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One of the essential diagnostic tools of cardiac arrhythmia is activation mapping.

Noninvasive current mapping procedures include electrocardiographic imaging. It allows

reconstructing heart surface potentials from measured body surface potentials. Then,

activation maps are generated using the heart surface potentials. Recently, a study

suggests to deploy artificial neural networks to estimate activation maps directly from

body surface potential measurements. Here we carry out a comparative study between

the data-driven approach DirectMap and noninvasive classic technique based on

reconstructed heart surface potentials using both Finite element method combined

with L1-norm regularization (FEM-L1) and the spatial adaptation of Time-delay neural

networks (SATDNN-AT). In this work, we assess the performance of the three approaches

using a synthetic single paced-rhythm dataset generated on the atria surface. The

results show that data-driven approach DirectMap quantitatively outperforms the two

other methods. In fact, we observe an absolute activation time error and a correlation

coefficient, respectively, equal to 7.20 ms, 93.2% using DirectMap, 14.60 ms, 76.2%

using FEM-L1 and 13.58 ms, 79.6% using SATDNN-AT. In addition, results show that

data-driven approaches (DirectMap and SATDNN-AT) are strongly robust against additive

gaussian noise compared to FEM-L1.

Keywords: data-driven approaches, physics-based approaches, ECGI inverse problem, cardiac activation

mapping, neural networks, deep learning

1. INTRODUCTION

Cardiac activation mapping is an important tool for guiding medical treatments (catheter ablation)
of different cardiac pathologies such as atrial fibrillation and ventricular tachycardia. It consists
of inserting a catheter into the cardiac chambers and recording the electrical activity of the tissue
at a given location. This process is repeated at multiple sites in order to cover a specific area or
sometimes the whole cardiac chamber. Then, activation times are derived from thesemeasurements
by determining the point of maximum negative slope (IDT: intrinsic deflection time) or the
point of maximal signal amplitude (Zipes and Jalife, 2009). The chosen technique depends on
the signal nature: unipolar or bipolar. Finally, these activation times are interpolated to create a
complete activation map of the heart chamber that helps the doctors localizing the target sites for
catheter ablation.
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This procedure is known to have some drawbacks. First, it
doesn’t allow to have a complete map of the chamber activation
due to a reasonable limited number of stimulations. This raises
different issues such as using inappropriate interpolation
approach which can lead to irrelevant activation map
reconstructions or mismapping catheter positions during
the clinical procedure. Then, the most notable drawback is
being invasive.

To address this problem, noninvasive electrocardiographic
mapping suggests a battery of approaches to noninvasively
reconstruct activation maps from noninvasively recorded
body surface potentials (BSPs) and a heart-torso
geometry reconstruction based on CT-Scan images using
computational methods.

For example, in Cedilnik and Sermesant (2019), authors
suggest a model personalization based on eikonal equation to
compute activation times. In Van Dam et al. (2009), authors
suggest to estimate activation times directly from BSPs using
the equivalent double layer source model. In Yang et al. (2018),
authors propose a novel formulation of ECGI inverse problem
in the frequency domain. In other studies (Zemzemi et al.,
2013; Giffard-Roisin et al., 2017), the kernel ridge regression
is used to solve the inverse problem and reconstruct activation
patterns. Besides, Duchateau et al. have suggested in Duchateau
et al. (2016) to improve ECGI mapping by estimating activation
delays between neighbor locations and construct an activation
map from local activations and delay estimations. From another
perspective, researches represented in Liu et al. (2006), Han et al.
(2008), and Zhou et al. (2016) different approaches to reconstruct
activation patterns using cardiac electric source imaging by
identifying current densities in the heart.

However, these approaches use generally inverse methods that
are known to be ill-posed and require applying regularization
techniques on the solution. This yields smoothed solutions which
makes it difficult to detect activation times.

Recent studies conducted a comparison between invasive and
noninvasive mapping (Sapp et al., 2012; Cluitmans et al., 2017;
Budanova et al., 2019; Duchateau et al., 2019). In Duchateau et al.
(2019), authors provide a comparison between invasive contact
mapping and noninvasive electrocardiographic imaging (ECGI)
activation mapping using 59 clinically acquired activation maps.
It states that ECGI mapping should be improved since the
agreement between ECGI and invasive mapping results is poor.
In fact, it shows that mean activation time error is 20.4 ± 8.6 ms
and the between-map correlation is 3± 43%.

In this context, few researches were made in order to reach
a better accuracy in localizing target sites for guiding catheter
ablation using fewer invasive measurements Kania et al. (2018),
Arrieula et al. (2019). Recent studies for localizing ventricular
activation origin and ventricular tachycardia from the 12-lead
ECG using machine learning methods (Zhou et al., 2019; Missel
et al., 2020) have shown good performances in the identification
of the arrhytmia origin. Godoy et al. suggested in Godoy
et al. (2018a,b) a machine learning pipeline to localize atrial
ectopic foci using the body surface potential integral maps
(BSPMs). Another study developed a machine learning model to
identify the site of origin of outflow tract ventricular arrhythmias

from simulated patient-specific electrical information (BSPMs,
ECGs,. . . ) Doste et al. (2019). In Lozoya et al. (2019), authors
suggest an image-based machine learning approach to detect
cardiac radio-frequency ablation targets. In the same context,
researchers conducted studies to improve efficacy of targeted
persistant AF ablation (Alhusseini et al., 2019; Boyle et al., 2019).
Recently, few reviews report all these studies and many others
related to the application of machine learning approaches to
arrhythmias and electrophysiology (Cantwell et al., 2019; Feeny
et al., 2020; Trayanova et al., 2021).

In pursuit of the same goal, a previous study (Karoui et al.,
2019a) suggests for the first time using artificial neural networks
to estimate activation times directly from BSPs. It provides a
proof-of-concept by building a model called DirectMap and
assessing its performance using in silico data. Another recent
study introduced a physics-informed neural networks for cardiac
activation mapping (Sahli Costabal et al., 2020). In continuity
with our previous works, we conduct a comparative study
to evaluate quantitatively the performance of the data-driven
methods: DirectMap (Karoui et al., 2019a) and the Spatial
Adaptation of Time-Delay Neural Network (SATDNN-AT)
(Karoui et al., 2019b) compared to the classic inverse method:
Finite Element Method combined with L1-norm regularization
(FEM-L1) (Karoui et al., 2018). The choice of these two methods
is based on their performance results reported in Karoui et al.
(2018) and Karoui et al. (2019b). The study is conducted using
atrial paced in-silico data.

This manuscript is organized as follows: in section 2.1, we
introduce the 3 methods, the synthetic data we use and the
evaluation metrics. In section 3, we detail the results. Then,
we end with a discussion, an evaluation of limitations and
perspectives of this work, and we conclude in section 4.

2. MATERIALS AND METHODS

2.1. Database
We build a synthetic paced-rhythm dataset of 101 simulations
of BSPs and their correspondent activation time (AT) maps
on the atrial outer surface. Each sample of BSPs and AT map
corresponds to a single stimulation site randomly distributed on
the atrial surface. We use the monodomain reaction-diffusion
model to simulate the electrical wave propagation inside the
heart. In order to simulate the BSPs, we first need to compute
the extracellular potential in the heart (EGMs). Then, we use
a Laplace’s equation in the torso with a Dirichlet boundary
condition on the heart-torso interface to compute the BSPs.
For more details, see Zemzemi et al. (2013). Activation times
are derived from the simulated EGMs by determining the IDT
(Intrinsic Deflection Time) at each point of the atrial mesh. Let
ui(t) be the unipolar signal at point Xi at time t, the IDT T̂i is:

T̂i = arg min
t∈[0,T]

dui(t)

dt
, (1)

where T is the simulation duration. The finite element
discretization of the realistic 3D atria-Torso geometry contains
264 nodes for the torso and 1994 nodes on the atrial surface.
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Each sample contains 400 time steps but the training is performed
using only the first 200 time steps corresponding to the p-wave.
The data used in the sections 3.1–3.3 are without additive noise.

2.2. Physics-Based Inverse Methods:
FEM-L1
The study conducted in Karoui et al. (2018) evaluates
the performance of fifteen algorithms combining different
discretization and regularization techniques for reconstructing
heart surface potentials (HSPs). According to this study, the finite
element method combined with the L1-norm regularization
(FEM-L1) of the current density over the heart surface
provides the best results to solve the inverse problem of
electrocardiography in terms of heart surface potential and
pacing site localization. As it’s mentioned in the state-of-the-art,
the inverse problem is mathematically expressed as follows:

Ax = b (2)

where A is the transfer matrix generated using the finite element
method, b is the boundary condition vector and x is the unknown
potential vector.

Due to its ill-posedness, the inverse problem has to be solved
using regularization. In this case, it turns out to minimize the
objective function using L1-Norm regularization given by:

min
x

‖Ax− b‖2 + λ2‖∇x.nH‖1, (3)

where nH is the outward unit normal to the epicardium surface
and λ is the regularization parameter.

Using the Finite Element Method, we can define the Dirichlet-
To-Neumann operatorD satisfying:







∂x1
∂n
...

∂xn
∂n






= D







x1
...
xn






, (4)

where D is an n-by-n matrix where n is the number of nodes in
the heart surface.

Therefore, the objective function (3) can be expressed
as follows:

min
x

‖Ax− b‖2 + λ2‖Dx‖1. (5)

Using an approximation of L1-Norm as an L2-norm, the linear
problem to be solved is then simplified in a way that it can be
seen as a first-order Tikhonov regularization.

In fact, following Karl (2005), we can smoothly approximate
the L1-Norm of the derivative by:

‖Dx‖1 =

n
∑

i=1

|⌊Dx⌋i| ≈

n
∑

i=1

√

|⌊Dx⌋i|2 + β , (6)

where β is a small constant satisfying β > 0 and ⌊Dx⌋i the i
th

component of the vector Dx.

This approximation leads to a set of equations whose
resolution as β −→ 0 gives an estimate of the solution of (5)
by solving the following linear problem:

[

ATA+ λ2DTWβ (x)D
]

x = ATb, (7)

where Wβ (x) is a diagonal matrix called weight matrix,
expressed by:

Wβ (x) =
1

2
diag

[

1
√

|⌊Dx⌋i|2 + β

]

. (8)

Then, thanks to the diagonality of Wβ (x), (7) can be written
such that:

[

ATA+ λ2D̃T(x)D̃(x)
]

x = ATb, (9)

where D̃(x) =
√

Wβ (x)D.
Computationally, the equation (9) is non-linear since the

weighting matrixWβ (x) depends on the solution x. To overcome
this constraint, we suggest to use the Finite Element zero-order
Tikhonov solution x0. Thus, we solve the problem expressed by:

[

ATA+ λ2D̃T(x0)D̃(x0)
]

x = ATb. (10)

2.3. Data-Driven Inverse Methods
In this section, we suggest two approaches for cardiac activation
mapping based on artificial neural networks.

2.3.1. Direct Cardiac Activation Mapping Using

Electrocardiograms: DirectMap
We suggest here to reconstruct activation time maps directly
from ECGs without using electrograms (EGMs). To do so, we
build a classic architecture of a neural network constituted of
fully-connected and non-linear activation layers (ReLU). The
network architecture is represented in Figure 1A where N is
the number of measurement points on the body surface, M
is the number of nodes on the heart surface and T is the
sequence length.

To compute the optimal weights, the model has to
minimize the following objective function with respect to the
network parameters:

min
M1,2,3 ,b1,2,3

‖ATc − ATe‖2, (11)

where ATc is the estimated activation times vector and ATe is the
target one. According to the neural network architecture, ATc is
defined as follows:

ATc = M3

[

ReLU
(

M2

[

ReLU
(

M1BSP + b1
)]

+ b2
)]

+ b3.
(12)

Here,M1,2,3 are network layer weights and b1,2,3 are biases.
The method consists of using the ECGs of a heartbeat

sequence as input to the artificial neural network in order to
estimate the corresponding activation time map.
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FIGURE 1 | Architecture diagrams of (A) the direct activation mapping neural network (DirectMap) and (B) the spatial adaptation of the time-delay neural

network (SATDNN-AT).

A study is conducted over the neural network layers size.
The aim is to determine the optimal model architecture for a
given dataset. In order to guarantee a predefined accuracy on
activation times reconstruction with the lower possible dataset
size, we conducted a grid search procedure, allowing to determine
simultaneously the maximal sparsity in the training data set and
the optimal architecture of the neural network. We defined a
threshold equal to 15 ms in terms of absolute error to choose
the model with the minimal dataset size achieving a performance
under this threshold. Results are reported in section 3.1.

2.3.2. Cardiac Activation Mapping Using

Reconstructed Electrograms by SATDNN-AT
The SATDNN-AT method was firstly introduced in Karoui et al.
(2019b). It consists of reconstructing a heart surface potential
at a time step t from body surface potential measurements at
time step t and its previous values t − 1, t − 2, etc. The main
idea is that the body surface potential at a time step t is highly
dependent to its values at previous time steps t − 1, t − 2, etc.
Thus, TDNN (Waibel et al., 1989) is a good candidate to get use
of this dependence. In fact, each neuron in the TDNN uses the
current and its d previous values of the BSP input to estimate the
HSP target at the given time step t where d is the time-window
size to fix.

Similarly to the temporal correlation, the heart surface
potential in a given point P is strongly dependent on its
recorded values at the adjacent points due to the propagation
phenomenon. Hence, we use the spatial adjacency matrix as a
representation of the relation between the target spatial location

and its adjacent locations. According to Karoui et al. (2019b), this
model called SATDNN-AT is made with two hidden layers. The
first layer is identical to the TDNN where D(d) is the time delay
window of size d as represented in Figure 1B. Then, we perform
an element-wisemultiplication of the first layer output by the first
order adjacency matrix Adj(1). This allows, for each point, to only
keep the weights corresponding to its adjacent points and reduces
the others to zero.

In the interest of betterment, the model is here improved
by building an autoencoder-like architecture represented in
Figure 1B. It consists in building a bottleneck in the neural
network that provides a compressed information representation
which allows the model to ignore signal noise. The effect of this
modification will be discussed in section 4.

2.4. Implementation
Data-driven models are implemented using Pytorch (Paszke
et al., 2019). To train our models over labeled data, we use
the mean squared error as an optimization criterion and the
stochastic gradient descent as an optimization algorithm. K-fold
cross validation (Refaeilzadeh et al., 2009) is used to evaluate
the model performance on unseen data. It generally results on
a less biased estimation of the target. The procedure consists
on splitting the dataset on a training-validation dataset and a
testing dataset. Then, K-fold cross validation is applied on the
training-validation dataset. In fact, this latter is splitted into K
groups. Each unique group is once kept as a validation dataset
and all the remaining ones are used for training the model. In
the end, the trained models are evaluated over the testing dataset.
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The training phase ends when the optimization criterion stops
improving over the validation dataset. Hyper-parameters of the
models are tuned empirically based on the performance of the
models on the validation dataset. Learning rate and momentum
are, respectively, 0.00001 and 0.8. The cross validation parameter
K is equal to 4. Training and validation subsets are shuffled at
each epoch of the training process. The time-window size d of
SATDNN-AT is equal to 2.

Concerning the physics-based method, we developed the
numerical tools into MUSIC software (Multi-modality Platform
for Specific Imaging in Cardiology) (Cochet et al., 2014).
More information about the MUSIC platform could be
found in the following link: https://www.ihu-liryc.fr/en/music.
MUSIC is intended for cardiac imaging processing, cardiac
mapping analysis and electrocardiographic imaging inverse
problem resolution.

For both potential based methods SATDNN-AT and FEM-L1,
we post process the computed EGM signals using a Butterworth
low-pass filter that eliminates the high frequency fluctuations.

2.5. Evaluation Criteria
To assess the precision of reconstructed activation maps, a point-
based absolute activation time error (AATE) is computed as the
absolute value of the difference between the exact and computed
activation times at each point of the atrial mesh. Given ATe

i,j the

exact activation time at point j of the simulation i, AATEij can be

expressed as follows:

AATEij = |ATe
i,j − ATc

i,j|, (13)

where ATc
i,j is the computed activation time at point j of the

simulation i. Then, an average over all the mesh is computed.
Pearson correlation coefficients (CC) are also computed between
each activation time map pair for every simulation. To assess
pacing site localization, we use the geodesic distance between
estimated and exact pacing sites. These latter correspond,
respectively to the node that has the minimum of estimated and
exact activation times.

3. RESULTS

3.1. Database Dependency Analysis
In this section, we present the results of the database dependency
analysis performed on DirectMap. As it’s mentioned in section
2.1, the database contains 101 simulations. To assess the database
dependency, we suggest selecting subsets from the original
dataset using the geodesic distance between stimulation sites
as a selection criterion. In fact, we first compute the geodesic
distances between all the stimulation sites corresponding to the
101 simulations. Then, we select the simulations whose distance
between stimulation sites is above a fixed threshold. Using this
approach, we succeed to select 9 subsets containing, respectively,
100, 85, 63, 50, 32, 25, 18, 16, 12, 10, and 8 simulations
corresponding to a minimal distance between stimulation sites
equal to 0.2, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 9.2, and 10.2 mm,
respectively. The subsets have been constructed by computing

the minimal (mindist) and maximal (maxdist) inter pacing sites
distances, discretizing the interval [mindist, maxdist] by 1mm,
finding the subsets corresponding to each discretization step
and removing the subsets containing <8 cases. This approach
characterizes the spatial sparsity of each training data with its
inter pacing site distance.

Figure 2 shows the evolution of mean and standard deviation
of absolute activation time error and correlation coefficient
over the testing subset with respect to dataset size. Each row
corresponds to the results obtained using, respectively (from top
to bottom) 5, 10, 100, 1000, 2000, and 8000 neurons per hidden
layer in the neural network.

To select the most appropriate model, we refer to the study
conducted by Duchateau et al. (2019), where mean absolute error
between invasive and noninvasive estimated activation times
is equal to 20.04 ms. Considering the fact that this study is
performed using in-silico data, we use a threshold in terms of
absolute error equal to 15 ms represented in the Figure 2 by the
dashed line. Another important selection criterion is the standard
deviation. In fact, a high standard deviation means that results
fluctuate between the folds and thus the model is not stable and
vice versa.

By taking into account all these criteria, we observe that the
model using 1000 neurons per hidden layer is the most stable
for all the dataset sizes. We observe also that absolute activation
time errors and correlation coefficients improve by increasing
the dataset size. The sub-figure corresponding to the model
using 1000 neurons per hidden layer shows that starting from
32 simulations, the results are below the threshold in terms of
absolute error and above 80% in terms of correlation coefficient.

Therefore, results of the next phase of the study correspond
to the chosen model using 1000 neurons per hidden layer and
trained using the subset that contains 32 simulations. This subset
corresponds to the case where the inter-pacing site distance is at
least equal to 4.2mm.

3.2. Cardiac Activation Mapping Results
In this section, we detail the results of the 3 methods and
compare their performances based on the point-wise absolute
activation time error and correlation coefficient. To do so, we
choose the best model, in the sense of validation, from the 4 built
models using the k-fold cross validation approach for DirectMap
and SATDNN-AT. Figure 3 shows the absolute activation time
error and correlation coefficient for every simulation of the
training, validation and testing datasets using the methods
DirectMap, SATDNN-AT and FEM-L1. If we concentrate on
the testing results, we observe that DirectMap performs better
than FEM-L1 and SATDNN-AT in terms of absolute errors
and correlation coefficients. In fact, the average and standard
deviation of the absolute errors and correlation coefficients are,
respectively, equal to 7.20± 3.42ms, 93.2± 2% using DirectMap,
14.60 ± 1.36 ms, 76.2 ± 5% using FEM-L1 and 13.58 ± 3.42 ms,
79.6 ± 11% using SATDNN-AT. These results are reported in
Tables 1, 2.

When looking into SATDNN-AT results, we observe little
fluctuations in the reconstructed EGMs which, for instance, can
mislead the computation activation time estimation due to the
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FIGURE 2 | (A) Activation time absolute errors and (B) correlation coefficients with respect to dataset size. Each subfigure corresponds to trained neural network with

the mentioned number of neurons per layer (nbNeurons).
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FIGURE 3 | Comparison of the computed electrograms at different location of the atria: Exact solution (red line), solution using SATDNN-AT method (EGM_NN, blue

line), SATDNN-AT with filter (EGM_NN_Filt, orange line) and FEM-L1 (EGM_FEM, green line). Points correspond to the estimated activation times. Each plot

corresponds to a different node of the atria mesh.

TABLE 1 | Means and standard deviations of absolute errors over training, validation, testing datasets and over all data (ms).

Training data Validation data Testing data All data

DirectMap 4.4 ± 3.1 3.9 ± 1.8 7.2 ± 3.4 4.9 ± 3.2

SATDNN-AT 8.4 ± 0.5 8.4 ± 0.5 15.1 ± 3.8 9.9 ± 3.3

FEM-L1 15.14 ± 1.9 15.47 ± 1.5 14.60 ± 1.3 15.08 ± 1.7

SATDNN-AT_Filt 6.6 ± 0.3 6.7 ± 0.5 13.58 ± 3.4 8.1 ± 3.2

FEM-L1_Filt 14.5 ± 1.8 14.8± 1.6 14.3 ± 1.3 14.4 ± 1.7

TABLE 2 | Means and standard deviations of correlation coefficients over training, validation, testing datasets and over all data (%).

Training data Validation data Testing data All data

DirectMap 94.6 ± 3 94.9 ± 3 93.2 ± 2 94.3 ± 3

SATDNN-AT 95.8 ± 2 95.9 ± 2 79.6 ± 11 92.3 ± 8

FEM-L1 72.2 ± 11 73.2 ± 5 76.2 ± 5 73.2 ± 9

SATDNN-AT_Filt 96.9 ± 1 96.2 ± 1 83.1 ± 8 93.7 ± 7

FEM-L1_Filt 74± 10 73± 8 77.2 ± 4 74 ± 8
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FIGURE 4 | Comparison of (A) absolute errors and (B) correlation coefficients between exact and computed activation times using FEM-L1, DirectMap, SATDNN-AT

and SATDNN-AT with filter for the 32 simulations.

fact that the AT is computed using the IDT. In order to solve
this issue, we post process the computed EGM signals using a
Butterworth low-pass filter that eliminates the high frequency
fluctuations. Figure 4 represents exact and reconstructed EGMs

using SATDNN-AT and SATDNN-AT after filtering at some
selected points on the atrial surface. We observe that filtering
either narrows or keeps the gap between exact and estimated
activation times in almost all the nodes. In average, Tables 1, 2
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FIGURE 5 | (A) Exact and reconstructed pacing sites using (B) FEM-L1, (C) SATDNN-AT with filter and (D) DirectMap for a test simulation. Numbers are geodesic

distances between exact and estimated pacing sites.

show that results using the filtering technique are better than
without filtering. To make a fair comparison, the same low-pass
filter used for post-processing SATDDN-AT electrograms is
applied to EGMs reconstructed by FEM-L1.

3.3. Pacing Site Localization Results
To assess the pacing site localization performance, we use the
geodesic distance between exact and reconstructed pacing sites as
an evaluation metric. According to the observed results, there is
an exception where we reconstruct the pacing site differently. In
the case where the minimum value of activation times is shared
by multiple nodes, as shown in Figure 5, we choose to take the
gravity center of the nodes having the minimal AT value as the
reconstructed pacing site.

In Figure 6, we show the simulations of the testing dataset
with the reconstructed pacing sites and the geodesic errors.
We observe that in average, geodesic distances using FEM-
L1, SATDNN-AT and DirectMap are, respectively, 9.5 mm ±

8.1, 13.2 mm ± 5.7, and 7.6 mm ± 4.2. We conclude that
DirectMap outperforms the two other methods in terms of
pacing site localization.

3.4. Robustness Against Added Gaussian
Noise to the Testing Data
To assess and compare the robustness of the three methods
against additive Gaussian noise, we represent in this section
their results in terms of absolute activation time errors and
correlation coefficients after adding to ECGs different noise
levels in the range between 5 and 50% of the maximum signal
amplitude. These tests are performed only on the testing data.
Tables 3, 4 show that DirectMap is insensitive to noise addition in
terms of both absolute error and correlation coefficient. Besides,
SATDNN-AT ismore robust than FEM-L1 against additive noise.

Considering that the 3 methods behave the same way for all
the simulations, Figure 7 represents results of a simulation of the
testing dataset that confirms the previous deductions. In fact, we
observe that FEM-L1 absolute error deteriorates from 15 to 32ms
then from 32 to 43 ms for, respectively, 5 and 50% of noise level.
The same applies to correlation coefficient that decreases from 79
to 38% then from 38 to 18% for, respectively, 5 and 50% of noise.

Figure 8 shows exact and estimated electrograms by FEM-
L1 and SATDNN-AT using different noise levels going from
5 to 50%. We observe that the reconstruction quality of the
electrograms using FEM-L1 deteriorates proportionally to the
added noise level. However, the reconstructed electrograms using

SATDNN-AT are slightly affected by the added Gaussian noise,
which explains the difference between SATDNN-AT and FEM-L1
results in terms of activation time estimation.

3.5. Robustness Against Added Gaussian
Noise to the Training Data
In this section, we study DirectMap model performance when
trained and tested using noisy data. To do so, we generate
noisy ECGs by adding 25% of noise. Then, activation maps are
contaminated by adding a uniformly distributed noise between
−5 and 5 ms, −10 and 10 ms, −20 and 20 ms, −30 and
30 ms. Figure 9 presents the average performance of the trained
models using the noisy data with respect to the intensity of the
added noise. We observe that the model performance deteriorate
when the noise intensity increases. The mean absolute activation
time error increases from 8.8 to 19.02 ms and the correlation
coefficients decreases from 96 to 80% when using±5 and±30ms
of noise, respectively.

3.6. Robustness Against Geometric
Uncertainties During the Testing Phase
To assess the robustness of the methods against geometric
uncertainties, we modify the torso geometry by applying an
inflation of a 1.2 factor as represented in the Figure 10.
ECGs are simulated by solving the forward problem using the
inflated geometry.

First, the modified ECGs are used to test the initial model
DirectMap. Mean absolute error and correlation coefficient are
equal to 14.08 ± 2.38 ms and 94.2 ± 35%, respectively. Using
FEM-L1, results are 25.9 ± 5.6 ms and 43.7 ± 20.1%. Finally,
we observe an absolute activation time error and a correlation
coefficient equal to 23.5 ± 6.2 ms and 57.8 ± 11.9% using
SATDNN-AT. To plot a complete comparison between the
methods, we compute the evaluation metrics for SATDNN-AT
and FEM-L1 after filtering. Results are 24.3 ± 5.2 ms and 53.5 ±
22.1% using FEM-L1 with filter and 21.2±4.7ms and 66.8±7.8%
using SATDNN-AT with filter.

Then, Table 5 reports the evolution of absolute errors and
correlation coefficients with respect to noise added to activation
maps using the inflated torso geometry during the testing phase.
We observe a deterioration in terms of absolute errors and
correlation coefficients. The absolute error increases when using
a noise between −5 and 5 ms from 17.6 ms to 19.9ms when we
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FIGURE 6 | (A) Exact and estimated pacing sites using (B) FEM-L1, (C) SATDNN-AT with filter and (D) DirectMap for 7 different test simulations. Numbers are

geodesic distances between exact and estimated pacing sites.

add a noise between −30 and 30 ms. The correlation coefficient
decreases from 91.5 to 85.9%.

4. DISCUSSION AND CONCLUSION

This study addresses two different issues: First, it studies
the DirectMap generalization performance with respect to

dataset size and the neural network architecture. Then,
it compares DirectMap with two methods of the state-
of-the-art cardiac activation mapping. The results confirm
that the larger the dataset, the greater the performance.
According to Duchateau et al. (2019), mean activation time
absolute error using non-invasive cardiac activation mapping
methods assessed on clinical data is equal to 20.04 ms.
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TABLE 3 | Means and standard deviations of absolute activation time errors of the testing dataset with respect to noise level (ms).

Noise (%) 0 5 10 30 50

DirectMap 7.2 ± 3.4 7.2 ± 3.4 7.2 ± 3.4 7.2 ±3.3 7.2 ± 3.3

SATDNN-AT 15.1 ± 3.8 15.6 ± 3.5 16.4 ± 5 19.1 ± 3.6 21.8 ± 5

FEM-L1 14.6 ± 1.3 39.4 ± 4.4 43.3 ± 4 48 ± 3 49.5 ± 2.1

SATDNN-AT_Filt 13.5 ± 3.4 13.7 ± 3.4 13.8 ± 3.3 15.1 ± 3.1 16.3 ± 3.6

FEM-L1_Filt 14.6 ± 1.3 26.9 ±3.6 36.4 ± 3.1 45.5 ± 2.5 46.4 ± 3.5

TABLE 4 | Means and standard deviations of correlation coefficients of the testing dataset with respect to noise level (%).

Noise (%) 0 5 10 30 50

DirectMap 93.2 ± 2 93.2 ± 2 93.2 ± 2 93.2 ± 2 93.2 ± 2

SATDNN-AT 79.6 ±11 79.6 ± 6 75.5 ± 7 72± 8 64.6± 14

FEM-L1 76.2 ± 5 23.9 ± 6 11.2 ±3 3.2 ± 6 -1.5 ± 9

SATDNN-AT_Filt 83.1 ± 8 82.3 ± 8 81.7 ± 8 75.9 ± 9 70.5 ± 13

FEM-L1_Filt 76.2 ± 5 49.5 ± 6.3 26.2 ± 7 11.2 ± 3.1 7.5 ± 6.1

FIGURE 7 | Evolution of (A) absolute errors and (B) correlation coefficients between exact and estimated activation times with respect to noise level using FEM-L1,

DirectMap and SATDNN-AT.

So, by fixing a threshold equal to 15 ms we deduce that
using 32 simulations as a training dataset provides a great
generalization performance.

Based on these results, a comparison study is conducted
between DirectMap, SATDNN-AT and FEM-L1. It shows that
DirectMap outperforms the two other methods. In terms of
cardiac activationmapping, DirectMap achieves an improvement
of nearly 7 ms in absolute error and, respectively, 10%, 17% in
terms of correlation coefficient compared to SATDNN-AT and
FEM-L1. A robustness analysis against noise was also conducted.
First, it shows that DirectMap is strongly robust against eventual
additive gaussian noise present in ECGs compared to SATDNN-
AT and FEM-L1. Results show also that SATDNN-AT is more
robust than FEM-L1 whose performance massively deteriorates.
This study shows that data-driven methods are more robust

than physics-based methods. This is due to the use of auto-
encoder architecture which is known for its great performance
in denoising data. In fact, it allows the neural network to
learn from a reduced representation of the input information
by ignoring noise features. Second, DirectMap performance
was assessed when trained and tested using noisy data. As
expected, the study shows that the performance deteriorates
proportionally to the added amount of noise but it is still under
the fixed threshold even when the noise added to activation
maps ranges between −20 and 20 ms. Geometric uncertainties
were also considered by inflating the torso geometry by a 1.2
factor. Testing the different approaches with these data shows
a decline in the evaluation metrics. Nevertheless, DirectMap
still achieves the best performance compared to FEM-L1
and SATDNN-AT.
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FIGURE 8 | Exact and estimated electrograms using (A) FEM-L1 (EGM_FEM_Filt) and (B) SATDNN-AT (EGM_NN_Filt) with respect to the added noise level.

Although DirectMap has promising results compared to
SATDNN-AT and FEM-L1, many limitations are still to be
addressed in future works. First, we have to admit that the built

model has a basic neural network architecture which can be
improved to meet the complexity of the problem. We have to
notice that the size of the database has been optimized on the
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basis of DirectMap performance results and used later to evaluate
the performance of the two other methods. This doesn’t affect the
FEM-L1 results. However, this choice might not be optimal for
SATDNN-AT. Then, as we mentioned in Karoui et al. (2019a),
tests are performed using perfect data with the same heart-torso
geometry which is not compatible with real cases. So, geometry
standardization would be one step forward in data-driven cardiac
activation mapping. We also have to notice that using intrinsic
deflection time as the computation method of activation time

FIGURE 9 | Inflated torso geometry generated by inflating the original

geometry by a factor 1.2.

from the inverse solution computed with SATDNN-AT and
FEM-L1 may not be optimal to compare these two methods
to DirectMap. Besides, we observe that low-pass filtering of
the inverse solutions EGMs improved the reconstruction of the
activation maps. Moreover, since cardiac activation mapping
is a diagnostic tool of cardiac diseases, our model would be
more credible if trained and tested using data illustrating some
specific cardiac pathologies. Like all the methods used in ECGI
mapping, in order to take into account real-life data acquisition
inaccuracies, it’s important to quantify the performance of the
model with respect to uncertainties such as misplacement of
electrodes, shift and/or rotation of the atrial geometry within the
body volume, different forward and inverse calculations, different
electrode setups and number of electrodes, for example using
standard 12-lead ECG instead of BSPMs. Geneser et al. (2007),
Fikal et al. (2019), Tate et al. (2021), and Multerer and Pezzuto
(2021) Finally, our study is still a proof-of-concept until sufficient
clinical data would be available to validate our results.

Even though our model achieves valuable results, it is still not
applicable in clinical cases due to the high number of required
stimulations. To address this issue, future works will focus on
data augmentation techniques in order to enrich the dataset
without performing many pacings. One of the options is to
combine data-driven and physics-based methods as it’s presented
in a recent study conducted by Sahli Costabal et al. (2020).

FIGURE 10 | Bar graphs of the evolution of (A) absolute errors and (B) correlation coefficients with respect to noise added to activation maps. The results correspond

to the testing phase.

TABLE 5 | Means and standard deviations of absolute errors and correlation coefficients of the inflated testing dataset with respect to noise added to activation maps.

Noise (ms) 5 10 20 30

AATE (ms) 17.6 ± 2.6 17.7 ± 2.7 18.6 ± 3.1 19.9 ± 3.8

CC (%) 91.5 ± 33 91 ± 33 88.9 ± 33 85.9 ± 31
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After proving the feasibility and applicability of DirectMap, this
work attests that it outperforms at least two of state-of-the-art
methods: SATDNN-AT and FEM-L1. In summary, this study
is encouraging and suggests that DirectMap technique needs
further investigation and may have potential to become a useful
noninvasive cardiac activation mapping tool.
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