,
which is the result of centuries of medical research and practice
that focused on measuring degree of damage and “disease
severity” (Ferrucci et al., 2018). Indeed, if we want to measure
resilience, we will need to expand the use of challenge tests
in research and eventually also in clinical practice. If resiliency
mechanisms are effective above a certain level, there will be
no evident damage, and therefore, measuring damage will not
be useful. Many challenge tests are already used in medicine,
such as the oral glucose tolerance for the detection of latent
diabetes, the treadmill stress test for the detection of coronary

insufficiency, or the Dexamethasone suppression test for the
diagnosis of the Cushing syndrome. New challenge tests that
target mechanisms of aging, such as autophagy, proteostasis
response, mitochondrial function and cellular senescence, but
also new phenotypes such as response to changes in temperature
or sustained fasting should be developed and their results
correlated with clinical outcomes. Depending on the nature of the
test, different parameters could be derived, such as the amplitude
of the perturbation, the time to recovery, the percentage recovery
compared to baseline (Figure 9).

However, improvements in biomarker technology may open
the door to a new strategy. There is initial evidence that
the activation of resilience mechanisms produce a biomarker
signature that can be detected in tissues or biological fluids. For
example, it has been demonstrated that acute stress leads to the
release in plasma of mitochondrial DNA (Hummel et al., 2018;
Trumpff et al., 2019). Thus, studies that combine the results
of challenge tests with -omics may be used to delineate those
signatures that, once validated, can be translated into diagnostic
tools in epidemiological studies and later on to the clinic. Since
most resilience mechanisms require extra-energy, we believe
that the secret of aging lies in the progressive derangement of
energetic metabolism. Developing a new generation of challenge
tests and resilience biomarker signatures, some of which are
related to mitochondrial function and oxidative phosphorylation,
the major source of energy (Figure 10), opens the road to studies
looking that the effects of genetic and environmental factors of
resilience capacity.
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