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Skeletal muscle wasting in patients with diabetes mellitus (DM) is a complication of
decreased muscle mass and strength, and is a serious risk factor that may result in
mortality. Deteriorated differentiation of muscle precursor cells, called myoblasts, in DM
patients is considered to be one of the causes of muscle wasting. We recently developed
myogenetic oligodeoxynucleotides (myoDNs), which are 18-base single-strand DNAs
that promote myoblast differentiation by targeting nucleolin. Herein, we report the
applicability of a myoDN, iSN04, to myoblasts isolated from patients with type 1 and
type 2 DM. Myogenesis of DM myoblasts was exacerbated concordantly with a delayed
shift of myogenic transcription and induction of interleukins. Analogous phenotypes
were reproduced in healthy myoblasts cultured with excessive glucose or palmitic acid,
mimicking hyperglycemia or hyperlipidemia. iSN04 treatment recovered the deteriorated
differentiation of plural DM myoblasts by downregulating myostatin and interleukin-8 (IL-
8). iSN04 also ameliorated the impaired myogenic differentiation induced by glucose or
palmitic acid. These results demonstrate that myoDNs can directly facilitate myoblast
differentiation in DM patients, making them novel candidates for nucleic acid drugs to
treat muscle wasting in patients with DM.

Keywords: myogenetic oligodeoxynucleotide, skeletal muscle, myoblast, myogenic differentiation, diabetes
mellitus

INTRODUCTION

The skeletal muscle is the largest organ (30–40% of total body weight) in human (Janssen
et al., 2000), the primary thermogenic tissue producing heat by muscular contraction
(Rowland et al., 2015), the main energy storage holding 500 g of glycogen (Jensen
et al., 2011), and carries 80% of insulin-responsive glucose uptake (Periasamy et al.,
2017). Therefore, a decrease in skeletal muscle mass disturbs systemic homeostasis and
increases mortality in chronic diseases. Skeletal muscle wasting is present in around
30% of patients with heart failure and is associated with poor prognosis, probably
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in part, by increased inflammation and oxidative stress (Bielecka-
Dabrowa et al., 2020). Loss of skeletal muscle mass is present
in up to 50% of cancer patients and is a predictor for lower
survival during chemotherapy as it increases treatment toxicity
(Gibson et al., 2015). Low skeletal muscle mass is also observed in
patients with diabetes mellitus (DM). Protein synthesis in skeletal
muscle is decreased by type 1 DM (T1DM) due to loss of insulin
signaling, and protein degradation is enhanced with myostatin-
mediated autophagy in type 2 DM (T2DM) (Sala and Zorzano,
2015). Particularly, an age-adjusted study reported that muscle
wasting is an independent risk for all-cause mortality in patients
with T2DM (Miyake et al., 2019). Prevention of DM-associated
muscle loss is an important subject but there is no efficacious
drugs, because it is still a complicated pathology and underlying
mechanism has not been fully understood.

The skeletal muscle is composed of a large number
of myofibers, which are multinuclear fused myocytes. Each
myofiber has dozens of stem cells, termed satellite cells,
between the basal lamina and plasma membrane of the fibers.
During myogenesis, satellite cells are activated to myogenic
precursor cells, called myoblasts. Following this, myoblasts
differentiate into mononuclear myocytes expressing myosin
heavy chain (MHC), and mutually fused to form multinuclear
myotubes (Dumont et al., 2015). Importantly, the satellite
cell- and myoblast-driven myogenesis is impaired by DM,
which is considered a predisposing factor for skeletal muscle
loss. Both T1DM and T2DM deteriorate the functions of
satellite cells and myoblasts owing to oxidative stress, chronic
inflammation, extracellular matrix defects, and transcriptional
disorders (D’Souza et al., 2013; Teng and Huang, 2019). In
patients with T1DM, the number of satellite cells decreases
with the upregulation of the Notch ligand DLL1 (D’Souza
et al., 2016). Myoblasts isolated from patients with T2DM show
impaired myogenic differentiation with lower miR-23b/27b levels
(Henriksen et al., 2017) and autophagy dysregulation (Henriksen
et al., 2019). Even after differentiation, myotubes derived from
T2DM-patient myoblasts retain an altered myokine secretion
distinct from that of non-diabetic myotubes (Ciaraldi et al., 2016).
Although the mechanisms underlying the deteriorated function
of myoblasts in DM have not been fully elucidated, several factors
have been reported to inhibit myogenic differentiation. Co-
culture with adipocytes increases interleukin (IL)-6 expression in
myoblasts and attenuates their differentiation into myotubes (Seo
et al., 2019). High ambient glucose suppresses the myogenesis of
myoblasts by increasing the repressive myokine, myostatin, and
decreasing myogenic transcription factors, MyoD and myogenin
(Grzelkowska-Kowalczyk et al., 2013). Palmitic acid, a saturated
fatty acid, blocks myotube formation by downregulating MyoD
and myogenin (Saini et al., 2017). These findings demonstrate
that diabetic factors including adipokines, glucose, and fatty acids
are inhibitory factors for myoblast differentiation.

We recently identified myogenetic oligodeoxynucleotides
(myoDNs), which are 18-base single-strand nucleotides that
promote myoblast differentiation (Nihashi et al., 2020; Shinji
et al., 2021). One of the myoDNs, iSN04, is directly incorporated
into myoblasts and serves as an aptamer that physically interacts
with nucleolin (Shinji et al., 2021). Nucleolin has been known to

target the untranslated region of p53 mRNA to interfere with its
translation (Takagi et al., 2005; Chen et al., 2012). In myoblasts,
iSN04 antagonizes nucleolin, rescues p53 protein levels, and
eventually facilitates myotube formation (Shinji et al., 2021).
In this study, we aimed to determine that iSN04 recovers the
deteriorated differentiation of myoblasts isolated from patients
with DM. This study presents iSN04 as a potential nucleic acid
drug targeting myoblasts for the prevention and therapy of
muscle wasting in patients with DM.

MATERIALS AND METHODS

Chemicals
All phosphodiester bonds of iSN04 (5′-AGA TTA GGG TGA
GGG TGA-3′) were phosphorothioated to increase resistance
to nucleases. Phosphorothioated iSN04 was synthesized and
HPLC-purified (GeneDesign, Osaka, Japan), then was dissolved
in endotoxin-free water as previously reported (Shinji et al.,
2021). Palmitic acid (Wako, Osaka, Japan), which is the most
abundant (occupying 20–30%) saturated fatty acid in human
(Gesteiro et al., 2019), was dissolved in chloroform to prepare a
high concentration stock (600 mM) to decrease treatment volume
to myoblasts (Aguer et al., 2010). An equal volume of endotoxin-
free water or chloroform, without the test chemicals, served as
negative controls.

Cell Culture
We purchased and used commercially available human myoblast
(hMB) stocks (Lonza, Walkersville, MD, United States) isolated
from healthy subjects (CC-2580) including a 26-year-old male
(H26M; lot 18TL211617, August 2018), a 35-year-old female
(H35F; lot 0000483427, June 2015), and a 35-year-old male
(H35M; lot 0000650386, August 2017), from patients with
T1DM (CC-2900) including an 81-year-old male (I81M; lot
0000211092, November 2010) and an 89-year-old female
(I89F; lot 0000191810, August 2010), and from patients with
T2DM (CC-2901) including a 68-year-old male (II68M; lot
0000211384, November 2010) and an 85-year-old female (II85F;
lot 0000219206, January 2011). Detailed information of each hMB
is described in certificate of analysis1. The hMBs were maintained
in Skeletal Muscle Growth Media-2 (CC-3245; Lonza) as a growth
medium for hMBs (hMB-GM). The murine myoblast cell line
C2C12 (DS Pharma Biomedical, Osaka, Japan) was maintained
in a growth medium for C2C12 cells (C2-GM) consisting of
DMEM (Nacalai, Osaka, Japan) with 10% fetal bovine serum and
a mixture of 100 units/ml penicillin and 100 µg/ml streptomycin
(PS) (Nacalai). hMBs and C2C12 cells were differentiated in a
differentiation induction medium (DIM) consisting of DMEM
with 2% horse serum (HyClone; GE Healthcare, Salt Lake City,
UT, United States) and PS (Nihashi et al., 2019b; Shinji et al.,
2021).

hMB-GM, C2-GM, and DIM with 5.6 mM D-glucose and
19.4 mM mannitol (hMB-GM-NG, C2-GM-NG, and DIM-NG)

1https://bioscience.lonza.com/lonza_bs/CH/en/coa/search
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were used for normal-glucose culture, and those with 25 mM D-
glucose (hMB-GM-HG, C2-GM-HG, and DIM-HG) were used
for high-glucose culture as previously described (La Sala et al.,
2015). In the experiments using high-glucose culture, hMBs
were maintained in hMB-GM-HG for a total of 6 days with
passage every 3 days. The cells were then seeded on fresh dishes
and differentiated in DIM-HG for 2 days. C2C12 cells were
maintained in C2-GM-HG for a total of 4 days with passage
every 2 days. The cells were then seeded on fresh dishes and
differentiated in DIM-HG for 4 days. In the palmitic acid
experiments, hMBs were maintained in hMB-GM-NG; then, the
cells were seeded on fresh dishes and differentiated in DIM-NG
with palmitic acid at an optimal concentration of 200 µM (for
H26M) or 600 µM (for H35M) for 2 days, according to a previous
study (Aguer et al., 2010).

All cells were cultured in dishes or plates coated with collagen
type I-C (Cellmatrix; Nitta Gelatin, Osaka, Japan) at 37◦C with
5% CO2 throughout the experiments.

Immunocytochemistry
hMBs in hMB-GM (1.5–2.5 × 105 cells/dish optimized for
70% confluency in each cell stock) or C2C12 cells in C2-GM
(10 × 105 cells/dish) were seeded on 30-mm dishes. The
following day, the medium was replaced with DIM containing
iSN04 at an optimal concentration of 1 µM (for H26M in
hMB-DIM), 3 µM (C2C12 cells), 10 µM (for H26M in GM,
H35M, and II85M), or 30 µM (for H35F, I81M, I89F, and
II68M). Optimal iSN04 concentration for each MB was defined
as indicating the highest ratio of MHC+ cells without affecting
cell number because the sensitivities to iSN04 differ among
MBs. Immunocytochemistry of myoblasts was performed
as previously described (Takaya et al., 2017; Nihashi et al.,
2019a; Shinji et al., 2021). The myoblasts were fixed with
2% paraformaldehyde, permeabilized with 0.2% Triton X-
100, and immunostained with 0.5 µg/ml mouse monoclonal
anti-MHC antibody (MF20; R&D Systems, Minneapolis, MN,
United States) and 1.0 µg/ml rabbit polyclonal anti-nucleolin
antibody (ab22758; Abcam, Cambridge, United Kingdom).
0.1 µg/ml each of Alexa Fluor 488-conjugated donkey
polyclonal anti-mouse IgG antibody and Alexa Fluor 594-
conjugated donkey polyclonal anti-rabbit IgG antibody (Jackson
ImmunoResearch, West Grove, PA, United States) were used
as secondary antibodies. Cell nuclei were stained with DAPI
(Nacalai). Fluorescent images were captured using EVOS FL
Auto microscope (AMAFD1000; Thermo Fisher Scientific,
Waltham, MA, United States). The ratio of MHC+ cells was
defined as the number of nuclei in the MHC+ cells divided
by the total number of nuclei, and the fusion index was
defined as the number of nuclei in the multinuclear MHC+
myotubes divided by the total number of nuclei; these were
determined using ImageJ software (National Institutes of
Health, United States).

Quantitative Real-Time RT-PCR (qPCR)
Total RNA of the myoblasts was isolated using NucleoSpin RNA
Plus (Macherey-Nagel, Düren, Germany) and reverse transcribed
using ReverTra Ace qPCR RT Master Mix (TOYOBO, Osaka,

Japan). qPCR was performed using GoTaq qPCR Master Mix
(Promega, Madison, WI, United States) with StepOne Real-Time
PCR System (Thermo Fisher Scientific). The amount of each
transcript was normalized to that of human glyceraldehyde
3-phosphate dehydrogenase gene (GAPDH) and murine
18S ribosomal RNA (Rn18s). Results are presented as fold-
change. The primer sequences are described in Supplementary
Tables 1, 2.

Statistical Analyses
Results are presented as the mean ± standard error. Statistical
comparisons were performed using unpaired two-tailed Student’s
t-test or multiple comparison test with Tukey–Kramer test
following one-way analysis of variance. Statistical significance
was set at p < 0.05.

RESULTS

DM Deteriorates Myoblast Differentiation
The hMBs isolated from healthy subjects (H26M, H35F,
and H35M), patients with T1DM (I81M and I89F), and
patients with T2DM (II68M and II85F) were cultured in
the hMB-GM-NG (Supplementary Figure 1). These hMBs
varied in cell size and morphology, but DM-dependent
hallmarks were not observed. The hMBs induced myogenic
differentiation in DIM-NG, followed by immunostaining for
MHC, a terminal differentiation marker of muscle cells.
The ratio of MHC+ cells and multinuclear myotubes was
quantified on days 0, 2, and 4 of differentiation (Supplementary
Figure 2). On day 2 (Figure 1), the ratio of MHC+
cells of H35M was lower than that of H26M and H35F,
indicating the individuality of myogenesis among healthy
subjects. I81M differentiated to the same extent as H26M
and H35F, but I89F, II68M, and II85F exhibited deteriorated
differentiation. In particular, I89F and II85F were exacerbated
in myotube formation compared to all healthy subjects. These
results indicate that myoblast differentiation is aggravated in
patients with DM.

Gene expression patterns in hMBs were examined using
qPCR (Figure 2A). Among undifferentiated myoblast markers,
PAX7 was expressed 2–3 times higher in T2DM myoblasts
throughout differentiation, but PAX3 and MYF5 were
not. A myogenic transcription factor, MYOD1, was highly
induced in T1DM myoblasts, but a terminal transcription
factor, myogenin (MYOG), was not. The mRNA levels of
embryonic MHC (MYH3) were not significantly different
among hMBs. The transcription levels of these genes frequently
vary among patients, which reflects individual differences.
During myogenic differentiation, the ratios of Pax7, MyoD,
and myogenin are critically important. Proliferating myoblasts
express both Pax7 and MyoD, but not myogenin. At the
initial stage of differentiation, Pax7 disappears, and MyoD
drives myogenin transcription. In terminally differentiated
myocytes, MyoD decreases, and myogenin becomes a
dominant transcription factor (Dumont et al., 2015). qPCR
data indicated that MYOD1/PAX7 and MYOG/MYOD1 ratios
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FIGURE 1 | Attenuated myogenic differentiation of DM myoblasts. Representative immunofluorescent images of the hMBs differentiated in DIM-NG for 2 days. Scale
bar, 200 µm. Ratio of MHC+ cells and multinuclear myotubes were quantified. Orange dashed lines indicate the mean values of H26M, H35F, and H35M. *p < 0.05,
**p < 0.01 vs. H26M; ††p < 0.01 vs. H35F; #p < 0.05, ##p < 0.01 vs. H35M (Tukey–Kramer test); n = 6.

were lower in T2DM and T1DM myoblasts than those in
healthy myoblasts (Figure 2B), demonstrating a delayed shift
of myogenic transcription factors in DM patients. This may
be one of the reasons for the deteriorated differentiation
of DM myoblasts.

ILs Are Induced in T2DM Myoblasts
The mRNA levels of atrogin-1 (FBXO32), MuRF-1 (TRIM63),
myostatin (MSTN), and myostatin receptor (ACVR2B), which
are involved in ubiquitin-proteasome-mediated muscle atrophy
(Bodine et al., 2001; Lokireddy et al., 2011), were not different
among the hMBs. In contrast, transcription of the myostatin
antagonist, follistatin (FST), was flat in T1DM myoblasts during
differentiation (Supplementary Figure 3).

Sterol regulatory element-binding proteins (SREBF1 and
SREBF2), fatty acid synthase (FASN), insulin receptor substrates

(IRS1 and IRS2), glucose transporter 4 (SLC2A4), mitochondrial
carnitine palmitoyltransferase 2 (CPT2), and thioredoxin
interacting protein (TXNIP) are insulin resistance-related factors
and involved in differentiation and fatty acid metabolism of
muscle cells (Parikh et al., 2007; Kato et al., 2008; Lecomte
et al., 2010; Boufroura et al., 2018). However, their mRNA
levels were not significantly altered in T2DM myoblasts
(Supplementary Figure 4).

Type 2 DM myoblasts have been reported to display abnormal
inflammatory responses (Green et al., 2011). Indeed, mRNA
levels of IL1B were 6–7 times higher in T2DM myoblasts than
those in healthy myoblasts on days 2 and 4 (Figure 2C).
In contrast, inflammatory factors, NF-κB p50 (NFKB1) and
p65 (RELA) subunits, TNF-α (TNF), interferon γ (IFNG),
and IL6 were not upregulated in T2DM myoblasts. Although
IL8 (CXCL8) levels were high in H26M on day 0, T2DM
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FIGURE 2 | Gene expression patterns altered in DM myoblasts. (A–C) qPCR results of gene expression in the hMBs differentiated in DIM-NG on days 0, 2, and 4.
Bars indicate mean values of each group. The mean value of healthy myoblasts on day 0 was set to 1.0 for each gene.

myoblasts exhibited higher IL8 mRNA levels than those did
healthy myoblasts (Supplementary Figure 5). It has been
reported that IL-1β inhibits insulin-like growth factor (IGF)-
dependent myoblast differentiation (Broussard et al., 2004), and
interleukin-8 (IL-8) is secreted from insulin-resistant myotubes
(Bouzakri et al., 2011). Thus, the upregulation of IL-1β and IL-8
potentially impaired the shift in myogenic transcription factors
and subsequent differentiation of T2DM myoblasts.

myoDN Recovers Differentiation of DM
Myoblasts
We recently identified the single-strand myogenetic
oligodeoxynucleotides (myoDNs) that promote myoblast

differentiation by antagonizing nucleolin (Shinji et al., 2021).
To assess the applicability of myoDN to DM myoblasts, the
hMBs used in this study were treated with iSN04, which
exhibits the highest myogenetic activity among the myoDNs.
iSN04 significantly facilitated the differentiation and myotube
formation of H35F, H35M, I81M, I89F, and II85F (Figure 3).
In particular, iSN04 recovered the attenuated differentiation of
II85F to almost the same extent as that of healthy myoblasts.
iSN04 did not affect the differentiation of H26M in DIM,
but significantly promoted myotube formation in hMB-GM
(Supplementary Figure 6). In contrast, differentiation of II68M
was not altered by iSN04, suggesting the distinct sensitivity or
efficacy of iSN04 among individuals. These results indicate that
iSN04 is able to recover the deteriorated differentiation of DM
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FIGURE 3 | iSN04 recovers the differentiation of DM myoblasts. Representative immunofluorescent images of the hMBs differentiated in DIM-NG with iSN04 for
2 days. Scale bar, 200 µm. Ratio of MHC+ cells and multinuclear myotubes were quantified. *p < 0.05, **p < 0.01 vs. iSN04(–) in each group (Student’s t-test);
n = 4–6.
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FIGURE 4 | iSN04 suppresses myostatin expression. (A,B) qPCR results of gene expression in the H35F and II85F myoblasts differentiated in DIM-NG with iSN04
for 2 days. Mean value of H35F-iSN04(–) group was set to 1.0 for each gene. *p < 0.05, **p < 0.01 vs. iSN04(–) in each myoblast (Student’s t-test); n = 3.

myoblasts. qPCR revealed that iSN04 treatment significantly
reduced PAX7 and MSTN mRNA levels in II85F, resulting in
the recovery transcription of MYH3 (Figure 4A). An iSN04-
dependent decrease in MSTN expression was also detected in
H35F. Furthermore, iSN04 significantly suppressed the IL1B
levels in H35F and the IL8 levels induced in II85F (Figure 4B).
These results indicate that iSN04 facilitates the differentiation in
both healthy and diabetic myoblasts, in part, by modulating the
expression of cytokines including myostatin and ILs.

myoDN Recovers the Myoblast
Differentiation Impaired by Excessive
Glucose
The DM myoblasts used in this study were isolated from
elderly patients (68, 81, 85, and 89-year-old) whose ages were
significantly higher than those of the healthy subjects (26, 35,
and 35-year-old) (p < 0.01; Student’s t-test). Aging is a factor
that compromises myoblast function (Fukada, 2018; McCormick
and Vasilaki, 2018). Aged myoblasts are impaired to differentiate
into myogenic lineage and induced to fibrogenic lineage due
to the activated canonical Wnt signaling pathway (Brack

et al., 2007). Therefore, aging possibly affected the deteriorated
differentiation of the DM myoblasts used in this study. To
investigate the impact of DM without aging on myogenesis, we
cultured and differentiated C2C12 myoblast cell line in a high
glucose concentration mimicking hyperglycemia. C2C12 cells
maintained in high-glucose media exhibited a decreased ratio
of MHC+ cells and myotubes (Figure 5A). qPCR revealed that
high-glucose culture significantly induced Mstn and suppressed
Myog and Myh3 expression in C2C12 cells on differentiation
day 1 (Figure 5B). It is noteworthy that Il1b mRNA levels
were not elevated by excessive glucose. High-glucose culture
also significantly abrogated the myogenesis of H26M and H35F
(Figure 5A). These data demonstrated that excessive glucose
is one of the age-independent factors for the deterioration of
myoblast differentiation.

Importantly, iSN04 treatment significantly recovered
myogenic differentiation and myotube formation in C2C12
cells exposed to high glucose concentrations (Figure 6). This
result corresponds well with the phenotype of the iSN04-
treated T2DM myoblasts, indicating that myoDNs are potential
candidates for nucleic acid drugs that activate myoblasts in
hyperglycemic patients.
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FIGURE 5 | High glucose concentration deteriorates myoblast differentiation. (A) Representative immunofluorescent images of the C2C12, H26M, and H35F
myoblasts differentiated in DIM-NG or -HG. Scale bar, 200 µm. Ratio of MHC+ cells and multinuclear myotubes were quantified. *p < 0.05, **p < 0.01 vs. NG
(Student’s t-test); n = 4–6. (B) qPCR results of myogenic gene expression in the C2C12 cells differentiated in DIM for 1 day. Mean value of NG group was set to 1.0
for each gene. *p < 0.05, **p < 0.01 vs. NG (Student’s t-test); n = 3.

myoDN Recovers the Myoblast
Differentiation Impaired by Palmitic Acid

Patients with T2DM are frequently present with hyperlipidemia.
Palmitic acid is the most abundant intravital fatty acid, which
is involved in insulin resistance and C2C12 cell differentiation
(Yang et al., 2013; Saini et al., 2017). To examine the impact of
excessive fatty acids on hMBs, H26M and H35M were induced
to differentiate in DIM-NG with palmitic acid. In both hMBs,
palmitic acid significantly impaired myogenic differentiation and
myotube formation (Figure 7A). qPCR showed that palmitic acid
decreased the MYOG/MYOD1 ratio, resulting in lower MYH3

expression in H35M (Figure 7B). Palmitic acid also upregulated
IL1B and IL8 mRNA levels without altering NFKB1, RELA,
and TNF (Figure 7C), which recapitulated the phenotype of
T2DM myoblasts. These results indicate that excessive fatty
acids is another age-independent factor to inhibit myoblast
differentiation by inducing inflammatory cytokines.

iSN04 treatment significantly improved the differentiation
into MHC+ cells from palmitic acid-treated H35M (Figure 8A).
As shown in Figure 8B, iSN04 induced MYOD1 and MYOG
expression under basal conditions, but not in the presence
of palmitic acid. In contrast, iSN04 significantly reduced
MSTN mRNA levels regardless of the presence of palmitic

Frontiers in Physiology | www.frontiersin.org 8 May 2021 | Volume 12 | Article 679152

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-679152 May 18, 2021 Time: 17:20 # 9

Nakamura et al. myoDN Recovers Diabetic Myoblast Differentiation

FIGURE 6 | iSN04 recovers the myoblast differentiation impaired by excessive glucose. Representative immunofluorescent images of the C2C12 cells differentiated
in DIM with iSN04 for 4 days. Scale bar, 200 µm. Ratio of MHC+ cells and multinuclear myotubes were quantified. *p < 0.05, **p < 0.01 vs. NG-iSN04(–);
††p < 0.01 vs. HG-iSN04(–) (Tukey–Kramer test); n = 4.

acid. iSN04 further suppressed palmitic acid-induced IL8
transcription. These results show that myoDNs conceivably
recover myoblast differentiation attenuated by excessive fatty
acids in hyperlipidemic patients.

DISCUSSION

This study provides evidence that the myoDN, iSN04,
ameliorates the differentiation of DM myoblasts, and
presents a novel therapeutic strategy for muscle wasting in
patients with DM. Dysfunction of DM myoblasts is caused by
various pathophysiological factors such as inflammation and
transcriptional disorders (D’Souza et al., 2013; Teng and Huang,
2019), and impaired myogenesis can be one of the reasons
for muscle atrophy. A decreased number of satellite cells has
been reported in patients with T1DM (D’Souza et al., 2016).
Our results further showed the impaired myogenic ability of
T1DM myoblasts with a delayed shift to myogenin-dominant
transcription. A similar attenuation of myogenesis has been
reported in T2DM myoblasts (Henriksen et al., 2017, 2019).
The T2DM myoblasts used in this study exhibited a diminished
ratio of MyoD/Pax7 and elevated levels of IL-1β and IL-8, which
may contribute to the incompetent differentiation. As many
patients with T2DM are accompanied by hyperlipidemia in
addition to hyperglycemia, surplus glucose and fatty acids are
considered the major molecules that interfere with myoblast
differentiation. In this study, excessive glucose upregulated
myostatin and downregulated myogenin and MHC in C2C12

cells, which is consistent with that reported in previous studies
(Grzelkowska-Kowalczyk et al., 2013; Jeong et al., 2013).
Similarly, high-glucose culture inhibited myogenesis of plural
healthy hMBs. This demonstrates that glucose is an independent
factor for myoblast dysfunction, which modulates myogenic
gene expression. However, high-glucose culture did not induce
IL-1β. Palmitic acid inhibits myokine expression and C2C12
cell differentiation (Yang et al., 2013; Saini et al., 2017). We
showed that palmitic acid abrogates the differentiation of healthy
hMBs by upregulating IL-1β and IL-8. IL-1β is known to inhibit
IGF-induced myogenin expression and myogenesis (Broussard
et al., 2004). IL-8 is a chemokine that contributes to insulin
resistance in patients with T2DM (Kim et al., 2006; Samaras
et al., 2010) and is also a myokine released from skeletal muscle
cells. Insulin-resistant human myotubes secrete higher levels
of IL-8 (Bouzakri et al., 2011). The role of IL-8 in myoblast
differentiation remains controversial. IL-8-neutralizing antibody
impairs the differentiation of hMBs (Polesskaya et al., 2016). In
contrast, IL-8 treatment decreases the myogenin/MyoD ratio
and embryonic MHC expression in rat myoblasts (Milewska
et al., 2019). An appropriate level of IL-8 is important for normal
myogenesis. Perturbation of IL-8 in T2DM and palmitic acid-
cultured myoblasts may be linked to deteriorated differentiation.
The mechanism of IL induction in myoblasts remains unclear.
NF-κB p65 and TNF-α have been reported to be elevated in
T2DM myoblasts (Green et al., 2011). However, in this study,
mRNA levels of these genes were not altered by T2DM or
palmitic acid. The signaling pathway of fatty acid-dependent IL
induction needs to be clarified in further studies.
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FIGURE 7 | Palmitic acid (PA) deteriorates myoblast differentiation. (A) Representative immunofluorescent images of the H26M and H35F myoblasts differentiated in
DIM-NG with PA for 2 days. Scale bar, 200 µm. Ratio of MHC+ cells and multinuclear myotubes were quantified. **p < 0.01 vs. control (Student’s t-test); n = 4–6.
(B,C) qPCR results of gene expression in the H35M myoblasts differentiated in DIM-NG with palmitic acid for 2 days. Mean value of control group was set to 1.0 for
each gene; n = 1.

In addition to inflammation, abnormal protein metabolism
is another important factor for diabetic skeletal muscle wasting.
In skeletal muscle tissue, T1DM decreases protein synthesis and
T2DM enhances autophagy-mediated protein degradation (Sala
and Zorzano, 2015). A recent study reported the dysregulated
autophagy in T2DM myoblasts (Henriksen et al., 2019). However
in this study, expression of proteasome-related genes such as
atrogin-1 and MuRF-1 were not altered between healthy and DM
myoblasts during short-term differentiation. The effects of T2DM
on protein degradation might emerge in the fully maturated
myofibers, suggesting the limitation of cultured myoblasts as a
model of muscle wasting in patients with DM. Present results
need to be carefully interpreted in clinical settings.

This study proved that iSN04 can recover the deteriorated
myogenesis of DM myoblasts, in addition to facilitating
the differentiation of healthy myoblasts. Although myoDNs,

including iSN04, can be potential drug seeds for muscle wasting
in patients with DM, the effect of iSN04 should be established
using extensive patient-derived myoblasts for clinical application.
For instance, the sensitivities to iSN04 were individually different
among hMBs. iSN04 is incorporated into the cytoplasm and
physically interacts with and interfere with a multifunctional
phosphoprotein, nucleolin (Shinji et al., 2021). Nucleolin (NCL)
mRNA levels were similar among the hMBs used in this
study (Supplementary Figure 7A), and subcellular localization
of nucleolin was not different between insensitive H26M
and sensitive H35F throughout differentiation (Supplementary
Figure 7B). Post-translational phosphorylation or glycosylation
is indispensable for nucleolin function (Barel et al., 2001; Losfeld
et al., 2009). This suggests that the modification of nucleolin may
vary among individuals and may be related to iSN04 sensitivity.
The precise role of nucleolin in myoblasts remains unclear. One

Frontiers in Physiology | www.frontiersin.org 10 May 2021 | Volume 12 | Article 679152

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-679152 May 18, 2021 Time: 17:20 # 11

Nakamura et al. myoDN Recovers Diabetic Myoblast Differentiation

FIGURE 8 | iSN04 recovers the myoblast differentiation impaired by excessive palmitic acid. (A) Representative immunofluorescent images of the H35M myoblasts
differentiated in DIM-NG with palmitic acid and iSN04 for 2 days. Scale bar, 200 µm. Ratio of MHC+ cells and multinuclear myotubes were quantified. **p < 0.01 vs.
control-iSN04(–); ††p < 0.01 vs. PA-iSN04(–) (Tukey–Kramer test); n = 6. (B) qPCR results of gene expression in the H35M myoblasts differentiated as in panel (A).
Mean value of control-iSN04(–) group was set to 1.0 for each gene. *p < 0.05, **p < 0.01 vs. control-iSN04(–); †p < 0.05 vs. palmitic acid-iSN04(–) (Tukey–Kramer
test); n = 3.

study reported that a moderate knockdown of nucleolin by miR-
34b promotes myoblast differentiation (Tang et al., 2017). We
found that iSN04 serves as a nucleolin antagonist and increases
p53 protein levels to promote myoblast differentiation (Shinji
et al., 2021) because nucleolin binds to p53 mRNA to inhibit
its translation (Takagi et al., 2005; Chen et al., 2012). However,
inhibition of p53 translation is considered to be a part of
the multifunction of nucleolin in myoblasts. In cancer cells,
nucleolin competitively interacts with NF-κB essential modulator
(NEMO), resulting in the downregulation of NF-κB activity.
The established nucleolin aptamer AS1411 forms the NEMO-
nucleolin-AS1411 complex to block the transcriptional activity
of NF-κB (Girvan et al., 2006). We have already confirmed
that AS1411 promotes myoblast differentiation as well as iSN04
(Shinji et al., 2021). Thus, iSN04 possibly inhibits NF-κB activity
by associating the NEMO-nucleolin-iSN04 complex. NF-κB has

been known to impair myogenesis by upregulating Pax7 and
myostatin (Wang et al., 2007; He et al., 2013; Ono and Sakamoto,
2017). Inactivation of NF-κB by iSN04 can be assumed to
downregulate myostatin and IL-8 in T2DM and palmitic acid-
cultured myoblasts. Investigation of anti-inflammatory effects of
iSN04 and AS1411 in myoblasts should be an important subject
to reveal their action mechanism and to establish the myoDNs as
nucleic acid drugs for skeletal muscle loss in patients with DM.

CONCLUSION

The differentiation abilities of myoblasts deteriorated with
dysregulation of myogenic and inflammatory gene expression
due to DM, glucose, or palmitic acid. A myoDN, iSN04, recovered
impaired myogenesis by modulating gene expression, especially
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by decreasing myostatin and IL-8. iSN04 could be a potential
drug candidate for muscle wasting in patients with DM by
directly targeting myoblasts.
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