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Optimizing Reservoir Computers for
Signal Classification
Thomas L. Carroll*

US Naval Research Lab, Washington, DC, United States

Reservoir computers are a type of recurrent neural network for which the network

connections are not changed. To train the reservoir computer, a set of output signals

from the network are fit to a training signal by a linear fit. As a result, training of a reservoir

computer is fast, and reservoir computers may be built from analog hardware, resulting

in high speed and low power consumption. To get the best performance from a reservoir

computer, the hyperparameters of the reservoir computer must be optimized. In signal

classification problems, parameter optimization may be computationally difficult; it is

necessary to compare many realizations of the test signals to get good statistics on the

classification probability. In this work, it is shown in both a spiking reservoir computer

and a reservoir computer using continuous variables that the optimum classification

performance occurs for the hyperparameters that maximize the entropy of the reservoir

computer. Optimizing for entropy only requires a single realization of each signal to be

classified, making the process much faster to compute.

Keywords: reservoir computer, machine learning, neuromorphic, nonlinear dynamics, neuron

1. INTRODUCTION

A reservoir computer is a type of recurrent neural network that is particularly easy to train. A
typical reservoir computer is created by connecting a set of nonlinear nodes in a network that
includes feedback connections. The first reservoir computers used nodes that were modeled on
a hyperbolic tangent function (Jaeger, 2001) or excitable neurons that responded to an input by
spiking (Natschlaeger et al., 2002). Unlike most neural networks, the network connections in a
reservoir computer never change. Instead, training to a reservoir computer takes place by fitting the
signals from the individual nodes to a training signal, usually by a linear fit. Because the network
never changes, reservoir computers can be constructed from analog systems in which it is not
possible to alter the connections between nodes.

Because the connections between nodes do not change, only the output parameters, training
a reservoir computer can be faster than training a conventional neural network. Training a
reservoir computer that has M nodes requires finding M linear fit coefficients. Train by adjusting
network connections requires adjusting at least M2 parameters, and most implementations of
neural networks have far more parameters than this. In addition, stability is a concern in recurrent
neural network training, so the number useful node activation functions is limited.

Examples of reservoir computers so far include photonic systems (Appeltant et al., 2011; Larger
et al., 2012; der Sande et al., 2017), analog circuits (Schurmann et al., 2004), mechanical systems
(Dion et al., 2018) and field programmable gate arrays (Canaday et al., 2018). Many other examples
are included in the review paper (Tanaka et al., 2019), which describes hardware implementations
of reservoir computers that are very fast, and yet consume little power, while being small and light.
Reservoir computers have been shown to be useful for solving a number of problems, including
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reconstruction and prediction of chaotic attractors (Jaeger
and Haas, 2004; Lu et al., 2017, 2018; Antonik et al.,
2018; Zimmermann and Parlitz, 2018), recognizing speech,
handwriting or other images (Jalalvand et al., 2018) or controlling
robotic systems (Lukoševičius et al., 2012). Reservoir computers
have also been used to better understand the function of neurons
in the brain (Stoop et al., 2013). Several groups have been using
theory to better understand reservoir computers; in Hart et al.
(2020), the authors show that there is a positive probability
that a reservoir computer can be an embedding of the driving
system, and therefore can predict the future of the driving system
within an arbitrary tolerance. Lymburn et al. (2019) study the
relation between generalized synchronization and reconstruction
accuracy, while Herteux and Räth examine how the symmetry of
the activation function affects reservoir computer performance
(Herteux and Rath, 2020).

As with any neural network, there are hyperparameters of
the nodes that must be optimized to get the best performance
from the reservoir computer. Usually some form of nonlinear
optimization routine is used. These routines require evaluation of
the reservoir computer error for many different hyperparameter
combinations. This computation can be slow for reservoir
computers used for signal fitting or prediction, but it is even
slower for reservoir computers used for classification. To evaluate
the performance of a reservoir computer for classification, many
realizations of a set of test signals must be generated in order

TABLE 1 | Lyapunov exponents of the Sprott systems A, B, C, and D, from

Sprott (1994).

System

A 0.014 0 –0.014

B 0.210 0 –1.210

C 0.163 0 –1.163

D 0.103 0 –1.320

FIGURE 1 | The x signal from the Sprott A system in blue and its conversion to a spike time series SV (t) in red.

to get good statistics on the probability of making an error in
signal classification. In this work, for example, there is a set of
four signals to be classified, and 100 test examples for each signal
are used, so that for each combination of hyperparameters, the
reservoir computer output must be computed 400 times. This
large number of computations makes optimization impractical.

In this work, a set of hyperparameters is scanned one
parameter at a time, and for each scan, the optimum parameter
value is found. Some parameter combinations that might
generate better performance may be missed, but it is seen that
the best results for classification come when the entropy of the
reservoir computer is maximized. Minimizing the error in fitting
an input signal would seem to be another target for optimization,
but it is found that the best classification performance sometimes
comes when the fitting error is large.

Two different types of reservoir computer node are used in
this work. The first type of node is a two dimensional ordinary
differential equation that resembles a spiking neuron. This model
was not created with any particular biological system inmind, but
biological systems do consist of spiking neurons, so there may be
some biological relevance. It is possible that the results seen for
one type of node are only true for that type of node, so the second
reservoir computer uses nodes that follow a third order ordinary
differential equation.

Signals from the Sprott chaotic systems (Sprott, 1994) were
used to test the ability of both node types to classify signals. It
was found in a previous work (Carroll, 2021a) that the first four
Sprott systems (A,B,C and D) were the hardest to distinguish, so
these four systems are used here.

After mentioning the four Sprott systems, the statistic used
to calculate the entropy of the reservoir computer is introduced.
Next the spiking nodes are defined and their classification
performance is measured as several parameters are changed.
Following the sections on spiking nodes, the polynomial ordinary
differential equation nodes are described and their classification
performance is evaluated.
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2. RESERVOIR COMPUTERS

A reservoir computer may be described by

χi (n+ 1) = f (χi (n))+

M
∑

j=1

Aijχj (n)+ wis (t) (1)

where the reservoir computer variables are the χi(n), i = 1 . . .M
with M the number of nodes, A is an adjacency matrix that
described how the different nodes in the network are connected
to each other, W = [w1,w2, . . .wM] describes how the input
signal s(t) is coupled into the different nodes, and f is a
nonlinear function.

When the reservoir computer was driven with s(t), the first
1,000 time steps were discarded as a transient. The next N time

steps from each node were combined in a N × (M + 1) matrix

� =











χ1 (1) . . . χM (1) 1
χ1 (2) χM (2) 1

...
...

...
χ1 (N) . . . χM (N) 1











(2)

The last column of � was set to 1 to account for any constant
offset in the fit. The training signal is fit by

h(t) = �C (3)

where h(t) =
[

h (1) , h (2) . . . h (N)
]

is the fit to the training
signal g(t) =

[

g (1) , g (2) . . . g (N)
]

and C = [c1, c2 . . . cN] is the
coefficient vector.

FIGURE 2 | The top plot shows the fraction of errors EC in identifying which of the four Sprott systems was present, as a function of the damping constant γ for the

spiking reservoir computer. The middle plot shows the entropies for the four Sprott systems over the same parameter range. The bottom plot shows the training error

1CC. For this plot, TC = 15 and Rτ = 36.
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The fit coefficient vector is then found by

C = �invg(t) (4)

where �inv is the Moore-Penrose pseudo-inverse of � (Penrose,
1955) and S′ is an (M+1)× (M+1) diagonal matrix constructed
from S, where the diagonal element S′i,i = Si,i/(S

2
i,i + k2), where

k = 1 × 10−5 is a small number used for ridge regression
(Tikhonov, 1943) to prevent overfitting.

The training error may be computed from

1RC =
std
[

�C− g(t)
]

std
[

g(t)
] (5)

where std[ ] indicates a standard deviation.

3. SPROTT SYSTEMS

The input signals for this work were the x signals from one of the
Sprott systems A, B, C, or D (Sprott, 1994). These systems may be
described by

A





ẋ = y
ẏ = −x+ yz
ż = 1− y2



 B





ẋ = yz
ẏ = x− y
ż = 1− xy





C





ẋ = yz
ẏ = x− y

ż = 1− x2



 D





ẋ = −y
ẏ = x+ z

ż = xz − 3y2





. (6)

In a previous study using a reservoir computer based on
continuous variables, these four Sprott systems were more
difficult to distinguish than the other Sprott systems. The Sprott
systems were numerically integrated by a 4th order Runge-Kutta
integration routine that had a variable step size. The time step for
the output of the integration routine was 0.01.

Table 1 lists the Lyapunov exponents for the four Sprott
systems used in this work.

4. ENTROPY STATISTIC

Besides calculating such statistics as Lyapunov exponents for the
reservoir computers, it was useful to characterize the entropy
of the reservoir computer. Measuring entropy requires a
partitioning of the dynamical system. Xiong et al. (2017) lists
a number of ways to do this partitioning, although different
partitions can give different results for the entropy. Some of
these methods begin with the phase space representation of
the dynamical system and then coarse grain the phase space
representation to create partitions. Because of the different time
scales in the spiking system, coarse graining of the spiking
reservoir signals leads to a loss of information; the effect of
coarse graining on entropy calculations was examined in Xu
et al. (2011). It was found that the permutation entropy method
(Bandt and Pompe, 2002) avoided this coarse graining problem
because it creates partitions based on the time ordering of the
signals. Each individual node time series ri(t) was divided into
windows of 4 points, and the points within the window were

sorted to establish their order; for example, if the points within
a window were 0.1, 0.3, –0.1 0.2, the ordering would be 2,4,1,3.
Each possible ordering of points in a signal ri(t) represented a
symbol ψi(t).

At each time step t, the individual node signals
were combined into a reservoir computer symbol
3(t) = [ψ1(t),ψ2(t), . . . ψM(t)]. With M = 100 nodes
there were potentially a huge number of possible symbols, but
the nodes were all driven by a common drive signal, so only a
tiny fraction of the symbol space was actually occupied, on the
order of tens of symbols for the entire reservoir computer.

If K total symbols were observed for the reservoir computer
for the entire time series, then the reservoir computer
entropy was

H = −

K
∑

k=1

p (3k) log
(

p (3k)
)

(7)

where p(3k) is the probability of the k’th symbol.

5. SPIKING NODES

The spiking node is a simple 2 dimensional ordinary
differential equation

dui
dt
= TC

(

−u3i + ui × g (vi,φi)
)

dvi
dt
= TC

(

1
Rτ

)

(

WiSV − γ vi +
M
∑

j=1
Aijuj

)

g (v,φ) =

{

0 v < φ

1 v > φ

}

if ui > 0.5 then vi = 0

(8)

These nodes were chosen because their simplicity made it easy
to understand how their behavior depended on their parameters.
The variable ui(t) is the fast variable, while vi(t) is the slow
variable, and the ratio of fast to slow times is set by Rτ . The firing
threshold φi was different for each node and was set to a value
drawn from a uniform random distribution between 1 and 1.1.

FIGURE 3 | Largest Lyapunov exponent λmax for the spiking reservoir when

driven by the Sprott A system as the damping constant γ varies. The largest

Lyapunov exponents when driven by the other systems were almost identical,

so only the result from A is shown.
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The random firing thresholds created diversity in the set of nodes.
There wereM = 100 nodes in the reservoir computer.

The input signal SV is a time series of spikes. The elements
of the input vector W were chosen from a uniform random
distribution between 0 and 1. The adjacencymatrixAwas created
by randomly selecting half of its entries and setting them to
values drawn from a uniform random distribution between –1
and 1. The diagonal elements of A were then set to zero.
Because the mean value of A was 0, the connections between
nodes were evenly divided between excitatory and inhibitory.
When the connections were balanced in this way, the inhibitory
connections canceled out the excitatory connections and no
spiking occurred. In order to get spiking, an offset of 0.5 was
added to A. After the offset was added, A was renormalized to

set the spectral radius σ , the largest magnitude of its complex
eigenvalues, to 0.5.

The reservoir equations were numerically integrated with a
fourth order adaptive step size Runge-Kutta integration routine
with a time step of 1.

5.1. Input Signals for Spiking Nodes
The input signal s(t) came from the x component of one of the
Sprott chaotic systems, either system A, B, C or D. In a previous
project using a continuous reservoir computer to classify signals,
these were the most difficult of the Sprott systems to distinguish.
The Sprott systems were integrated with a time step of 0.01.

The Sprott x signals were converted to a time series of spikes.
First, the input signal s(t) was normalized to the signal s̃ (t)which

FIGURE 4 | The top plot shows the fraction of errors EC in identifying which of the four Sprott systems was present, as a function of the fast to slow time ratio Rτ for

the spiking reservoir computer. The middle plot shows the entropies for the four Sprott systems over the same parameter range. The bottom plot is the training error

1CC. For this plot, γ = 0.004 and Rτ = 36.
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had a maximum of 1 and a minimum of 0. The signal contains N
points. A minimum and a maximum period between spikes, Tmin

and Tmax, were chosen. For an input signal s, a spike time series
SV is produced according to

SV (i)← 0 i = 1 . . .N
i0 ← 1
i1 ← 1
while do(i0 < N)

SpikePeriod← ⌊s (i0) (Tmax − Tmin)⌋ + Tmin

i1 ← i0+SpikePeriod
SV (i1)← 1
i0 ← i1

end while

The floor operator ⌊⌋ returns the largest integer that is less than
the argument. For all the signals in this work, Tmax = 100
and Tmin = 10.

Figure 1 shows the x signal from the Sprott A system and its
conversion to a time series of spikes.

5.2. Training the Spiking System
In the training phase, the reservoir computer was driven with a
100,000 point spiking input signal SV (t) from each of the four
Sprott systems. The training signal for each instance was the
same as the input signal, so the reservoir computer was trained
to reproduce SV (t). The actual fit signal to SV (t) is g (t) =
M
∑

i=1
ciui (t), where the fit is usually done by a ridge regression to

avoid overfitting and the ci’s are the fit coefficients. The training
error 1CC was calculated as the cross correlation between SV (t)
and g(t):

1CC = 1−

N
∑

j=1

[(

g
(

j
)

− ḡ
) (

SV
(

j
)

− S̄V
(

j
))]

N
∑

j=1

(

g
(

j
)

− ḡ
)

N
∑

j=1

(

SV
(

j
)

− S̄V
(

j
))

(9)

where the overbar operator indicates a mean.
In the training phase, for each Sprott system a set of

coefficients Cα ,α = A,B,C, or D was produced. For testing
the classification procedure, 100 instances of the x signal of
length 5,000 points were converted to spiking signals and used
to drive the reservoir computer of Equation (8). The sets of fit
coefficients for the different Sprott systems in the testing phase
were designated Kβ , β = A,B,C, or D. The fit coefficients may be
represented as a matrix

K =









K1,A . . . KM,A

K1,B . . . KM,B

K1,C . . . KM,C

K1,D . . . KM,D









. (10)

The classification error was found by taking the Euclidean
difference between the coefficients from the training and testing
stages. For example, if β = A, the errors δb were found as

δb =

√

√

√

√

M
∑

l=1

(

Kl,A − Cl,b

)2
b = A, B, C, D (11)

where l indicates the particular component of the coefficient. If
the value of b corresponding to the minimum δb is not equal to
A, then an error is recorded.

6. SPIKING RESERVOIR CLASSIFICATION
PERFORMANCE

The following sections evaluate the fraction of errors in
identifying the four Sprott systems as one of the reservoir
computer parameters γ , Rτ , or TC is varied. One parameter
is varied while the others are held constant. In many
studies of reservoir computers for signal prediction, all the
hyperparameters are optimized simultaneously through a
nonlinear optimization procedure, but to build up sufficient
classification statistics requires many repeat simulations
of the reservoir computer for each set of parameters,
making optimization computationally very slow. Instead,
the classification performance is evaluated for one parameter at
a time.

6.1. Varying γ

The parameter γ is a linear damping parameter in the slow time
equation for the spiking nodes (Equation 8). Smaller values of γ
mean that the reservoir computer remembers inputs for a longer
time. The top plot in Figure 2 shows the fraction of errors EC in
identification as the damping term γ in Equation (8) is varied.
For these simulations, TC = 15 and Rτ = 36. Because there
are four systems, the highest probability of error is 0.75. The
minimum error fraction in this plot is about 0.1. The middle plot
shows the entropy for the reservoir computer driven by the four
different Sprott systems over the same parameter range. Figure 2
shows that larger entropies correspond to lower classification
errors, which is expected from Crutchfield and Young (1990) and
Langton (1990).

The training error 1CC when each of the four Sprott systems
drive the spiking reservoir computer is plotted in the bottom
plot in Figure 2. The training error is large when the error

FIGURE 5 | Permutation entropy H calculated using different window lengths

as a function of the fast to slow time ratio Rτ for the spiking reservoir computer

driven by Sprott system B. For this plot, γ = 0.004 and Rτ = 36.
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in identifying the four Sprott systems is small. This is even
more surprising because the entropy H for the spiking reservoir
computer is larger when the training error is large. Theories of
computation such as Crutchfield and Young (1990) and Langton
(1990) would lead one to suspect that larger entropy would lead
to better signal reproduction performance.

The reason for the large training error 1CC is explained by
Figure 3, which shows the largest Lyapunov exponent for the
spiking reservoir computer as γ varies. The Lyapunov exponent
was calculated by the Gram-Schmidt method (Parker and Chua,
1989). The value of this Lyapunov exponent ranges from −1 ×
10−4 to −4 × 10−3. This range may be compared with the
Lyapunov exponents for the Sprott systems in Table 1. For
all four Sprott systems the largest Lyapunov exponent for the
spiking reservoir computer is larger than the negative Lyapunov
exponent for each of the Sprott systems. It has been shown in

Badii et al. (1988) that such an overlap can increase the fractal
dimension of a signal, and Carroll (2020a) showed that this
dimension increase can lead to an increase in training error.

6.2. Varying Rτ

The parameter Rτ in the spiking nodes sets the ratio between fast
and slow times. The top plot in Figure 4 is the fraction of errors in
classifying the Sprott signals as Rτ is varied. The other parameters
for this plot were γ = 0.004 and TC = 15. The middle plot of this
figure shows the reservoir computer entropy. The lowest error
fraction comes when the reservoir computer entropy is larger,
as was also seen when γ was varied. The training error 1CC is
in the bottom plot. The training error is large over the entire
range of Rτ , so it appears that values of Rτ that minimize the
classification error fraction do not result in small training errors.
As in the previous section the overlap between the reservoir

FIGURE 6 | The top plot shows the fraction of errors EC in identifying which of the four Sprott systems was present, as a function of the time constant TC for the

spiking reservoir computer. The middle plot shows the entropies H for the four Sprott systems over the same parameter range. The bottom plot is the training error

1CC. For this plot, γ = 0.004 and Rτ = 36.
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computer Lyapunov spectrum and the Lyapunov exponents of
the Sprott systems may be responsible for this large error. The
largest Lyapunov exponent for the spiking reservoir computer for
this range of parameters ranges from –0.04 to 0.

6.2.1. Effect of Window Length on Entropy

The length of the window in the permutation entropy calculation
is an arbitrary parameter, so it is reasonable to ask how changing
this parameter affects the results. The curve of entropy vs. Rtau
for Sprott system B has a very distinct pattern, so the permutation
entropy calculation was repeated with window lengths of 3 and 5.
The results are shown in Figure 5. The entropy does get larger as
the window length increases, but the pattern remains the same as
Rτ varies.

6.3. Varying TC
The parameter TC for the spiking nodes matches the time scale
of the reservoir computer to the time scale of the input signal.
Figure 6 shows the fraction of errors for the spiking reservoir
when identifying the Sprott signals (top plot) and the reservoir
computer entropy (middle plot). The training error is shown in
the bottom plot. The error fraction EC is small for a range of
values of TC, but it is useful to note that the region of largest
entropy H corresponds to a low error fraction.

The plot of the training error in almost looks like the inverse
of the plot of error fraction. The training error1CC is large where
EC is small and smaller where EC is larger. The conventional
picture of computing with dynamical systems (Crutchfield and
Young, 1990; Langton, 1990) suggests that the training error
should be smaller when the entropy is large, but Figure 6 shows
that in this situation the opposite is true.

As when γ was varied, the maximum Lyapunov exponent for
the spiking reservoir computer affects the training error. The
reservoir maximum Lyapunov exponent varies between −6 ×
10−3 and zero as TC varies, so the reservoir Lyapunov spectrum
overlaps with the Sprott Lyapunov spectra, causing a larger
training error.

These simulations of the spiking reservoir computer have
shown that the best performance in classifying signals comes
when the entropy of the reservoir computer is large. This is not
surprising, as good signal identification depends on maximizing
the difference in the response of the reservoir to different signals.
What is surprising is that the performance in fitting the input
signal is poor when the classification performance is good. It was
shown in Carroll (2020a) that the highest entropy in a reservoir
computer sometimes occurs when the Lyapunov exponent is
approaching zero. This is expected (Crutchfield and Young, 1990;
Langton, 1990), but as the Lyapunov exponent approaches zero
it may also overlap with the Lyapunov spectrum of the input
system, increasing the fractal dimension of the reservoir signals,
resulting in poor signal fitting performance.

To optimize the signal classification performance of a
reservoir computer without computing enough realizations to
get good error statistics, it would be most useful to adjust the
reservoir computer parameters to maximize the entropy. This
process should only require one realization of the reservoir
computer for each set of parameters, rather than many.

FIGURE 7 | Confusion matrix for identifying the four Sprott systems A,B,C and

D with the spiking reservoir computer when γ = 0.004, Rτ = 36 and TC = 15.

Along the x axis are the actual Sprott systems, while the y axis shows the

probability that the Sprott system will be identified as that particular system.

To summarize the results for the spiking reservoir computer
for the four Sprott systems, Figure 7 is a confusionmatrix for this
type of reservoir computer for γ = 0.004, TC = 15 and Rτ = 36.
The confusion matrix shows that system A is always identified
correctly, but systems B and C can be hard to distinguish. System
D is usually identified correctly, but it is sometimes identified as
system B.

The spiking reservoir computer in this section uses a simple
set of equations with a finite range of parameters. The significance
of this model to biology, or to reservoir computers in general, is
not known. To determine if the results in this section apply in
general, a very different reservoir computer is simulated in the
next section.

7. CONTINUOUS NODES

The spiking nodes in the previous sections may not be a
completely accurate model of a biological system, and the results
may only be true for those particular nodes. To see if the results in
the previous sections are general, a different type of node is used
to create a reservoir computer. If similar results are seen for these
very different nodes, then the results are more likely to apply to
reservoir computers in general.

The nodes in the continuous reservoir computer are a
polynomial ordinary differential equations (ODE) described by

dri (t)

dt
= α



p1ri (t)+ p2r
2
i (t)+ p3r

3
i (t)+

M
∑

j=1

Aijrj (t)+Wis (t)



 .

(12)

There were M = 100 nodes in total. This type of node was
introduced in Carroll and Pecora (2019).

As in the previous sections, the adjacency matrix A was
created by randomly selecting half of its entries and setting
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them to values drawn from a uniform random distribution
between –1 and 1 and the diagonal elements of A were then
set to zero. Unlike the previous section, no offset was added to
the adjacency matrix. The adjacency matrix was renormalized
to have a specified spectral radius σ . The elements of input
vectorWwere again chosen from a uniform random distribution
between –1 and 1. The polynomial ODE was numerically
integrated with a fourth order Runge-Kutta routine with a step
size of 1.

In the training stage, the input signal s(t) was the x signal from
one of the four Sprott systems (A,B,C,D). The Sprott systems in
this section were numerically integrated with a time step of 0.1.
The first 1,000 points from the ri(t) time series are discarded and
the next 20,000 points are used to fit the training signal. The
actual fit signal is h (t) =

∑M
i=1 ciri (t), where the fit is usually

done by a ridge regression to avoid overfitting. The training
error is

1RC =

〈

x (t)− h (t)
〉

〈x (t)〉
(13)

where 〈 〉 indicates a standard deviation.
The result of the training was a set of fit coefficients Cα ,α =

A,B,C, or D.
For testing the classification procedure, 100 instances of the x

signal of length 2,000 points were used to drive the polynomial
ODE reservoir computer. The sets of fit coefficients for the
different Sprott systems in the testing phase were designated Kβ ,
β = A,B,C, or D. As in the previous sections, the classification
error was found by taking the Euclidean difference between the

FIGURE 8 | The top plot shows the fraction of errors EC in identifying which of the four Sprott systems was present, as a function of the linear parameter p1 for the

polynomial ODE reservoir computer. The middle plot shows the entropies for the four Sprott systems over the same parameter range. The bottom plot shows the

training error 1RC. For this plot, α = 0.3 and the spectral radius σ = 0.8.
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FIGURE 9 | The top plot shows the fraction of errors EC in identifying which of the four Sprott systems was present, as a function of the time scale parameter α for the

polynomial ODE reservoir computer. The middle plot shows the entropies for the four Sprott systems over the same parameter range, while the bottom plot is the

training error 1RC. For this plot, p1 = −0.5 and the spectral radius σ = 0.8.

coefficients from the training and testing stages. For example, if
β = A, the errors δb were found as

δb =

√

√

√

√

M
∑

l=1

(

Kl,A − Cl,b

)2
b = A, B, C, D (14)

where l indicates the particular component of the coefficient. If
the value of b corresponding to the minimum δb is not equal to
A, then an error is recorded.

7.1. Variation of p1
The top plot in Figure 8 is a plot of the fraction of errors in
identifying the four Sprott systems as the linear parameter p1 in
the polynomial ODE reservoir is varied. For this plot, α = 0.3
and the spectral radius σ = 0.8.

The minimum error in identifying the four Sprott systems
using the polynomial ODE reservoir computer comes at a value
of p1 near the maximum reservoir computer entropy. This is the
same behavior the was seen for the spiking reservoir computer.

The best parameter for classifying the Sprott signals is not the
best parameter for fitting the Sprott x signal, as Figure 8 shows.

The training error when p1 varies is large even though
the entropy of the reservoir computer is near its maximum.
Once again, the maximum Lyapunov exponent for the reservoir
computer is large enough to overlap with the Lyapunov spectrum
of the Sprott systems, causing an increase in the fractal dimension
of the reservoir signals. The largest Lyapunov exponent for
the polynomial reservoir computer as p1 is varies ranges
between –0.7 and 0. Table 1 shows that the reservoir computer
Lyapunov exponent overlaps with the Lyapunov spectra of
systems B,C and D, and overlaps with the Lyapunov spectrum
of system A for part of the range of p1.

7.2. Variation of α

The parameter α varies the time scale of the polynomial ODE
reservoir computer. The main effect of α is to match the
frequency response of the reservoir computer to the frequency
spectrum of the input signal. Figure 9 shows the fraction of errors
in identifying the four Sprott systems, EC in the top plot, and the
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FIGURE 10 | The top plot shows the fraction of errors EC in identifying which of the four Sprott systems was present, as a function of the spectral radius σ for the

polynomial ODE reservoir computer. The bottom plot shows the entropies for the four Sprott systems over the same parameter range. The training error 1RC is shown

in the bottom plot. For this plot, p1 = −0.5 and the time constant T0 = 0.3.

reservoir computer entropy H in the middle plot. The bottom
plot is the training error. For this figure, p1 = −0.5 and σ = 0.8.

Figure 9 shows that the error in identifying the Sprott
systems is low for most of the range of α. For α ≥ 0.5,
the polynomial ODE reservoir computer becomes unstable. The
reservoir computer entropy is high over the entire range of
α. The training error as α is varied appears to be small, but
comparing with the training error shown in Figure 8 shows that
the training error is not as small as it could be for the polynomial
ODE reservoir computer. Once again, the Lyapunov exponent
spectrum of the reservoir computer overlaps the Lyapunov
exponent spectrum of the Sprott systems. The largest Lyapunov
exponent for the reservoir computer for these parameters ranges

from –0.05 to 0, numbers that may be compared to the Sprott
Lyapunov exponents in Table 1.

7.3. Variation of Spectral Radius σ

The final parameter to be varied for the polynomial ODE
reservoir computer is the spectral radius σ of the adjacency
matrix. Carroll (2020b, 2021b) showed that increasing the
interaction between reservoir computer nodes by increasing the
spectral radius increased the entropy. The top plot in Figure 10

shows the error fraction in identifying the Sprott systems as the
spectral radius is swept. The time constant α for this plot was 0.3,
while the parameter p1 was –0.5. The middle plot in this figure
shows the entropy of the reservoir computer.
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FIGURE 11 | Permutation entropy H as a function of the spectral radius σ for

the polynomial ODE reservoir computer driven by Sprott system B, as the

window length varies. For this plot, p1 = −0.5 and the time constant T0 = 0.3.

There is a broad range of σ in Figure 10 for which the
identification error is small even though the entropy varies
considerably. Nevertheless, having a large value of entropy still
leads to small identification error, so maximizing the entropy is a
useful way to minimize the identification error.

The training error for the polynomial reservoir computer is
plotted in the bottom plot of Figure 10. While the training error
is not large, it does not get as small as for the lowest values of
p1 in Figure 8. The largest Lyapunov exponent for the reservoir
computer for this range of σ ranges from –0.12 to –0.01.
Comparing to Table 1, the largest Lyapunov exponent for the
reservoir computer overlaps with the Lyapunov spectrum for
Sprott systems B, C, and D, but not for system A, which may be
why the training error for system A is lower than for the other
three systems.

7.3.1. Vary Window Length

As with the spiking reservoir computer, it is possible that the
window length used to calculate the permutation entropy can
affect the results. Figure 11 shows how the window length affects
the value of the permutation entropy for Sprott system B, as the
spectral radius varies. The magnitude of the permutation entropy
increases with window length, but the pattern of variation does
not change.

Because the polynomial ODE reservoir computer did not
have a large a variation in time scales as the spiking reservoir
computer, entropy methods that used coarse graining in phase
space could also be used. In Figure 12, the nearest neighbor
entropy (Kraskov et al., 2004) is estimated. For this entropy, the
set of reservoir signals ri(t), i = 1 . . .M is considered as an M
dimensional vector R(t). A number of index points on the vector
are randomly chosen, and for each index pointR(tn), the distance
to the k nearest neighbor is εn. The nearest neighbor entropyHnn

is then calculated as

Hnn = ψ (N)− ψ
(

k
)

+
〈

ln εn
〉

(15)

FIGURE 12 | Nearest neighbor entropy Hnn as a function of the spectral radius

σ for the polynomial ODE reservoir computer driven by Sprott systems A,B,C,

and D, as the window length varies. For this plot, p1 = −0.5 and the time

constant T0 = 0.3.

FIGURE 13 | Confusion matrix for identifying the four Sprott systems A,B,C

and D with the polynomial ODE reservoir computer when p1 = −0.5, the time

constant T0 = 0.3 and the spectral radius σ = 0.8. Along the x axis are the

actual Sprott systems, while the y axis shows the probability that the Sprott

system will be identified as that particular system.

where ψ is the digamma function, N is the number of points in
the multidimensional time series and 〈〉 indicates a mean. The
distances εn are normalized by the standard deviation of R(r),
and the number of neighbors was k = 10.

Comparing with Figure 10, larger values of the nearest
neighbor entropy correspond to smaller values of the
classification error EC. Figure 12 shows that different
methods of calculating entropy are useful for minimizing
the classification error.

8. CONCLUSIONS

The classification results for the polynomial ODE reservoir
computer are summarized in the confusion matrix of Figure 13
for which p1 = −0.5, the time constant α = 0.3 and the spectral
radius σ = 0.8. Systems A and B are identified without error, but
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the reservoir computer has trouble distinguishing systems B and
C. Figure 7 showed that the spiking reservoir computer also had
trouble with these same two systems.

While it may not be practical to use a full nonlinear
optimization to optimize the reservoir computer parameters
for classifying time series signals, sweeping the parameters
one at a time yields useful insights. It was noted for both
a spiking reservoir computer and a reservoir computer based
on a polynomial ordinary differential equation that the best
classification performance coincides with the largest entropy for
the reservoir computer. This result is not unexpected, but it is
useful to confirm it using a simple method to determine entropy.
The best classification performance did not always occur at the
best parameters for signal reproduction.

The entropy concept used here appears to be useful, but
Kanders et al. (2017) studied different measures of complexity in
a spiking neural network and found that the most complex (or
critical) states did not always occur when the network Lyapunov
exponent was largest, so the principles found here for getting the
best performance from a reservoir computer may not hold in
all cases.

These results open up the possibility of optimizing a reservoir
computer for signal classification by maximizing the entropy
of the reservoir computer based on a single realization of the
signal to be classified. Optimizing based on the classification error
would require many, possibly hundreds of realizations of the
signals to be classified, requiring considerable computation.

It was shown in Carroll (2020a,b) that increasing the
interaction between reservoir computer nodes can increase the
entropy. If the interaction is too strong, the reservoir computer

may become chaotic or unstable, in which case the reservoir
computer signals may increase without bound. Carroll (2021b)
showed that instability may be avoided by adjusting other
reservoir computer parameters so that the largest Lyapunov of
the reservoir computer remains negative.

Other methods of parameter optimization in reservoir
computers, such as Yperman and Becker (2017), will also work
as long as the optimization criteria used is the entropy.

Neither of the reservoir computers in this study were
designed with biological relevance in mind, but the fact that the
requirements for the best classification performance in both types
of reservoir computer were similar means that biological systems
may also work best for classifying inputs when their entropy
is maximized.
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