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Atrial fibrillation (AF) is a common cardiac arrhythmia that affects 1% of the population

worldwide and is associated with high levels of morbidity and mortality. Catheter ablation

(CA) has become one of the first line treatments for AF, but its success rates are

suboptimal, especially in the case of persistent AF. Computational approaches have

shown promise in predicting the CA strategy using simulations of atrial models, as well

as applying deep learning to atrial images. We propose a novel approach that combines

image-based computational modelling of the atria with deep learning classifiers trained

on patient-specific atrial models, which can be used to assist in CA therapy selection.

Therefore, we trained a deep convolutional neural network (CNN) using a combination

of (i) 122 atrial tissue images obtained by unfolding patient LGE-MRI datasets, (ii) 157

additional synthetic images derived from the patient data to enhance the training dataset,

and (iii) the outcomes of 558 CA simulations to terminate several AF scenarios in the

corresponding image-based atrial models. Four CNN classifiers were trained on this

patient-specific dataset balanced using several techniques to predict three common

CA strategies from the patient atrial images: pulmonary vein isolation (PVI), rotor-based

ablation (Rotor) and fibrosis-based ablation (Fibro). The training accuracy for these

classifiers ranged from 96.22 to 97.69%, while the validation accuracy was from 78.68

to 86.50%. After training, the classifiers were applied to predict CA strategies for an

unseen holdout test set of atrial images, and the results were compared to outcomes

of the respective image-based simulations. The highest success rate was observed in

the correct prediction of the Rotor and Fibro strategies (100%), whereas the PVI class

was predicted in 33.33% of the cases. In conclusion, this study provides a proof-of-

concept that deep neural networks can learn from patient-specific MRI datasets and

image-derived models of AF, providing a novel technology to assist in tailoring CA therapy

to a patient.
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1. INTRODUCTION

Atrial fibrillation (AF) is the most common cardiac arrhythmia
and is characterised by rapid and uncoordinated contraction
of the atria. It is associated with high levels of morbidity and
is the leading cause of stroke in people over 75 (Hart and
Halperin, 2001). Although the precise mechanisms underlying
AF remain unclear, it has been recognised that ectopic electrical
beats originating from the pulmonary veins (PVs) can trigger
AF (Chen et al., 1999), and that electrical rotors generated by
breakdown of such ectopic waves provide self-sustained drivers
for AF. In addition, areas of fibrotic atrial tissue have been linked
with slow conduction of electrical waves, providing anchoring
points for the rotors, and thus arrhythmogenic locations in the
atria (Morgan et al., 2016; Roy et al., 2020).

First line clinical treatments for AF include antiarrhythmic
drugs, electrical cardioversion, and catheter ablation therapy
(Parameswaran et al., 2021). Radiofrequency catheter ablation
(RFCA) involves controlled destruction of arrhythmogenic
locations via delivery of localised RF energy to atrial tissue
through a catheter. RFCA procedures have a relatively high
success rate in patients with paroxysmal AF (about 70% for a
single procedure) (Oketani et al., 2012). However, in persistent
AF patients, the arrhythmia can recur after RFCA in ∼75%
of cases (Wang et al., 2017). Cryo-ablation has emerged as an
alternative, arguably more convenient method based on delivery
of low temperatures through a balloon catheter. However, clinical
trials have shown no significant difference in long-term efficacy
of RF ablation vs. cryo-ablation of paroxysmal AF patients
(Andrade et al., 2019). This warrants the development of novel,
more efficient ablation strategies (Gong et al., 2015).

RFCA creates lines of conduction block on the atrial surface,
which should ideally have minimal length and allow for
quick recovery of the mechanical activity of both atria during
sinus rhythm (Ruchat et al., 2007). The only clinically proven
empirical strategy is Pulmonary Vein Isolation (PVI), which
generates circumferential lesions around the right and left PVs.
Promising novel strategies include rotor- and fibrosis- driven
CA (Parameswaran et al., 2021). The former targets focal points
of electrical activation to terminate rotors (Zaman et al., 2015),
while the latter aims to minimise the effect of fibrosis by applying
box isolation of fibrotic areas (BIFA) (Schreiber et al., 2017) or
linear lesions across fibrotic tissue (Kottkamp et al., 2017).

The heterogeneous results obtained by different studies
suggest that a single ablation strategy is unlikely to be successful
for all patients, and the improvement of CA therapy can
come from personalised approaches to each patient. The latter
have successfully applied patient medical imaging and image-
based computational modelling (Boyle et al., 2019). We aim to
simulate various scenarios of AF and personalised CA strategies
using computational models on atrial tissue based on patient
imaging data, and use the model simulation data to train deep
convolutional neural networks (CNNs), which have proven to
be successful for biomedical problems (Pfeiffenberger and Bates,
2018; Poh et al., 2018). Once the CNN is trained, we will
use it to identify patient-specific patterns of CA lesions for
each scenario.

We have previously developed a method for training CNNs
on a set of synthetic data composed of 2D atrial tissues with
randomly distributed fibrotic patches (Muffoletto et al., 2019). To
prove its effectiveness and provide proof-of-concept results for
patients, we will apply this approach to patient-specific 2D atria
obtained by unfolding of 3D atrial datasets from AF patients. The
latter have been obtained using late gadolinium enhancement-
magnetic resonance imaging (LGE-MRI) (Williams et al., 2017;
Xiong et al., 2021), which is primarily used to image cardiac
fibrosis. LGE-MRI scans are routinely performed before CA
procedures in many clinical centres, and hence, LGE data
represents a perfect reference for studies of patient-specific AF
scenarios and ablation patterns.

2. MATERIALS AND METHODS

2.1. Patient-Specific Atrial Tissues
The patient-specific dataset was obtained from two sources. The
first dataset, from the Atrial Segmentation Challenge at the
Statistical Atlases and Computational Modelling of the Heart
2018 workshop (Xiong et al., 2021), consisted of 86 LGE-MRI
scans from patients with AF (original resolution of 0.625× 0.625
× 0.625 mm3), and included the corresponding 3D left atria (LA)
segmentations. The second dataset was collected at St Thomas’
Hospital (Chubb et al., 2018) from 18 AF patients pre- and post-
CA, providing total 36 LGE-MR images (original resolution of
1.3× 1.3× 4 mm3, reconstructed to 0.94× 0.94× 2mm3).

All LGE-MR images were segmented based on the image
intensity distributions, to enhance visualisation of atrial fibrosis
for the improved inter-patient quantification and comparisons.
To do this, an image intensity ratio (IIR) value was calculated
for each voxel on the 3D model by division of LGE intensity by
mean blood pool intensity. If the IIR value exceeded an empirical
threshold of 1.24, the voxel was labelled as dense fibrotic tissue
(red in Figures 1A–C) while an IIR of below 1.08 indicated
healthy tissue (blue in Figures 1A,B) (Roy et al., 2018). Applying
the standardised segmentation method to all LGE-MRI datasets
created a set of patient-specific 3D LA models with fibrosis.

The LA models were unfolded to a standardised 2D disk
representation for further processing and simulation. This was
carried out using the LA standardised unfold mapping (LA-
SUM) technique (Williams et al., 2017). Each model was
registered to a reference atlas mesh and unfolded by mapping
of features from the 3D mesh to their corresponding locations
on the 2D LA disk (standard diameter 150, resolution 0.3
× 0.3 mm2) (Qureshi et al., 2020), with the four PVs and
LAA inside and the mitral valve becoming the border of
the disk. After the unwrapping, LGE MRI intensities in the
2D LA disks were thresholded to produce binary 2D images
with healthy myocardium and fibrotic patches (Figure 1C).
Figure 1 illustrates the entire process and the correspondence of
unwrapped and thresholded 2D LA disks with the real atria.

2.2. Synthetic Atrial Tissues
Since CNNs are contingent on big data and susceptible
to overfitting, a set of data augmentation techniques was
implemented to expand the limited real dataset. Given that the
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FIGURE 1 | Generation of 2D LA tissue images from LGE-MRI data. (A) 3D LA geometry segmented from LGE-MRI patient data, with LGE-MR image intensity

showing healthy myocardium (blue) and regions of fibrosis (red). (B) 2D LA-SUM representation where 3D LA has been unwrapped to a standardised disk form. The

PVs and LAA are situated in the centre while the mitral valve becomes the border of the disk. (C) Thresholded LA-SUM images. White represents healthy tissue, red

denotes fibrotic regions, while grey indicates areas of empty space (background and openings of the PVs and LAA). PVs and LAA are labelled in all figures.

3D LA models were unwrapped onto standardised 2D disks,
disparities between them were solely due to the fibrosis regions,
with no variance of the PVs size and position in the dataset.
Hence, an additional set of synthetic 2D LA tissue models with
varying fibrosis distributions and PV positions and sizes was
generated from the real data.

The generation of synthetic tissues was a three-staged process,
which first involved a weighted averaging of 65 real 2D LA images
randomly extracted from the STACOM 2018 dataset, which was
the larger of the two datasets, and hence could provide greater
variability in the fibrosis distributions. This was done by giving
a random weight between 0 and 1 (i.e., intensity of each voxel
was multiplied by this random weight). With this technique, a
dataset of unique 157 synthetic tissues was generated.To ensure
even more variability within the fibrosis distributions of these
tissues, a second stage followed. For each of the new tissues,
the fibrosis distribution was first extracted and thresholded and
successively augmented using one or multiple of three affine
transformations: flipping, rotation, or translation. The value of
threshold and the types of transformation per tissue was selected
by randomly assigning to each of them one of 10 cases with
different combinations of threshold (ranging from 0.065 to 0.095)
and transformations.

Finally, the last stage was performed to introduce variation for
the PVs. In half of the synthetic images the size and positions
of PVs were altered by randomly assigning one of 6 different
variants. For variants 1–3, only the sizes of the PVs were modified
by randomly varying their original diameter between 5 and 50%.
For variant 1, only one random value was used to resize all four
PVs. For variant 2, two random values were chosen, one for the
left pair of PVs (LIPV and LSPV), and another for the right pair
(RIPV and RSPV). For variant 3, four random values were chosen
for each PV. For variants 4–6, in addition to varying the PV size,
positions of the PVs were randomly varied in the horizontal and
vertical directions.

2.3. Atrial Tissue Model
The 2D atrial tissues described in the previous sections (122
real and 157 synthetic) were used to simulate electrical activity
sustaining AF and suitable personalised successful strategies for

each tissue. Thus, a unique 279 strong dataset was created to
combine the 2D LA images and labels assigned to each image
after the simulations of AF and ablation. This provided a versatile
and robust set to train, test, and validate our neural network
classification algorithm (see section 2.5 below).

Propagation of electrical activation waves in LA tissue was
simulated using the standard monodomain equation:

∂Vm

∂t
= ∇ ·D∇Vm −

Iion

Cm
(1)

Here, Vm represents the membrane voltage, Cm is the specific
cell capacitance, and D is the diffusion tensor that characterises
electrical coupling in the tissue. For isotropic tissue, the latter is a
constant. Equation (1) was solved using forward Euler method
with a time step of 0.01 ms, combined with finite difference
approximation of the Laplacian with a spatial step of 0.3mm.

For simulation of the ion current, Iion the Fenton-Karma semi-
physiological model was applied. The model uses three currents
to represent the main ionic currents responsible for the electrical
activation and inactivation dynamics of atrial cells. These are the
fast inward (flow of Na+), the slow inward (flow of Ca2+) and
slow outward (flow of K+) currents:

Iion = Ifi + Iso + Isi (2)

All the currents were implemented using the standard equations
and parameters, as previously described (Roy et al., 2018).

Equations (1 and 2) describe the propagation of electrical
waves through atrial tissue. To generate the wave breakdown
leading to re-entrant drivers (rotors), the standard cross-field
protocol was used (Tobón et al., 2014). The rotor was defined as a
stable re-entrant circuit lasting for at least 2,000 ms. Trajectories
of such rotors can be tracked in the 2D and 3D atrial models even
if they hyper-meander (Roy et al., 2020). Only stable rotors were
used to simulate AF (see below).

Two AF scenarios were simulated for each 2D LA tissue
model, as illustrated in Figure 2. In Scenario A, the cross-
field protocol was applied after 28 ms from the start of the
simulation and on the LSPV, and D in the healthy myocardium
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FIGURE 2 | Initiation of AF scenarios in 2D LA tissue models. The images show the voltage distribution (normalised to 0–1 range) in the 2D LA and its changes over

time, and the formation of rotors in two scenarios. Each time frame shows, respectively: start of the simulation, application of the cross-field protocol, initial formation

of a wave phase break, stabilisation of the rotor and the end of the simulated episode. In Scenario A, the wave is cut off after 28 ms and at the left top pulmonary vein;

in Scenario B, the wave is cut off later at 58 ms and at the centre of the tissue.

was set to 0.1 mm2ms−1, producing wave velocity of 0.7 m/s
typical of early-stage AF. In Scenario B, the cross-field protocol
was applied after 58 ms from the start of the simulation and
at the centre of the tissue, with D in healthy tissue set to
0.05mm2ms−1, producing velocity of 0.5m/s typical of persistent
AF. In some cases where the cross-field protocol didn’t result in
sustained re-entry, the cross-field application time was increased,
so that AF became sustained. The diffusion coefficient in fibrotic
areas for both scenarios was set to 0.15 × D to simulate slow
conduction. For areas corresponding to PVs and LAA, both
the diffusion coefficient and membrane potential were set to
zero. The simulations of two AF scenarios for each atrial image
effectively doubled the size of the dataset, bringing the total
number of image-based 2D atrial models in the dataset from 279
to 558 (244 real and 294 synthetic images).

Ablation lesions were simulated by setting values of the
membrane potential and diffusion coefficient to zero in small
circular areas corresponding to a catheter tip touching the tissue;
zero-flux boundary conditions were applied around such areas,
as well as the PVs and LAA.

The rotor’s tip—a focal point of its rotations—was tracked
during the simulations. The tips were identified as the
intersection of isolines of Vm and its time derivative (Fenton and
Karma, 1998; Roy et al., 2020):

V(r, n1t) = V(r, (n+ 1)1t) = Viso (3)

The value of Viso used in the tracking was 0.8.

2.4. Tissue Labelling Process
All 2D LA tissue images were labelled to represent common CA
strategies: (a) fibrosis-based, (b) PVI, and (c) rotor-based ablation
(Parameswaran et al., 2021). Each strategy was simulated in the

respective 2D LA tissuemodels. The simulations for each strategy
are illustrated in Figure 3. For fibrosis-based ablation (BIFA),
the border between healthy and fibrotic tissue was ablated. For
PVI, two approaches were used: one ablating each individual
PV, and another applying two large lesions around the left and
right pair of PVs (Parameswaran et al., 2021). For rotor-based
ablation, the tip of the rotor was identified (Equation 3) and
ablated. Each strategy was simulated twice, using 10 and 30
ms intervals between applying successive ablation lesions. The
simulation duration was restricted to 2,000ms and the maximum
percentage of ablated tissue was restricted to 40%. Note that
most simulations were not performed until 40% of the tissue
was ablated, with the rotors terminated by ablation at a much
earlier stage; this condition was introduced to avoid ablation by
critical mass reduction at the expense of substantially damaging
the LA, and practically was only fulfilled in a small number of
cases. At the end of the simulation, the CA strategy was defined
as successful if at least in one of the two trials AF is terminated.
Figure 3 illustrates the assignment of a label for a sample 2D LA
tissue based on a unique identification of successful CA strategy.

Two special cases were taken into consideration when

assigning the labels: (1) no CA success was reached in simulations
of some specific 2D LAmodels, (2)multiple CA strategies worked

in simulations of the same 2D LA model. In case 1, the tissues
with no identifiable label were discarded, reducing the initial
dataset of 558 samples to 457 (Scenario A+B). To account for
case 2, two different labelling methods were utilised. In the first,
further referred to as the minimum percentage method, the label
was assigned based on the successful CA strategy that resulted in
the minimum percentage of ablated tissue. The second, referred
to as class availability method, was introduced to make the
training set more balanced by prioritising CA strategies that were
scarcely represented in the set: first PVI, and then fibrosis-based
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FIGURE 3 | Simulations and identification of successful CA strategy for each 2D LA tissue model. Each CA strategy (a) Fibro, (b1) PVI 1, (b2) PVI 2, (c) Rotor was

simulated twice (at 10 and 30 ms ablation intervals). The strategy was defined as successful if at least in one of the two trials AF was terminated by the end of the

simulation. The horizontal arrow shows the time axis and the six panels under it are the voltage distributions in 2D LA tissue for successive moments of time, where

the yellow dots represent the ablated points. The last panel (end of simulation) reveals the difference in ablation patterns between the completed strategies. The green

tick indicates CA success, while the red cross indicates failure. In the example shown, the Rotor strategy appears to be the only successful one for the sample tissue,

and hence this set goes straight in the Rotor class. The bottom panels (under Training Set) show several examples of labelled tissues derived from this process.

ablation over the predominant rotor-based. A label generally
represented the most successful ablation strategy for a given
image/image-based 2D atrial model, but for some images more
than one CA strategy was successful in terminating AF. In such
cases, the label was chosen with the aim to create the most
balanced training set: PVI was the smallest class, and hence the
PVI label was assigned preferentially over Fibro and Rotor labels;
Fibro was the second smallest class, and hence it was assigned
preferentially over Rotor.

The breakdown of successful CA strategies, labelled using each
of the two methods described above, is shown in Table 1 for AF
Scenarios A and B (see section 2.3 above) and a combination of
both (A+B).

2.5. Convolutional Neural Network
To identify CA patterns, a classification algorithm was applied to
the labelled 2D LA tissues. The algorithm was constructed using
TensorFlow (Abadi et al., 2016), in conjunction with the Python
Keras library (Gulli and Pal, 2017; Chauhan and Ram, 2018).

The CNN architecture consisted of four 2D convolutions
made of 32 filters of size 3 × 3, followed by Rectified Linear
Unit (ReLU) activation and using a maxnorm constraint. The
convolution block was followed by a MaxPooling of pool size
2 × 2, a Flatten layer, and two Dense layers, the first of which
was made of 512 units and had ReLU activation and maxnorm
kernel constraint. This was followed by a Dropout layer at rate

TABLE 1 | Distribution of labelled 2D LA datasets by scenario (A,B,A+B), labeling

method (minimum percentage and class availability), and label class (PVI, Fibro,

and Rotor).

Scenario Labelling method Classes

PVI FIBRO ROTOR

min percentage 40(+4) 38(+4) 136(+4)
Scenario A

Class availability 64(+6) 70(+5) 80(+1)

Min percentage 35(+5) 38(+3) 143(+7)
Scenario B

Class availability 74(+6) 58(+3) 84(+6)

Min percentage 75(+9) 76(+7) 279(+11)
Scenario A+B

Class availability 138(+12) 128(+8) 164(+7)

The main values correspond to the training and validation dataset, while smaller values in

brackets correspond to the respective numbers of a separate test set.

0.9 and a softmax function. Due to the imbalance of classes we
employed the class weighting technique, available in the Keras
open-source library as an extra model parameter. This weights
the loss function during training based on the percentage of
samples in each class. The class weights were found for each
model using a scikit-learn package function based on technique
inspired by King and Zeng (2001). As suggested in Valova et al.
(2020), we used the Adam optimiser and a decay of 0.8 when

Frontiers in Physiology | www.frontiersin.org 5 May 2021 | Volume 12 | Article 674106

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Muffoletto et al. Personalised Prediction of Ablation Strategies

FIGURE 4 | Network performance for the minimum percentage labelling method without class weighting technique. Plots of accuracy and loss (left training, and right

validation) are shown for the best classifier trained on (1) Scenario A, (2) Scenario B, (3) Scenario A+B. Horizontal axis shows the epoch size from 0 to 500.

the validation loss, monitored at every 200 epochs, did not show
significant (1e−3) decrease.The maximum number of epochs
was set to 500, but the best classifier was usually found at an
earlier stage.

Some of the architecture characteristics (number of conv2D
layers, filter size) and hyperparameters (dropout rate, optimiser
initial learning rate, optimiser decay, rate of change patience)
were extensively tested before setting the final values listed above
and these results are shown in the (Supplementary Figure 1).

Classifiers were trained on 2D LA tissue models with
simulated (1) Scenario A only, (2) Scenario B only, and (3) a
combination of the two scenarios A and B, that we refer to as
Scenario A+B. Scenarios A and B were simulated separately, and
labels were assigned to images based on each scenario separately.
The CNN was then also trained separately, once for scenario A,
and once for scenario B. The combined scenario A+B did not
involve re-running the simulations or re-labelling the images, the
CNN was trained using labels produced in both these scenarios.
However, since using the same image with two different labels
would result in poor training of the CNN, an original binary
image was used with a label from scenario A, and an inverted
binary image (“negative”) was used with a label from scenario B.
It’s important to note that 2D LA images used as the CNN inputs
are the same in both Scenario A and B, and only difference in
the inputs comes from the ground truth labels—successful CA
strategies are different between the scenarios due to the change
in AF initiation protocol.

A stratified five-fold cross validation was applied with a train-
validation split of 80–20%. Prior to the splitting, 27 sets (9 real
+ 18 synthetic) were excluded from the original dataset to carry
out separated testing on unseen samples. This was performed
by selecting the best model out of the five obtained through
cross validation. Note that training-validation was performed on
amixture of real and synthetic images, and testing was performed
on a completely different test set of mixed images. Only one

(randomly selected) real image in the test set was used to generate
synthetic images, but the generation process ensured that latter
were significantly different from the real ones.

2.6. Experiments and Evaluation
Four classifiers for each AF scenario were trained using: (i)
the minimum percentage labelling method and without class
weighting, (ii) the class availability labelling method and without
class weighting, (iii) the minimum percentage labelling method
and with class weighting, (iv) the class availability labelling
method and with class weighting. These were evaluated using
accuracy and loss plots (Figures 4–7), as well as precision and
recall metrics (Supplementary Figures 4–7), ROC curves for
training and validation sets and confusion matrices for test sets
(Figures 8–11).

3. RESULTS

3.1. Network Performance on Training and
Validation Set
Performance of the CNN trained on 2D LA tissue models with
AF simulated according to the three scenarios (A, B, and A+B)
was evaluated for labels assigned using the minimum percentage
method (Figures 4, 6) and the class availability method
(Figures 5, 7). The classifiers were trained first without the class
weighting technique (Figures 4, 5), and then employing the latter
to provide a more balanced dataset in the training (Figures 6,
7). All figures show the learning curve representing CNN
classification accuracy and loss in each study. Additional plots
for precision and recall for each of these cases are provided in
Supplementary Figures 4–7. For each combination of scenarios
and labelling methods, we trained five different models using
fivefold cross-validation (see Methods) and presented results for
the best-performing of these models in terms of the highest
validation accuracy achieved over training. Table 2 provides a
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FIGURE 5 | Network performance for the class availability labelling method without class weighting technique. Plots of accuracy and loss (left training, right validation)

are shown for the best classifier trained on (1) Scenario A, (2) Scenario B, (3) Scenario A+B. Horizontal axis shows the epoch size from 0 to 500.

FIGURE 6 | Network performance for the minimum percentage labelling method with class weighting technique. Plots of accuracy and loss (left training, right

validation) are shown for the best classifier trained on (1) Scenario A, (2) Scenario B, (3) Scenario A+B. Horizontal axis shows the epoch size from 0 to 500.

summary of all classifier performances, showing that the accuracy
reaches 96–97% during training and 79–86% during validation.
Figures 8–11 also illustrate the performances in training and
validation for Scenario A using ROC curves.

3.1.1. Minimum Percentage Labelling Method
Figures 4, 6 show accuracy and loss during training and
validation for 2D LA tissues labelled using the minimum
percentage method with and without applying class weighting
to the loss function. In both cases, the training accuracy reaches
over 95% for all scenarios and the validation accuracy is generally
over 80% (Table 2). A rapid rise in accuracy and drop in loss after
very few epochs can be seen for all scenarios, but the loss curve
rises up again after ∼50 epochs, a sign that the network might
start to overfit. However, curves for accuracy in training and
validation both reach a plateau at this stage. The CNN classifier

performance in all scenarios is generally similar, although the
network trained on Scenario A with class weighting (Figure 6)
somewhat outperforms other classifiers, reaching accuracy of
86.50% during validation. The ROC curves for this scenario
(Figures 8B, 10B) are similar for the classifiers trained with
(AUC = 71.3%) and without (AUC = 72%) class weighting, but
there is a larger variation between single class performances in
the latter case (Figure 10B).

3.1.2. Class Availability Labelling Method
Figures 5, 7 show accuracy and loss during training and
validation for 2D LA tissues labelled using the class availability
method with and without applying class weighting to the loss
function. In both cases, the training accuracy reaches over 95%
for all scenarios, and the validation accuracy is also about 80%
across the three scenarios. The same overfitting behaviour is
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FIGURE 7 | Network performance for the class availability labelling method with class weighting technique. Plots of accuracy and loss (left training, right validation) are

shown for the best classifier trained on (1) Scenario A, (2) Scenario B, (3) Scenario A+B. Horizontal axis shows the epoch size from 0 to 500.

FIGURE 8 | ROC curves and confusion matrix for classifier trained on Scenario A employing the minimum percentage labelling method without the class weighting

technique (cf. Figure 4–Table 2 first row). The ROC curves show the performance of single-class classifications in training (A) and validation (B) based on true

positive and false positive rates. The confusion matrix (C) shows the performance on the test set of the same classifiers. Values on the diagonals correspond to the

percentage of labels predicted successfully, while others represent the percentage of unsuccessful predictions.

observable after a few epochs in the loss function. The ROC
curves illustrated for Scenario A (Figures 9B, 11B) are similar
between the classifiers trained with (AUC = 87.67%) and without
(AUC = 88%) class weighting, but the variation across classes is
significantly lower and single class performance is significantly
higher when compared to the respective values for the minimum
percentage labelling models (Figures 8B, 10B).

3.2. Network Performance on Unseen Test
Set
The CNN classifiers trained on 2D LA tissue models with
simulated Scenario A, labelled using the minimum percentage
and class availability techniques, were tested on a small unlabelled
dataset of 2D LA images. The confusion matrix for the classifier
trained using the minimum percentage labelling technique and
no class weighting (Figure 8C) shows that generally the CNN
learns to correctly predict the rotor-based CA strategy, and

mislabels the other two classes as Rotor (in all cases for PVI).
This is likely due to the predominance of rotor labels (seeTable 1,
min percentage row), which makes the classifier heavily biased
toward this class. This imbalance in the training dataset was
the primary reason for the introduction of the second labelling
method. The behaviour is similar when using the class weighting
technique (Figure 10C), but in this case there is slightly less
variation between classes.

A significant improvement in testing was achieved by using
the CNN classifiers trained on 2D LA tissues labelled using the
class availability technique (Figures 9C, 11C). Here the values
of prediction probability across the diagonal are generally higher
than the external ones, which indicates a larger number of correct
predictions. Although the Rotor class is still predominant (the
rotor-based CA strategy is always correctly predicted in both
classifiers with and without class weighting), the probability of
correct predictions for the PVI and fibrosis-based CA strategies
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FIGURE 9 | ROC curves and confusion matrix for classifier trained on Scenario A employing the class availability labelling method without the class weighting

technique (cf. Figure 5–Table 2 third row). The ROC curves show the performance of single-class classifications in training (A) and validation (B) based on true

positive and false positive rates. The confusion matrix (C) shows the performance on the test set of the same classifiers. Values on the diagonals correspond to the

percentage of labels predicted successfully, while others represent the percentage of unsuccessful predictions.

FIGURE 10 | ROC curves and confusion matrix for classifier trained on Scenario A employing both the minimum percentage labelling method and the class weighting

technique (cf. Figure 6–Table 2 second row). The ROC curves show the performance of single-class classifications in training (A) and validation (B) based on true

positive and false positive rates. The confusion matrix (C) shows the performance on the test set of the same classifiers. Values on the diagonals correspond to the

percentage of labels predicted successfully, while others represent the percentage of unsuccessful predictions.

FIGURE 11 | ROC curves and confusion matrix for classifier trained on Scenario A employing both the class availability labelling method and the class weighting

technique (cf. Figure 7–Table 2 fourth row). The ROC curves show the performance of single-class classifications in training (A) and validation (B) based on true

positive and false positive rates. The confusion matrix (C) shows the performance on the test set of the same classifiers. Values on the diagonals correspond to the

percentage of labels predicted successfully, while others represent the percentage of unsuccessful predictions.
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TABLE 2 | Training and validation accuracy of the best classifier for each scenario.

Scenario Labelling method Class

weighting

Model accuracy

Training Validation

X 96.88% 81.39%
min percentage

96.49% 86.50%
Scenario A

X 96.88% 79.36%
class availability

97.67% 79.84%

X 97.49% 80.62%
min percentage

96.92% 81.40%
Scenario B

X 97.69% 82.17%
class availability

97.11% 79.84%

X 96.61% 82.56%
min percentage

96.22% 78.68%
Scenario A+B

X 96.71% 82.56%
class availability

96.71% 82.17%

Employment of different labelling methods and use of the class weighting technique are

reported.

is relatively high. The predictions for the classifier with class
weighting are superior (Figure 11C), with 100% success in
predicting Rotor and Fibro classes, and the misclassification
mostly found in distinguishing between PVI and Fibro classes.
This case is further illustrated in Table 3 which provides an
insight into the classification output of this CNN. A similar table
including predictions obtained by the classifier trained using the
minimum percentage labelling method and class weighting (cf.
Figure 10C) Is shown in Supplementary Table 1.

The confusion matrices show that the classifier may
make better predictions between two classes, specifically
Rotor vs. other classes. Hence, we also performed binary
classifications, using CNNs with class weighting and both
labelling methods, trained for the following combinations of
labels (successful CA strategies): Rotor-Fibro, Rotor-PVI, PVI-
Fibro (see Supplementary Figures 2, 3).

4. DISCUSSION

This work builds upon previous proof-of-concept results that
deep neural networks can learn from computational simulations
of atrial electrical activation, to identify CA strategies (Muffoletto
et al., 2019). This earlier study was based on atrial simulations
run on synthetic 2D tissues with simple, randomly assigned
geometric structures representing fibrosis. The current study
advances this approach to utilise patient-specific imaging data
and make personalised predictions of CA strategies. Specifically,
we build a CNN and train several classifiers that, after careful
clinical validation, can help tailor CA strategies to individual AF
patients, which is currently one of the ultimate aims of research in
the field of AF. To achieve this, we first process a large LGE-MRI
dataset (Section 2.1) that we also augment with a synthetic dataset

(section 2.2) to provide more variability in the CNN training.
We then train the CNN classifiers using a combination of real
and synthetic images and labels produced by image-basedmodels
of AF and CA therapy. We consider three main CA strategies
(PVI, rotor-based and fibrosis-based) and also two AF scenarios
that represent early- and late-stage AF. The advancements on our
previous work (Muffoletto et al., 2019) include: (i) the use of real
patient images to generate atrial models and train the CNN, (ii)
the use of a wider range of simulated AF scenarios and ablation
strategies to produce more accurate labels for the images, (iii)
optimisation of the CNN parameters to produce higher accuracy
in training and validation, and (iv) more in-depth analysis of the
CNN classification between the CA strategies.

The ground truth labels for the images were assigned based
on successful termination of AF by ablation in the image-based
2D LA models. If multiple successful CA strategies for the same
LA model were identified, we used the minimum percentage (in
terms of ablated tissue) method which prioritises less invasive
CA strategies. Classification results (Figure 4) show that this
method achieves similar performance across two different AF
scenarios (A and B) and their combination (A+B). Values for the
accuracy during validation on Scenario A (81.39%) and Scenario
A+B (82.56%) are particularly promising but when analysing the
ROC curve in Figure 8B, we can observe a high variation of the
AUC values between the classes. This is further reflected in the
confusion matrix for this classifier (Figure 8C), which predicted
rotor-based CA as the most successful strategy even in cases
where simulations showed that PVI and fibrosis-based CA were
more suitable strategies.

For this reason, the same classification experiments were
repeated using a different labelling technique, referred to as
class availability method, which prioritises the assignment of
ground truth labels based on ranking of least common successful
strategies in the simulations (in the order: PVI, Fibro, and Rotor).
This technique allowed us to produce a more balanced training
dataset and to achieve a training accuracy of 96–97% and a
validation accuracy of 79–82% across scenarios (Figure 5 and
Table 2). The ROC curve (Figure 9B) shows higher AUC values
for all classes compared to the first labelling method, and a better
performance across them, which is also visible in the confusion
matrix for the testing (Figure 9C), where values of prediction
per class are promising, except for PVI that is often mislabelled
as Rotor. Note that PVI had low success rate in the 2D atrial
model simulations, which may be due to the PVs contributing
to AF mechanisms primarily via ectopic triggers, rather than via
rotors considered in the current study. Expanding the models
to account for the PV triggers, and hence naturally increasing
the number of images labelled as PVI class, should improve the
prediction for this class.

To provide a more balanced distribution of labels (successful
CA strategies) in the dataset, we used two different approaches:
(1) a stratified 5-fold cross validation which can be considered
as a valid alternative to bootstrapping (Kohavi, 1995), and (2)
weighting of the loss function based on the percentage of samples
in each class, a common approach for unbalanced datasets (Thai-
Nghe et al., 2010; Rosenberg, 2012; Huang et al., 2013). The
addition of class weighting to the minimum percentage labelling
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TABLE 3 | Table of test set predictions given by classifier trained on Scenario A using class availability labelling technique and class weighting (cf. Figure 7–Table 2 fourth

row–Figure 11).

Id Total labels Unique label Predictions

PVI FIBRO ROTOR

P10_scenarioA PVI PVI 0.3201 0.2381 0.4418

P02_scenarioA FIBRO,ROTOR FIBRO 0.3596 0.5352 0.1052

OIR_scenarioA PVI,FIBRO,ROTOR PVI 0.2839 0.4492 0.2668

38C_scenarioA FIBRO FIBRO 0.1917 0.4070 0.4014

s_26F_scenarioA PVI PVI 0.3997 0.4124 0.1879

s_11F_scenarioA ROTOR ROTOR 0.2628 0.0759 0.6613

s_9F_scenarioA PVI,FIBRO,ROTOR PVI 0.3552 0.4212 0.2236

s_3I_scenarioA PVI,FIBRO,ROTOR PVI 0.4284 0.4216 0.1500

s_10F_scenarioA FIBRO,ROTOR FIBRO 0.3968 0.4015 0.2017

s_9G_scenarioA FIBRO,ROTOR FIBRO 0.3691 0.4409 0.1899

s_4I_scenarioA FIBRO,ROTOR FIBRO 0.4020 0.4162 0.1818

s_19F_scenarioA PVI PVI 0.4334 0.2922 0.2745

The Total Labels column contains all the successful strategies identified through the simulations, the Unique Label column shows the final ground truth label assigned based on class

availability technique.

The Predictions column contains the classification output for each class.

method doesn’t lead to a clear advantage (Figure 9C). However,
the addition of class weighting to the class availability labelling
method shows a substantial improvement in the prediction of
Rotor and Fibro classes (100%) (Figure 11C).

Although we have implemented several techniques to improve
balance of the dataset, one of the limitations of this study remains
the high variation of predictive ability of the classifiers across the
three classes. In particular, the presence of such a low success rate
of the PVI class in the real set may be explained by the facts that
(i) the PVs in LA-SUM disks (Williams et al., 2017) are small
and cannot sustain rotors around them, and (ii) PVs contribute
to AF mechanisms mainly by sustaining its triggers that were
not accounted for in our models. Further work should include
the collection of more patient-specific data and its employment
for generation of more synthetic data that specifically target the
enhancement of the PVI and fibrosis subsets.

It would also be of crucial importance to apply more detailed
3D atrial models that include MRI-derived atrial geometries
and region-specific electrophysiology (Morgan et al., 2016;
Varela et al., 2017; Roy et al., 2018, 2020). Although the rotor
dynamics shows qualitative similarities between 2D and 3D atrial
models, such as anchoring of the rotors to large fibrotic patches
(Supplementary Figure 8), detailed 3D models will be needed to
achieve true patient-specific predictions. The reason for using 2D
atrial simulations in our study was the efficiency in providing
the needed proof of concept: (i) running 3D atrial simulations
for several hundred cases would take years of simulations on a
supercomputer, which would be a gross misuse of computational
power; (ii) standardised 2D unfolded atrial images allowed us
to easily generate a large number of additional synthetic images,
which is crucial for training CNNs. Moreover, (iii) our previous
work has shown that 3D atrial wall thickness is distributed
relatively evenly in the LA outside of PVs and slow conduction
in fibrotic areas is the main determinant of the rotor dynamics

(Roy et al., 2018). Hence, image-based 2D atrial models provided
a sensible balance between realistic atrial details (such as fibrotic
distribution) and computational efficiency (primarily the ability
to run a large number of simulations and train the CNN).

Another limitation includes the size of the unseen test set,
which was kept small to avoid the subtraction of data from
the training set. More substantial and more balanced training
and test sets should enable achieving higher accuracy in the
classification using the minimum percentage labelling method,
which is more clinically relevant, as it encourages less invasive
CA strategies. The second labelling technique based on the class
availability was introduced to even out the distribution of the
three classes, and should be considered as a proof of concept.
Finally, it’s worth noting that a significant proportion of CA
simulations were unsuccessful (101), and other CA strategies may
need to be considered in the future for such cases.

Boyle et al. (2019) have identified patient-specific targets for
ablation from LGE-MRI based computational models of the 3D
atria and demonstrated the feasibility of this approach to guide
patient treatment in a prospective study of 10 patients. The
locations of rotors sustaining AF in their models was strongly
correlated with the location of fibrotic areas identified from LGE-
MRI. Our group have also reported similar results (Roy et al.,
2020). Such studies provide further evidence to the value of
research on rotor-based and fibrosis-based to AF ablation, as well
as of computational models in such research. Themain novelty of
the current study is the application of CNNs to make predictions
from a combination of imaging andmodeling data. While image-
based modeling can provide useful information about structure-
function relationships during AF, its downsides include (i) huge
computational power needed to simulate multiple AF scenarios
in the detailed 3D atrial models, and (ii) the need to rerun
the models each time novel data is integrated into them, which
makes the application of models in a clinical setting impractical.
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FIGURE 12 | Proposed workflow for assigning labels to patient MR images based on image-derived 3D simulations of atrial electrical activation. Similar to the current

study, labels would be given to each patient dataset according to the rate of success for several AF ablation scenarios. Once passed through the layers of a CNN, the

output would be the prediction of a suitable CA strategy for a given patient.

The CNN can overcome these limitations, and - after careful
validation and integration of clinical data—could provide a fast
and flexible tool to help predict ablation strategies for a large
patient population.

PVI is the cornerstone of AF ablation procedures. However,
while PVI has proven highly effective in treating paroxysmal
AF patients, ablation of more challenging persistent AF patients
often requires additional lesions beyond PVI; even after
successful termination, long-term success of PVI in persistent
cases is highly suboptimal. Hence, the search for novel ablation
targets has been a focus of research for two decades, with both
rotor and fibrosis based ablations showing the greatest promise
(Parameswaran et al., 2021), and considering them as potential
candidates in our study along with PVI is a logical and timely
step in this research. In regards to fibrosis-based ablation, it is
worth noting that Yang et al. (2017) have shown that there was
little long-term benefit in substrate modification compared to
PVI in non-paroxysmal AF patients. However, the study provides
no direct evidence that their approach targeted fibrosis, as they
targeted low-voltage areas that are known to have poor spatial
correlation with fibrotic areas. In regard to rotor-based ablation,
Tilz et al. (2020) have shown that PVI had similar effectiveness
to FIRM-guided ablation in paroxysmal AF patients. However,
(i) their study provided no evidence that the same applies to
persistent AF patients and (ii) FIRM is known for its limitations
in identifying rotors, and therefore the study points to the
limitations of the FIRM approach specifically, rather than of the
rotor-based approach in general. Hence, the question on the role
of ablating fibrosis and rotors in persistent AF patients remains
open; results of the ongoing DECAAF II trial should provide
more direct evidence for the former.

The strength of the modelling approach used in this study is
in its ability to test ablation procedures that target rotors and
fibrosis with tractable properties – rather than markers believed
to have some correlation with the presence of rotors (FIRM) and

fibrosis (low-voltage areas). While differences betweenmodelling
and clinical data are inevitable, modelling enables exploring
promising approaches to AF therapy in depth that may not be
achievable in a purely clinical setting. Specifically in our study,
this allows us to (i) simulate ablation of rotors and fibrosis with
tractable properties and (ii) provide a proof-of-concept that a
CNN can be trained based on a combination of structural (patient
MRI) and functional (modelling) data to make predictions about
suitable ablation strategies. The model in this case only provides
a label (a suitable CA strategy) for a patient image, which is used
to train the CNN. This builds confidence in the computational
approach – which can then be used for images labelled using
data from patients (should such data be available), and help make
clinically valid predictions. Moreover, the approach is restricted
to the three strategies considered in the current study, and
can include any other promising ablation strategies, with the
CNN helping to choose the most suitable one for each patient.
It is important to stress that all stages of this approach need
to undergo careful clinical validation before it can be applied
in a clinical setting. Importantly, any additions to the gold-
standard PVI procedure should be treated with extra care and
be aimed at improving, rather than complicating the existing
clinical approaches.

In conclusion, this work proposes a unique novel approach
to personalisation of AF ablation therapy, which is based on
a combination of patient imaging, image-based modelling and
deep learning. The importance of a patient-specific approach to
AF therapy is being increasingly recognised (Cochet et al., 2018;
Roney et al., 2018; Parameswaran et al., 2021), and we believe
that such advanced image-based computational technologies
will play an important role in achieving such personalisation
in the future. Out results show that deep neural networks
can provide a sensible approach to predict a suitable ablation
strategy for the considerably high number of people suffering
from AF. Ultimately, our aim would be to directly apply a
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similar deep learning approach to 3D datasets that combine
information from volumetric patient MRI scans with the image-
derived 3D atrial model simulations, as illustrated in Figure 12.
Additional validation for the network predictions should be
performed against outcomes of actual CA procedures applied to
the patients, building up further toward clinical application of
this approach.
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