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The formulation of in silico biophysical models generally requires optimization strategies
for reproducing experimentally observed phenomena. In electrophysiological modeling,
robust nonlinear regressive methods are often crucial for guaranteeing high fidelity
models. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs),
though nascent, have proven to be useful in cardiac safety pharmacology, regenerative
medicine, and in the implementation of patient-specific test benches for investigating
inherited cardiac disorders. This study demonstrates the potency of heuristic techniques
at formulating biophysical models, with emphasis on a hiPSC-CM model using a novel
genetic algorithm (GA) recipe we proposed. The proposed GA protocol was used to
develop a hiPSC-CM biophysical computer model by fitting mathematical formulations
to experimental data for five ionic currents recorded in hiPSC-CMs. The maximum
conductances of the remaining ionic channels were scaled based on recommendations
from literature to accurately reproduce the experimentally observed hiPSC-CM action
potential (AP) metrics. Near-optimal parameter fitting was achieved for the GA-fitted
ionic currents. The resulting model recapitulated experimental AP parameters such as
AP durations (APD50, APD75, and APD90), maximum diastolic potential, and frequency
of automaticity. The outcome of this work has implications for validating the biophysics
of hiPSC-CMs in their use as viable substitutes for human cardiomyocytes, particularly
in cardiac safety pharmacology and in the study of inherited cardiac disorders. This
study presents a novel GA protocol useful for formulating robust numerical biophysical
models. The proposed protocol is used to develop a hiPSC-CM model with implications
for cardiac safety pharmacology.

Keywords: biophysical model, genetic algorithm, hiPSC-derived cardiomyocytes, computational biology, cardiac
electrophysiology

INTRODUCTION

High fidelity numerical biophysical models have the potential to provide the missing mechanistic
link between the experimental observations and their clinical implications. Formulating such
models are primarily optimization problems with the experimental data as targets. Metaheuristic
algorithms, such as genetic algorithms (GAs; Smith et al., 1995), are well suited for this
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task due to their inherent stochastic and judicious exploration
of the solution space. In electrophysiological studies, single- and
multi-cell mathematical models have aided efforts at elucidating
various biological processes, such as perception, cognition, and
cardiac function, which is the focus of this study.

Human induced pluripotent stem cells (hiPSCs), since their
discovery by Takahashi et al. (2007), have been instrumental
at the development of ethically sound patient-specific human
cell and tissue models. These models have, in turn, allowed
scientists to investigate the underpinnings of congenital and
drug-induced disorders. A prominent derivative of this cell type is
the human induced pluripotent stem cell-derived cardiomyocyte
(hiPSC-CM). hiPSC-CMs have recently proven to be both useful
and promising in cardiac safety pharmacology, where these
cells are adopted as test benches for studying drug effects on
cardiac function (Gintant et al., 2019). hiPSC-CMs have also
been used to better understand drug-induced and inherited
cardiac disorders such as long QT syndrome (Moretti et al.,
2010; Egashira et al., 2012) and catecholaminergic polymorphic
ventricular tachycardia (Fatima et al., 2011; Jung et al., 2012).
Prior to the advent of hiPSC-CMs, researchers often relied
on animal models to make extrapolations of disease effects in
human cells. This route possesses a significant caveat of dissimilar
genotypic representation by these models. While freshly excised
human cardiac cells are the ideal candidates for inductive
human cardiac studies, obtaining these uncommon cells is highly
invasive relative to hiPSC-CMs, which can even be derived from
superficial somatic cells such as skin cells. Although hiPSC-
CM is apparently a convenient choice for extensive long- and
short-term cardiac studies, there are some deficiencies in the
electrophysiological properties. There are ongoing attempts by
scientists to better understand these cells and validate them as
viable substitutes for human cardiomyocytes. These attempts are
mainly in vitro and in silico. For instance, the Comprehensive
in vitro Proarrhythmia Assay initiative, first presented in 2013,
stipulates research directions around the use of hiPSC-CM
experimental data and mathematical modeling in proarrhythmic
risk assessment (Gintant et al., 2017).

Since the pioneering work by Hodgkin and Huxley (1952)
involving the formulation of a biophysical mathematical model
of the squid giant axon, there have been numerous attempts at
creating biophysical models for different cell types (Di Francesco
and Noble, 1985; Luo and Rudy, 1994; Courtemanche et al., 1998;
Kurata et al., 2002). These models have been helpful at elucidating
the electrical dynamics of native cardiomyocytes. Recently, there
have been few attempts at formulating in silico hiPSC-CM models
(Paci et al., 2013, 2018; Koivumäki et al., 2018; Kernik et al.,
2019). However, the inherent variability in these cells pose
challenges to deriving formulations that could reproduce the
wide range of behaviors of hiPSC-CMs. One recent approach is
to combine experimental data from multiple labs to derive model
formulations on averaged data (Kernik et al., 2019). However,
care must be taken while combining data from disparate sources
because the inconsistencies in cell origins (Hwang et al., 2015),
culturing environments, experimental protocols and conditions,
as well as cell maturation levels (Narsinh et al., 2011) may
introduce unwanted deviations in the model. This study joins

in the efforts at formulating a robust in silico hiPSC-CM
model based mostly on the experimental data from a single
lab for maintaining phenotypical consistency. In achieving this,
we present a novel customizable GA protocol employed for a
near-optimal fitting of model ionic current formulations to the
experimental data.

Genetic algorithm is a heuristic optimization method inspired
by Darwinian evolution and natural selection (Smith et al.,
1995). The process, similar to the biological counterpart,
involves population (i.e., sets of possible solutions termed
chromosomes) initialization to crossover, which involves a
combinatorial shuffling of parameters (termed genes) about a
specified number of pivot points (termed crossover points)
between two parent solutions to generate offspring. Offspring
solutions may then undergo mutation, typically done in an
additive or multiplicative fashion. A fitness criterion must be
defined to facilitate the propagation of near-optimal solutions
over the specified number of iterations termed generations.
Metaheuristic optimization methods offer resilience against local
optima and saddle point convergence relative to gradient-based
nonlinear optimization methods, such as the Newton–Raphson
and Levenberg–Marquardt methods (Rhinehart, 2016). GA-
based parametrization has been used to fine-tune mathematical
models of murine myocytes (Bot et al., 2012; Groenendaal et al.,
2015) and canine atrial cells (Syed et al., 2005) to incorporate
cell-specific experimental data.

Our previous work (Akwaboah et al., 2020) demonstrated
the feasibility of using GA to fit cardiac cell biophysical model
formulations. In this study, we demonstrate how the GA-based
ionic current fitting outcomes can be further integrated into the
biophysical numerical model development process. An improved
GA-based parametrization protocol was developed to build a
complete in silico biophysical model of a hiPSC-CM.

MATERIALS AND METHODS

Preparations of hiPSC-CMs
Human induced pluripotent stem cells usage was approved by
the Institutional Stem Cell Research Oversight committee at
Masonic Medical Research Institute. hiPSCs (from WiCell) were
maintained on growth factor-reduced Matrigel coated plates
in E8 medium with E8 supplement. Cardiac differentiation
was induced by 6 µM CHIR99021, 10 ng/ml Activin A, and
5 nM rapamycin in RPMI1640 medium containing B27 (minus
insulin) and 50 µg/ml L-ascorbic acid (cell culture tested
powder) as the basal medium. After 24 h, media was changed
in the same basal medium. The following day, cells were
kept in RPMI1640/B27 (-insulin) with the addition of 5 µM
XAV939 and 10 µM KY0211 for days 2–6, changing the media
every other day. Afterward, cells were kept in RPMI1640/B27
(+insulin) with 50 µg/mL L-ascorbic acid for days 8–10, followed
by a purification medium, RPMI 1640 without glucose, and
supplemented with 4 mM sodium L-lactate. Cells were kept in
the purification medium for days 12–14, then back to the basal
medium of RPMI/B27(+insulin) supplemented with 20 ng/ml
triiodothyronine (T3) and 1 µM dexamethasone until day 30.
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FIGURE 1 | Experimental data IV plots. (A) fast sodium current (INa); (B) transient outward potassium current (Ito); (C) delayed rectifier potassium current (IKr);
(D) L-type calcium current (ICaL); and (E) Hyperpolarization-activated current (If). The errors bars represent the experimental standard deviations from multiple cell
recordings.

For single myocytes, the monolayers were then dissociated
around day 25 with 0.05% trypsin, 1 mg/ml collagenase II, and
plated onto Matrigel coated dishes. All voltage clamp recordings
were made 5 days after recovery. Experiments were typically
performed on hiPSC-CMs at least 20 days post-differentiation.

Voltage Clamp Recordings
Whole-cell patch clamp recordings were obtained for five ionic
currents, namely: fast sodium current, INa; transient outward
potassium current, Ito; L-type calcium current, ICaL; rapid
delayed rectifier potassium current, IKr; and hyperpolarization-
activated current, If. Figure 1 presents the experimental current-
voltage (IV) plots for all five currents.

INa was measured as described previously (Goodrow et al.,
2018). Briefly, the bath solution consisted of 2 mM CaCl2, 10 mM
glucose, 1 mM MgCl2, 105 mM N-Methyl D Glucamine, 40 mM
NaCl, and 10 mM HEPES free acid. The pH was adjusted to 7.4
with HCl. Also, a 300 µM CdCl2 is added to block the calcium
currents which may interfere with INa recording. The pipette
solution was composed of 1 mM MgCl2, 15 mM NaCl, 5 mM
KCl, 120 mM CsF, 10 mM HEPES, and 10 mM EGTA. Before the
experiments, 5 mM Na2ATP was added, and the pH was adjusted
to 7.2 by the addition of CsOH. INa was recorded by applying
command voltages (25 ms-long pulses) in steps of 5 mV over the
range of –80 – +35 mV from a holding potential of –120 mV. All
INa measurements (n = 8–15) were taken at 20◦C and a lowered
extracellular (bath) sodium concentration of 40 mM to ensure
an adequate voltage control. Temperature and concentration
extrapolation facilitated by the Q10 (temperature adjustment
factor) correction and Goldman–Katz constant field equation was
predicted by Goodrow et al. (2018) to be a factor of 7 and was
subsequently adopted in the INa curve fitting. More details about
the INa experimental protocol can be found in Goodrow et al.
(2018). IKr was recorded as described previously in Treat et al.
(2019). In recording the potassium currents, the conventional K+
pipette solution of 90 mM K+-aspartate, 45 mM KCl, 10 mM
NaCl, 1 mM MgCl2, 10 mM HEPES, 5 mM EGTA, and 5 mM
MgATP, with a pH of 7.2 (maintained by adding KOH), was used.
IKr was recorded by applying 300 ms-long test pulses between
–40 and +60 mV in steps of 20 mV from a –80 mV holding
potential as described in Doss et al. (2012). ICaL was recorded
using 300 ms-long test pulses applied between –40 and +60 mV

in steps of 10 mV from a holding potential of –40 mV. Ito
was measured as described in Cordeiro et al. (2013). Briefly,
the voltage clamp protocol consisted of a holding potential of –
80 mV, followed by a brief –50 mV potential to ensure that all
sodium channels were inactivated. This is important as Ito closely
follows the depolarization facilitated by Na+ influx. Test pulses
were then applied in steps of 10 mV from –40 to +50 mV for
each clamp voltage. The half-inactivation voltage of Ito, V1/2 =

−41.1± 0.2 mV, and a slope, k = 6.68 ± 0.19, were used in
our model based on previous studies (Cordeiro et al., 2013). If
was recorded using a holding potential of –40 mV, followed by
pulses from –110 to –40 mV in steps of 10 mV.

All voltage clamp recordings were made using a MultiClamp
700A (Molecular Devices, Sunnyvale, CA, United States). Whole
cell patch pipettes were made from glass capillary tubes (1.5 mm
O.D., Fisher Scientific, Pittsburg, PA, United States) and pulled
on a gravity puller (Narishige Corporation, East Meadow, NY,
United States). The resistance ranged from 1.0 to 3.0 M�
and electronic compensation of series resistance was applied
(∼60–70%). Capacitance of the hiPSC-CMs was measured by
applying –5 mV voltage steps. Signals were acquired at sampling
rate of 10–25 kHz, filtered at 4–6 kHz, and digitized with a
Digidata 1322 converter (Molecular Devices, Sunnyvale, CA,
United States). Drugs were rapidly applied to the cell using a
four-barrel quartz micromanifold (ALA Scientific Instruments
Inc., Westbury, NY, United States) placed 500 µm from the cell.
Acquisition and analysis were performed using the pClamp9
software. All hiPSC-CM experiments were performed at 36◦C,
except peak INa which was recorded at room temperature (20◦C).

Pooled data are presented as Mean± SEM. Statistical analysis
was performed using an ANOVA followed by a Student–
Newman–Keuls test using the SigmaStat software.

Mathematical Model of hiPSC-CM
Formulations from six existing cardiac cell models were
adopted based on being representative of human cardiomyocyte
electrophysiology and/or reproducing spontaneous activity. The
formulations of five key currents (INa, Ito, ICaL, IKr, and If)
were optimized by GA based on the experimental data acquired
in our lab. The rest of the current formulations, namely,
ultrarapid, and slow delayed potassium rectifier currents (IKur
and IKs), sodium-calcium exchanger current (INCX or INaCa),
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sodium-potassium exchange pump current (INaK), calcium pump
current (IpCa), background sodium and calcium currents (IbNa
and IbCa), acetylcholine-activated inward-rectifying potassium
current (IKAch), and inward rectifier current (IK1), were adjusted
through proportional scaling based on published literature. The
patch clamp experiments in our and other laboratories have
revealed a very low to negligible IK1 in hiPSC-CMs (Doss et al.,
2012; Bett et al., 2013; Vaidyanathan et al., 2016). Similarly, most
of the hiPSC-CMs in our lab do not express IKs. The experimental
study by Ma et al. (2011) also reported IKs in only five out
of 16 cells, and its role in AP repolarization was insignificant.
Therefore, we did not include IK1 and IKs in the GA-based
optimization. The INa formulation was adopted from the Luo–
Rudy model (Luo and Rudy, 1994), which is a widely adopted
mammalian ventricular myocyte model formulated based on the
Hodgkin–Huxley formalism. The Ito formulation was adopted
from the Grandi–Pandit human atrial cell model (Grandi et al.,
2011) and modified based on the experimental data acquired
in hiPSC-CMs by Cordeiro et al. (2013). The If formulation
was adopted from the human cardiac Purkinje cell model by
Stewart et al. (2009). ICaL and IKr were formulated based on the
mammalian sinoatrial nodal cell model by Kurata et al. (2002).
The choice of this model is due to the inherent automaticity
exhibited by hiPSC-CMs similar to that of the nodal cells. The
intracellular calcium dynamics in hiPSC-CMs is similar to the
nodal cells due to the lack of a mature T-tubules structure
(Li et al., 2013). Therefore, the intracellular calcium handing
[involving the Ca2+ release and uptake fluxes between the
sarcoplasmic reticulum (SR) and the cytosol as well as the intra-
SR Ca2+ transfer flux occurring between the junctional SR and
network SR] was adopted from the Kurata model as well. Figure 2
presents a schematic of our hiPSC-CM model depicting the
constituent ionic currents and fluxes. Table 1 lists the references
to the adopted ionic current formulations. The transmembrane

TABLE 1 | Summary of sources (References) to adopted model formulations.

Ionic current(s) Formulation source

IKur, INaCa, INaK , IpCa, IbNa, IbCa, IKs Courtemanche et al., 1998

INa Luo and Rudy, 1994

IKr, IKACh Kurata et al., 2002

ICaL Kurata et al., 2002; ten Tusscher et al., 2004

Ito, IK1 Grandi et al., 2010

If Stewart et al., 2009

voltage, Vm, is given by the following first order differential
equation:

Cm
dVm

dt
= −

∑
i

Iioni (1)

where, Cm is the membrane capacitance and Iioni is an
instance of the 14 ionic current formulations constituting the
model in this study.

Numerical Implementations: Ionic
Current Formulations and Whole Cell
Integration
In the in silico implementation of current formulations,
computational equivalents of the experimental voltage clamping
protocols for the five ionic currents mentioned earlier were
implemented. An initial forward Euler implementation was done
for all five currents; various time steps were tried, where a
sufficiently small time-step for computational stability meant a
prolonged runtime, as in the case of the rapid INa and ICaL
currents, we deferred to an adaptive solver. The INa model
was simulated using the implicit backward difference (BDF)
integration (Iserles, 2008) by implementing voltage test pulses
from –80 to +35 mV in the steps of 5 mV with a duration

FIGURE 2 | Schematic of the hiPSC-CM model depicting the major ionic currents and fluxes.
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of 25 ms (similar to the experimental protocol). The peak
inward current values were then identified and used to produce
IV plots. The BDF employed an adaptive computational time-
step; where signal gradients were high (as in the case of the
rapid depolarization), a suitably small time-step is automatically
adopted and vice versa. This allowed for an accelerated
computational runtime with a minimal approximation error in
single run and multi-generational GA fitting processes. The IKr
voltage clamp simulations relied on a forward Euler integration
with a computational time-step of 0.2 ms. The chosen time values
ensured a trade-off between high resolution time discretization
and extended time spans. Voltage pulse intensities applied from
a –80-mV holding potential ranged from –40 to +60 mV
in steps of 20 mV at a 300 ms pulse duration. Peak IKr
tail currents were measured at –50 mV. Voltage clamping for
ICaL was simulated using the implicit, adaptive time step, BDF
integration. The characteristic equations were modified based on
ten Tusscher et al. (2004) to allow the dependence on a dynamic
Ca2+ reversal potential, rather than the fixed-Ca2+-potential
formalism adopted in the original Kurata model (Kurata et al.,
2002). Application of 500 ms voltage pulses ranging from –40 to
+60 mV were applied from a holding potential of –30 mV, similar
to the experimental protocol. Ito voltage clamp simulations were
performed by the explicit forward Euler integration with a fixed
time step of 0.5 ms. Voltage pulse intensities applied from a
holding potential of –80 mV followed a brief –50 mV potential
(as described in the experimental protocol) ranged from –40 to
+50 mV in steps of 10 mV. Pulse duration of 500 ms was adopted.
If implementation was executed by the forward Euler integration
with a fixed time step of 10 ms. Voltage pulses that are 500 ms
long were applied from a holding potential of –40 mV over a
range of –110 to –40 mV in 10 mV increments.

We performed whole cell simulations using the implicit
Radau adaptive integration method provided by the solve_ivp
module in the SciPy python package. Alternatively, we
implemented a faster C/C++ version, where a forward
Euler integration was employed.

To enable the pacing of the model by an external stimulus of
varying frequencies, the spontaneous firing of APs was disabled
by decreasing the maximum conductance of If by 50%. The effects
of adrenergic stimulation using isoproterenol were simulated by
altering the maximum conductance of five currents as described
previously (Shah et al., 2019). Briefly, the conductance of
L-type Ca2+ channel (ICaL), Na+/K+ pump (INaK), Na+/Ca2+

exchanger (INaCa), and SR Ca2+-ATPase (SERCA) were up-
regulated by 100, 30, 30, and 20%, respectively, while IK1 was
down-regulated by 20%. The effects of cholinergic stimulation
using acetylcholine (ACh or CCh) were simulated by scaling
the maximum conductance of IKACh by 200%. The effects of
4-aminopyridine (4-AP) were simulated by varying levels of
IKur block.

Model Parametrization
Characteristic equations for the five currents were parametrized,
over which, the optimization was done. For each ionic current
optimization, parametrization was executed by converting
scaling coefficients (axi) and half-activation/inactivation voltages

(bxi) and slopes (cxi) of the sigmoidal gating equations into free
parameters as presented in Eq. (2) below.

αxi (Vm) |βxi (Vm) =
axi
(
Vm − bxi

)
exp

(
Vm−bxi

cxi

) (2)

Parameter sets for each current were bundled as chromosomes
and optimized heuristically by the GA (described next).
Accordingly, 20, 18, 20, 6, and 7 free parameters were created
for the equations of INa, Ito, IKr, ICaL, and If, respectively.
Detailed parametric equations for each current are given in the
Supplementary Material.

The Genetic Algorithm Protocol
Myriads of GA protocols can be formulated by adjusting the
population size, fitness criterion, number of generations,
crossover, and mutation schemes. A description of the
GA protocol adopted and its implementation are discussed
in this section.

A starting population was initialized by generating individuals
composed of genes selected randomly from a uniformly
distributed interval. Constraints (interval limits) were chosen
such that the existing model parameter values were contained
in the range. The rationale behind this was to initialize the
search from a physiologically feasible solution space, as there
exists the caveat of multiple individual solutions producing
the same/similar model effects. The initial population is, thus,
governed mathematically by:

ρ{0} ∈ [(1− λa) θ, (1+ λa) θ] (3)

where, ρ{0} is the stochastic-drawn initial population parameter
set, λa is the initial population gene range width determination
constant, and θ is the original model parameter. The condition
was applied to genes in all chromosomes in the generation.
Superscripts in format {x} throughout this paper indicates the
generation number.

Population size of 10 × Chromosome size was chosen based
on the recommendation by Storn (1996). However, an exception
of reduced population size was made in the case of an extended
computational runtime, which, in turn, was limited by the
number of processors available [28 cores per node for the
Ohio Supercomputer HPC clusters (Ohio Supercomputer Center
(OSC), 1987) and 24 cores per node for the Extreme Science and
Engineering Discovery Environment HPC (Towns et al., 2014)].
A detailed algorithmic description of the GA protocol used in
fitting the ionic currents is presented in Figure 3.

The SSE loss or RMSE loss for the IV plot points between
the model output and experimental data was adopted as the
objective function to be minimized to ensure a robust curve
fitting. For adaptive time-step, ordinary differential equation
solvers available in the SciPy solve_ivp python module—implicit
BDF and Radau (Guglielmi and Hairer, 2001) methods as
well as explicit Runge–Kutta methods (Dormand and Prince,
1980; Petzold, 1983)—were used. The ionic current models
were implemented as importable modules to allow parallel
computation using the python multiprocessing module.
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FIGURE 3 | Algorithmic description of the genetic algorithm (GA) protocol used in fitting the ionic currents. θ: original model chromosome; θ[i]: original model gene;
Nx : chromosomal length/number of genes; m: population size; s: offspring proportion (parent-offspring ratio = 1 : s); J(): loss function (SSE or RMSE); λa: initial
population constraint; λb: mutation constraint; and χ: an iterable comprising lists of crossover point(s). Length (χ [i]) ∈ (0, s]. All intervals [i.e., [a, b], (a, b] or (a, b)]
are uniformly distributed. Parameters belonging to these intervals were randomly drawn.

Mathematically, the objective function for individual fitness
computation, J (θn,X) can be expressed as:

JSSE (θn,X) =
T∑

i=0

[X − I (θn)]2 (4)

JRMSE (θn,X) =

√√√√ 1
T
·

T∑
i=0

[X − I (θn)]2 (5)

where, θn is symbolic of a parameter set, X is a set of experimental
data points, I (θn) represent the ionic current modeled as a
function of the parameter set, and T is the number of data
points (IV plots).

Single- and multi-point crossover scheme were adopted in
fitting the five currents. For each offspring production, crossover
points were stochastically drawn from a uniformly distributed
interval of positive integers not exceeding the chromosomal
length. The convention was to use a larger number of crossover
points to compensate for a small population size relative to
the number of parameters. Crossover involved the selection of
multiple mating pairs from the pool of the best performing
individuals. Genes in these mating pairs were then shuffled
about the selected crossover-points. The convention chosen here
was to generate the same number of offspring as the number
of crossover points. This convention, though arbitrary, was
sufficient at producing a reasonable fitting. It, however, does not
indicate the maximum allowable number of unique offspring.
The mutation protocol adopted in this work is an additive scheme
involving addition of positive or diminutive proportions of the
present offspring parameters to the offspring. The value of these
proportions, like in the case of the initial population generation,

are randomly selected from a uniformly distributed range. This
can be expressed in a matrix form as:

M = O+
(
3◦O

)
(6)

where, M is the resulting mutant matrix, O is the offspring matrix,
and 3 is the proportion matrix. The constraints (mutation
coefficient range width determination constant, λb) for the
elements in the proportion matrix is given mathematically as:

3
(j)
uv ∈ [−λb,λb] (7)

The proportion-offspring multiplication in Eq. (6) is not a
traditional matrix multiplication, but rather the Hadamard
element-wise multiplication (u and v are row and column indices,
respectively, whereas j is generation/iteration number). This way,
multi-gene mutations involving all genes per chromosome are
executed with random proportions simultaneously. After the two
operations, element-wise multiplication and matrix addition, the
mutant matrix picks on the offspring size, η = sr; where r is
the parent population size. The parent-offspring-mutant ratio
is therefore 1: s: s and, consequently, the population size, m =

r (1+ 2s). A summary of the various GA protocols adopted in
curve fitting for the five experimental-data-complemented ionic
currents are presented in Table 2. In all fittings, the GA was run
for 100 generations.

To quantitatively ascertain the goodness of fit at the end of the
GA, the coefficient of determination, R2, was used. This statistical
measure gives the degree of variability in the data accounted for
by the fitted model. The mathematical formula for R2 is given in
Eq. (8). This value typically ranges between 0 and 1 (it may also be
negative in the case of nonlinear regression), with 1 interpreted as
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TABLE 2 | Summary of the genetic algorithm protocols for ionic currents.

INa Ito IKr ICaL If

# Parameters 20 20 18 6 7

Population size 27 80 25 54 80

Crossover 4-point 2-point 2-point 1-point 2-point

λa 0.8 0.8 0.2 0.5 0.5

Mutation All genes All genes All genes All genes All genes

λb 0.2 0.5 0.1 0.1 0.2

Fitness RMSE SSE SSE SSE SSE

an absolute fit accounting for 100% of the variability in the data
captured by the fitted model:

R2
= 1−

∑N (yi − ŷ
)2∑N (yi − ȳ
)2 = 1−

SSE
SST

(8)

where, yi is experimental (actual) current values, ŷ is the model
fitted current value, and ȳ is the mean of the experimental values.
SSE and SST are the model residual sum of squared error and total
sum of squared errors for the experimental data, respectively.

Once the five abovementioned currents were optimized by
GA, the rest of the currents were manually scaled based on
published literature to obtain the experimentally recorded AP
morphology. The scaling used for the ionic currents and cell
related constants are listed in Supplementary Tables 7, 8. Code
implementation of the GA parameter optimization and the
hiPSC-CM biophysical model are available at https://github.com/
Adakwaboah/hiPSC-CM_Computational_Model.

RESULTS

GA-Based Optimizations
Using the protocols described in the Methods section, parameters
of the five ionic current formulations (INa, Ito, ICaL, IKr, and
If) were optimized to reproduce the experimental data. The
GA process for each ionic current being fitted were performed
multiple times to ensure consistency and reproducibility of this
meta-heuristic. For each of the fittings, the initial and final model
IV plots (representative) are shown in Figure 4 (left panels).
In addition, representative time course plots for each fitted
current model obtained using simulated patch clamp protocols
are shown in the middle panels. The fitted formulations were
able to reproduce the experimental mean current recordings
(see Supplementary Figure 7 for representative recordings).
The right panels in Figure 4 show the near-optimal parameter
convergence in the form of losses over 100 generations for
the various GA trails per current. The apparent non-uniform
decreasing trend in loss plots is evident of the stochastic yet
perpetual search for the global minimum. Table 3 summarizes the
initial and final fitted loss metrics (mean and standard deviations
for multiple trials, n = 5) for all currents. Improvement in
fitting can be seen in the increasing R2 values toward unity.
The original and fitted parameter values for all currents along
with the corresponding detailed formulations are given in the

Supplementary Tables 1–6. Supplementary Figures 1–4, 6
compare the current activation/inactivation kinetics and
corresponding time constants in our optimized model with two
recent hiPSC-CM numerical models, namely, models from Paci
et al. (2018) and Kernik et al. (2019). Computational runtimes
for a single GA trial over the 100-generation period with parallel
fitness computation over 28 cores were 11, 13, 7, 12, and 12 min
for INa, ICaL, If, Ito, and IKr, respectively.

Simulated Action Potentials
The model was simulated for 10 min to achieve the steady
states for all currents, fluxes, and ionic concentrations. The
steady state (initial conditions) values of the model variables
have been reported in Supplementary Table 9. Figure 5 shows
a comparison of the spontaneous APs simulated by the hiPSC-
CM model as compared to the experimentally recorded ones.
Our model was able to accurately reproduce the experimentally
observed AP morphology as well as the automaticity of hiPSC-
CMs. Time course metrics, such as the AP duration at 50, 75,
and 90% repolarization, that is, APD50, APD75, and APD90,
respectively; cycle length (CL), that is, AP peak-to-peak duration
which includes the diastolic resting phase duration; maximum
diastolic potential (MDP); and beats per minute (BPM), were
used to assess the model AP morphology compared to the
experimental counterpart. Table 4 presents the comparison of
the AP metrics produced by the model to those recorded in
the experiments, whereas Table 5 lists the calcium transient
parameters, such as rise time from 10 to 50% and 10 to 90%
of peak value (RT1050 and RT1090, respectively), decay time
from 90 to 10% of peak value (DT9010), peak time (Tpeak), and
frequency of spontaneous activation. Supplementary Table 10
compares the AP metrics and calcium transients of our model
to those of Paci et al. (2018) and Kernik et al. (2019). It
should be noted that the experimental AP traces used in our
model differ considerably than those used in the other models.
Wide variability in AP morphologies and calcium transients in
hiPSC-CMs has been reported in literature indicating a large
population heterogeneity in these cells. For example, Doss et al.
(2012) documented CL variations from 327 to 7,063 ms; APD90
variations from 70 to 789 ms; AP amplitudes ranging from 58 to
121 mV; and Vmax ranging from 5 to 86 V/s among the hiPSC-
CM populations. Figure 6 shows the spontaneous AP generation
and corresponding transient plots of the constituent ionic
currents. Figure 7 shows the intracellular ionic concentrations
([Na+]i, [K+]i, and [Ca2+]i), whereas Figure 8 shows the
Ca2+ concentrations in NSR ([Ca2+]up), JSR ([Ca2+]rel), and
subspace ([Ca2+]sub) during spontaneous APs. Supplementary
Figure 8 shows various transient ionic currents during multiple
spontaneous AP firing. Supplementary Figure 9 presents a
comparison of spontaneous APs vs. stimulus-elicited APs and the
corresponding calcium transients in our model. The stimulus-
elicited APs have a steeper Phase 0 depolarization and higher
AP magnitude due to a higher INa amplitude. The diastolic
depolarization seen in spontaneous APs is absent in paced APs
due to a partial block of If. However, the amplitude of calcium
transients is higher in spontaneous APs than the paced APs.
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FIGURE 4 | GA-based parameter fitting of ionic currents. (A) fast sodium current (INa); (B) L-type calcium current (ICaL); (C) Hyperpolarization-activated current (If);
(D) transient outward potassium current (Ito); and (E) delayed rectifier potassium current (IKr). The left plots show initial and final fitted I-V plots for each current
compared with the corresponding experimental values. Middle plots show the simulated time course of current activations based on the corresponding voltage
clamp protocols (insets). Right plots show loss (RMSE or SSE) over 100 generations showing convergence during the GA fitting process.

Sensitivity Analysis
To analyze the sensitivity of the baseline hiPSC-CM model, the
maximum conductances of the various ionic currents were varied

from 0 (complete block) to 200% (2 × enhancement), and their
effects on the AP parameters such as APD (APD50, APD75, and
APD90), AP magnitude, dV/dtmax, MDP, CL, and spontaneous
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TABLE 3 | Loss and fitness values of the GA-based optimization of currents.

Ionic
current

Initial loss Final loss Initial R2

(initial model)
Final R2 (fitted

model)

INa 107.449 ± 2.76 81.661 ± 0.56 0.519 0.841 ± 2.18e-3

Ito 288.313
± 44.792

0.105 ± 0.038 –0.165 0.999 ± 1.19e-4

IKr 1.403 ± 0.215 0.00467
± 5.15e-4

–1.558 0.995 ± 5.16e-4

If 0.708 ± 0.076 1.845 ± 0.186 –0.201 0.986 ± 1.49e-3

ICaL 57.892 ± 10.048 7.435 ± 0.224 0.358 0.9405 ± 1.8e-3

FIGURE 5 | Comparison of simulated action potential morphology (blue) to
experimentally recorded (orange).

firing rate (BPM) were studied. Scaling factors from 0 to 200% of
the baseline channel conductance values were used in computing
the correlation coefficients between various AP parameters and
the corresponding ionic current alterations. Figure 9 shows the
outcome of the systematic sensitivity analysis of the model. The
figure shows a strong positive correlation coefficient between
MDP and the ionic currents If and Ito, which indicates that
an increase in either of these currents causes an increase in
the MDP. IKACh, on the other hand, shows a strong negative
correlation with MDP, while showing a positive correlation with
CL. IKr expectedly shows a strong negative correlation with APD
(APD90, APD75, and APD50). This also has implications on CL,
which is revealed by a strong negative correlation. Varying the
INa reveals its strong effect on the AP amplitude corroborated
by a strong positive correlation coefficient. It, however, shows an
almost neutral correlation with APD. If shows a strong positive
correlation with MDP, implying a direct relationship between the
two. A similar relationship exists between If and BPM. If also has
a strong negative correlation with CL. The IKACh shows a strong
negative correlation with MDP and APD while showing a positive
correlation with CL.

Figure 10 shows specific cases of ionic current blockades
and their effects on the AP morphology (Figures 10A–F), AP
durations (Figures 10G–I), and CL (Figures 10J–L). IKr is
the principal repolarization current in the rapid repolarization
phase in hiPSC-CMs and its blockade prolongs the AP in the

TABLE 4 | Comparison of action potential parameters.

Parameter Model Experiments*

AP duration, APD50 (ms) 104.93 102.596 ± 2.615

AP duration, APD75 (ms) 126.26 126.104 ± 2.667

AP duration, APD90 (ms) 142.86 141.169 ± 3.231

Cycle Length, CL (ms) 470.23 482.918 ± 21.572

Maximum diastolic potential, MDP (mV) –75.90 –74.751 ± 0.368

Beats per minute, BPM 126.0 122.14 ± 7.73

*n = 62 APs over 29,700 ms. For BPM, 2,000 ms time window were slid over
28,000 ms total time span (i.e., n = 14), to obtain information on variance.

TABLE 5 | Intracellular calcium transient parameters in our model
during spontaneous AP.

Parameter Model

Rise time from 10 to 50% of peak value (RT1050; ms) 7.45

Rise time from 10 to 90% of peak value (RT1090; ms) 30.7

Decay time from 90 to 10% of peak value (DT9010; ms) 127.25

Freq of spontaneous activation (Hz) 2.26

Time to peak (Tpeak; ms) 65.6

Phase 3 as shown in Panel A. With a varying extent of the IKr
block, APD successively increases (Figure 10G) and cycle length
decreases (Figure 10J). Blocking ICaL significantly shortens the
AP (Figures 10B,H), thereby reducing the CL (Figure 10K).
Figure 10C shows the reduction in the AP magnitude as a
result of the INa block. Excessive blockage of INa (beyond
40%), however, prevents the initiation of a spontaneous AP.
The pacemaker current, If, plays a major role in maintaining
spontaneous activity. A slight block in this current reduces the
frequency of automaticity, and lowers the MDP and magnitude of
AP (Figure 10D). More severe blocks (beyond 50%) of If inhibit
the spontaneous AP generation. Blocking IKACh prolongs the
AP in Phases 2 and 3 as shown in Figures 10E,I. Subsequently,
there is an elevation of MDP (not shown) with a higher extent
of IKACh block. Interestingly, although AP was prolonged, the CL
was seen decreasing monotonically with the extent of IKACh block
(Figure 10L). It was observed that in the diastolic phase (Phase
4), a reduced repolarization effect of IKACh favors the diastolic
depolarization offered by If.

We further investigated the contribution of two atria-specific
currents, namely, IKur and IKACh, which have been recorded in
atrial- and nodal-like hiPSC-CMs (Lodrini et al., 2020). Blocking
IKur as a result of simulating the effects of 4-AP (50 µM)
reduced Phase 1 repolarization resulting in AP prolongation and
increased AP magnitude as shown in Figure 11A. The extent of
AP prolongation was proportional to the extent of IKur block. The
spontaneous firing rate (BPM), however, remained unchanged.
The AP prolongation in all phases of repolarization in our model
is in agreement with the recent experimental findings (Devalla
et al., 2015). Figure 11B shows the effect of vagal stimulation
by carbachol (CCh; 10 µM). The 200% enhancement of IKACh
slowed down the spontaneous activity by ∼10% without any
significant effect on the APD.
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FIGURE 6 | Model AP (Panels A and B) and corresponding ionic current transients (Panels C–J) during spontaneous AP generation.

Figure 12A shows the model behavior in hyperkalemic
conditions. Our model showed an increased spontaneous firing
rate and diastolic depolarization when extracellular K+ was

increased from 5.4 to 8 mM. This behavior is in agreement
with several experimental studies in nodal cells (DiFrancesco
et al., 1986; Frace et al., 1992; Hoppe and Beuckelmann, 1998).
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FIGURE 7 | Intracellular ionic concentrations. (A) [Na+]i , (B) [K+]i , and (C) [Ca2+]i during spontaneous APs.

Figure 12B shows the effects of completely blocking INaCa.
Inhibition of INaCa reduces the spontaneous firing rate and
hyperpolarizes the membrane potential in our model. However,
it does not abolish the spontaneous activity as reported in
(Blinova et al., 2018).

Effects of Adrenergic and Cholinergic
Stimulation
The model was challenged with stressors such as adrenergic
stimulation using isoproterenol and cholinergic stimulation
using ACh. For isoproterenol stimulation, the spontaneous APs
were suppressed by blocking If by 50%. The model was burst
paced at 5 Hz for 5 s to overload the SR with Ca2+ in the
presence of isoproterenol effects. The model exhibited several
spontaneous DAD-triggered APs post burst-pacing as shown in
Figure 13 (black arrows). Figure 14A shows experimental AP
traces when the spontaneously beating hiPSC-CMs were treated
with 1 µM ACh. The ACh was administered for 20–40 s which
depolarized the membrane and suppressed the spontaneous
AP firing. This was unexpected because one would expect the

spontaneous activity to slow down similar to that in atrial cells
(or as seen in Figure 11B). After the washout of ACh (post
40 s), the spontaneous AP was resumed, albeit at a slightly higher
frequency. Our model was able to reproduce the experimental
behavior (shown in Figure 14A) when IKACh was enhanced
to 300%, as shown in Figure 14B. Additionally, our model
was able to provide useful insights into the unusual behavior
observed. The ACh exposure causes a persistently increased
IKACh during diastolic interval, which balances the inward If,
thereby suppressing the AP generation. After washout, the IKACh
returned to normal levels and the If-facilitated spontaneous APs
resumed. The elevated intracellular K+ levels cause the frequency
of spontaneous AP to be higher after washout which gradually
returned to a normal firing rate.

DISCUSSION

We present a robust approach to fit the experimental
electrophysiological data to theoretical formulations in order
to develop high-fidelity numerical biophysical models. We
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FIGURE 8 | Ca2+ concentrations in (A) NSR ([Ca2+]up), (B) JSR ([Ca2+]rel ), and (C) subspace ([Ca2+]sub) during spontaneous APs.

demonstrate the effectiveness of a GA-based optimization
method to develop an in silico model of hiPSC-CMs that
accurately reproduces the experimental measurements. The
model behavior was extensively validated based on AP
morphology, sensitivity analysis, and various ion channel
blocking mechanisms.

The experimental electrophysiological data in hiPSC-CMs
show a wide range of variability, presumably due to the
different techniques used to direct the hiPSCs to the cardiac
lineage (Biendarra-Tiegs et al., 2020). This imposes additional
challenges in fitting the experimental data to model equations.
We utilized the GA method to attain model optimization,
which is an evolutionary metaheuristic method inspired by
Darwinian evolution and natural selection. Optimization, by
this approach, is executed in a stochastic combinatorial manner
which makes it less susceptible to getting stuck at local minima,
unlike the gradient-based methods, and tend to converge at
the global optimized solution (Smith et al., 1995). Previous
attempts at implementing GA-based fitting of cardiac models
mostly focused on the simple fitting of maximum channel
conductance to recapitulate the desired AP morphology (Syed
et al., 2005; Bot et al., 2012; Groenendaal et al., 2015; Tomek
et al., 2019; Smirnov et al., 2020). We, on the other hand,
performed GA optimization at the underlying ionic current
level, which is a more realistic and robust approach. Our

approach ensures that the model ionic formulations adhere
correctly to the experimental recordings and is especially more
suitable for modeling hiPSC cells which exhibit a wide range

FIGURE 9 | Sensitivity analysis of model showing color-coded correlation
coefficients corresponding to the ionic current variations and their effects on
the AP parameters.
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FIGURE 10 | Effect of blocking various ionic currents on AP characteristics in the hiPSC-CM model such as AP morphology (A–F), AP durations (G–I), and cycle
lengths (J–L).

of phenomenological variation. Smirnov et al. (2020) modified
the GA protocol by Bot et al. (2012) by adopting vector
mutation terms from the Cauchy distribution that promote
drastic variance between the mutants and their uncorrelated
parent proportions. Tomek et al. (2019), on the other hand,
used a multi-objective GA approach for parameter fitting. These

works, however, do not mention constraining the range of
each gene to a defined neighborhood of the respective original
model parameters. Since the uniqueness of a solution is often
not guaranteed in such non-convex optimization problems,
physiological relevance must be upheld. We address this by
imposing the customizable constraint, λa, which symmetrically
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FIGURE 11 | (A) Effect of varying extent of IKur block on model AP and CL. (B) Effect of IKACh enhancement on model AP and CL.

FIGURE 12 | (A) Effect of hyperkalemia ([K+]o = 8 mM) conditions on model AP and frequency of automaticity. (B) Effect of INaCa blockade on model AP and
frequency of automaticity.

bounds the range from which the initial parameter values
(from published physiologically validated models) are drawn.
The significance of this constraint, in conjunction with the
population size, is the ability to define the initial search
resolution. A wider unconstrained parameter range is likely to
be initially underrepresented if the population size is not large
enough, which, in turn, may favor the speed of convergence
(offered by extreme chromosomal variance) over physiological
relevance. Another novelty in our GA protocol, to the best of
our knowledge, is the correlation between the parent proportion
and the number of crossover points. To maintain sufficient
diversity, more offspring and mutants are produced as the

number of crossover points increase. Furthermore, an increase
in the crossover points offer an extensive combinatorial gene
shuffling during crossover per generation; we therefore propose
a proportionate increase in the population size to accommodate
the resulting diverse offspring and mutants.

There have been very few attempts at implementing hiPSC-
CM biophysical models due to inconsistent experimental data.
An earlier model by Paci et al. (2013) was formulated based
on the limited data at that time. More recent models by
Paci et al. (2018, 2020), and Koivumäki et al. (2018) incorporated
a more realistic calcium handling. The study by Kernik et al.
(2019) adopted experimental data from multiple sources in
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FIGURE 13 | Model response to 5 Hz burst pacing in presence of isoproterenol effects. Black arrows indicate spontaneous DAD-triggered APs post burst-pacing.

FIGURE 14 | (A) A representative experimental AP trace in hiPSC-CM treated with 1 µM ACh. (B) Model behavior with 300% enhancement of IKACh simulating the
effects of ACh. The ACh was administered from 20–40 s followed by washout.

an attempt to cover the range of variability seen in these
cells. However, the unresolved inconsistencies in the recording
and clamping protocols used by the various sources have

the potential to introduce unwarranted deviations in the
hiPSC-CM electrophysiological parameter range as well as the
generalizability of the baseline model. Our model recapitulates
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the experimentally recorded hiPSC-CM AP morphology with
high fidelity. Moreover, it is able to qualitatively reproduce
the experimentally reported (Ma et al., 2011) effects of: (i)
APD prolongation caused by IKr block, (ii) reduction in AP
magnitude and rate of change of upstroke voltage as a result
of Na+ channel block, (iii) loss of notch-shaped AP (Phase 1
repolarization) due to Ito blockade, (iv) triangulation of AP due
to IKr or Ito blockades, (v) significant AP shortening due to ICaL
block, (vi) loss of automaticity as a result of If blockade, and
(vii) alterations in spontaneous firing rate as a result of INCX
block and hyperkalemic conditions. Our model was also able to
produce the experimentally observed effects of channel blocks
on the frequency of spontaneous APs (cycle length) and MDPs
in hiPSC cells. In the presence of adrenergic stimulation and
hypercalcemia, our model was able to generate a DAD-induced
triggered activity as a result of SR Ca2+ overload.

One of the advantages of our model over the existing ones
is the inclusion of atria-specific ionic channels, IKur and IKACh,
which have recently been found to be present and functional in
hiPSC-CMs (Zhao et al., 2018). The inclusion of IKACh allows
for the investigation of the variability in the spontaneous beating
frequency influenced by parasympathetic influences and/or the
presence of ACh which have been found to reduce the heart
rate. Indeed, our model was able to reproduce and provide
explanation on the experimentally observed suppression of
automaticity in hiPSC-CMs upon treatment with ACh. Moreover,
our model can qualitatively reproduce the effects of atria-
specific drugs such as carbachol and 4-AP. IKACh is actively
involved in the maintenance of atrial fibrillation, including
chronic atrial fibrillation (Dobrev et al., 2005). Recent advances
in cell differentiation techniques use IKACh and IKur as markers
to identify atrial-like hiPSC-CMs, which were preferentially
produced by retinoic acid treatment (Argenziano et al., 2018).
The atrial-like CMs are being increasingly used for disease
modeling and pre-clinical screening of antiarrhythmic drugs
(Devalla et al., 2015). As such, our model is valuable in disease
modeling and simulations of atrial phenotypes.

We adopted simpler Hodgkin-Huxley type current
formulations to limit the number of optimization parameters and
to keep the simulations computationally tractable. It also avoided
overfitting of the experimental data. The main aim of this study
was to demonstrate the feasibility of GA-based parametrization
of model equations which was done by optimizing five ionic
current formulations based on the experimental data. The
remaining components of the model, including the intracellular
calcium handling, were adopted from a nodal cell model, which
has a very close morphological resemblance with the hiPSC-
CMs. Nonetheless, the GA-based optimization can be seamlessly
extended to the whole cell level as more and more experimental
data becomes available. The calcium handling in our model is
based on nodal cell formulations and may not represent true
calcium transients in hiPSC-CMs. Our model is able to reproduce
DAD-triggered APs, but does not produce other arrhythmogenic
events such as EADs and alternans. Our model also does not
reproduce the hyperkalemia-induced slowing of spontaneous
activity as shown by Blinova et al. (2018). The hiPSC-CM
population used in Blinova et al. (2018) showed a minor role of

If in sustaining the spontaneous electrical activity, as revealed
by their tests with ivabradine [see the original Figure 2A(i)],
which could explain the different response of hiPSC-CMs to
hyperkalemia reported in their study. Notwithstanding these
limitations, our model behavior is consistent with the findings
of various in vitro drug tests, in which such arrhythmic markers
were observed only in a portion of the pluripotent cells used for
testing (Blinova et al., 2018).

CONCLUSION

Human induced pluripotent stem cell-derived cardiomyocytes
have received significant attention lately; with applications in
regenerative medicine, cardiac safety pharmacology, and the
implementation of patient specific models for studying drug-
induced and inherited cardiac diseases. We present a GA-based
model parametrization methodology to incorporate experimental
data into numerical models. The proposed method was utilized
to formulate a biophysical computer model of hiPSC-CMs
based on the experimental data and available literature, as a
potential tool for studying and simulating the dynamics of hiPSC-
CM electrophysiology. Ionic current formulations of five key
currents, namely, fast sodium current (INa), transient outward
potassium current (Ito), L-type calcium current (ICaL), rapid
delayed rectifier current (IKr), and hyperpolarization-activated
current (If), were optimized by the GA protocol to fit their
experimental data. These were then combined with adjusted
formulations for nine other currents imported from existing
models to faithfully reproduce experimentally obtained hiPSC-
CM AP morphology and spontaneous activity. The model
was able to accurately reproduce the experimentally recorded
AP characteristics and channel blocking drug effects. The
model was able to provide insights into the causes of the
experimentally observed suppression of automaticity in hiPSC-
CMs during cholinergic stimulation. The outcome of this work
has implications on validating the biophysics of hiPSC-CMs
in their use as viable substitutes for human cardiomyocytes.
Specifically, in the study of inherited cardiac disorders and
in cardiac safety pharmacology, where drug-induced cardiac
disorders are investigated.
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