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Aims: The underlying mechanism of diabetic enteropathy, a common complication of
type 1 diabetes, remains unclear. Store-operated Ca2+ entry (SOCE) is a ubiquitous
type of Ca2+ influx involved in various cellular functions. Here, we show that SOCE-
related stromal interaction molecule 1 (STIM1) and Orai1 participate in inappropriate
cellular Ca2+ homeostasis, augmenting agonist-induced small intestinal smooth muscle
contraction and small bowel transit speed in a mouse model of type 1 diabetes.

Methods and Results: We used small interfering (si)RNA to suppress STIM1 and Orai1
proteins, and employed intracellular Ca2+, small intestinal contraction and intestinal
transit speed measurement to investigate the functional change. We found that SOCE
activity and Orai1 and STIM1 expression levels of small intestinal smooth muscle
were significantly increased in cells cultured in high glucose medium or in diabetic
mice. Gastrointestinal transit speed and SOCE-mediated contractions were markedly
increased in diabetic mice; Knocking down Orai1 or STIM1 with siRNA rescued both
alterations in diabetic mice. However, the Orai1-large conductance Ca2+-activated K+

(BKCa) channel interaction was decreased in diabetic mice, and suppressing Orai1
expression or inhibiting the BKCa channel increased agonist-induced small intestinal
contractions in normal mice.

Conclusion: We concluded that the increased SOCE caused by excessive STIM1
and Orai1 expression and decreased Orai1-BKCa interaction augmented small intestinal
smooth muscle contraction and accelerated small bowel transit speed in diabetic mice.
This finding demonstrates a pathological role for SOCE in diabetic enteropathy and
provides a potential therapeutic target for diabetic enteropathy.

Keywords: type 1 diabetes, small bowel transit, store-operated Ca2+ entry, Orai1, Ca2+-activated K+ channel,
small intestinal smooth muscle
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INTRODUCTION

Type 1 diabetes is an immune-mediated metabolic disease
characterized by insulin deficiency and glucose fluctuation
accompanied by diverse complications (Cheng and Yilmaz,
2015). Diabetic gastrointestinal disorders are common
complications, including diabetic gastroparesis, and intestinal
enteropathy (Yarandi and Srinivasan, 2014). Many studies have
reported that diabetic gastroparesis is caused by abnormal
electrophysiological activity, impaired gastric enteric neurons,
and incongruous muscle activity (Stevens et al., 2013; Koch
and Calles-Escandon, 2015). However, studies examining
diabetic enteropathy are relatively rare. Currently, diabetic
enteric complications in type 1 diabetes, mainly constipation
and diarrhea, are commonly considered a manifestation
of symptomatic diabetic autonomic neuropathy (Yarandi
and Srinivasan, 2014). Accumulated evidence shows that
neurodegeneration of the myenteric plexus (Anitha et al.,
2006) and loss of mucosal nerve fibers (Selim et al., 2010) are
basic factors. Electric stimulation caused by luminal contents
relay neuronal activity to generate muscle responses; however,
nervous dysfunction results in a mild increase of cholinergic
contractions, decrease of noradrenaline, and attenuated
inhibitory neurotransmission in the ileum of mice with type
1 diabetes (Domenech et al., 2011; Uranga-Ocio et al., 2015).
In addition, degeneration of the interstitial cells of Cajal and
reduced association with enteric neurons lead to decreased
electrical activity (Iwasaki et al., 2006). Although Ca2+ is an
essential participant in smooth muscle contraction, the changes
in cellular Ca2+ homeostasis of the small intestinal smooth
muscle (SISM) in type 1 diabetes is still not entirely clear.

Ca2+ plays a critical role in numerous physiological functions.
Store-operated Ca2+ entry (SOCE) is a ubiquitous mechanism
of Ca2+ influx in many cell types (Putney, 2011). With
the development of RNA interfering techniques, two major
SOCE-related components were discovered: stromal interaction
molecule 1 (STIM1) and Orai1 (Feske et al., 2006; Soboloff et al.,
2006). The N-terminus of STIM1 acts as a Ca2+ sensor located
in the lumen of the endoplasmic reticulum (ER)/sarcoplasmic
reticulum (SR). Upon Ca2+ depletion of the ER/SR, STIM1
aggregates and translocates to ER-plasma membrane junction
regions and then activates Orai1, which is an ion channel
formed by four transmembrane spanning protein subunits (Liou
et al., 2005; Prakriya et al., 2006; Soboloff et al., 2006). When
agonists act on G protein-coupled receptors (GPCR), GPCR
signaling through the Gaq activates phospholipase C (PLC) to
drive both inositol triphosphate (IP3) and diacylglycerol (DAG)
production, IP3 acts on IP3 receptors, causing Ca2+ release
from the ER/SR and depletion of internal Ca2+ stores. Growing
evidence indicates an association of altered SOCE with various
diabetic complications. Enhanced SOCE in glomerular mesangial
cells (Chaudhari et al., 2014; Chaudhari and Ma, 2016), vascular
endothelium (Tamareille et al., 2006; Daskoulidou et al., 2015),
and platelets (Chaudhari and Ma, 2016) contributes to diabetic
nephropathy and vasculopathy. Attenuated SOCE, found in
retinal microvascular smooth muscle (Curtis et al., 2003) of
diabetic rats, reduces vessel contractile responses or may be

a compensatory response to avoid over-reactive contraction in
diabetes. However, the pathological role of SOCE in SISM in type
1 diabetes remains unknown.

Therefore, in the present study, we used a mouse SISM cell
line (MUS-M1) to investigate changes of SOCE in a high glucose
environment in vitro. We also examined the pathological role of
the SOCE-mediated Ca2+ signal in small intestine transit speed
in vivo in a mouse model of type 1 diabetes.

MATERIALS AND METHODS

Materials
Thapsigargin (TG), carbachol (CCh), and adenosine triphosphate
(ATP) were obtained from Calbiochem. Iberiotoxin (IbTX) and
streptozotocin (STZ) were purchased from Sigma-Aldrich. Anti-
STIM1 (sc-68897) and anti-Orai1 (sc-68895) primary antibodies
were purchased from Santa Cruz Biotechnology. The anti-
BKCa channel (APC-107) primary antibody was purchased from
Alomone Lab. Specific small interfering (si)RNA for mouse
STIM1 (5′-UACAGUGGCUCAUUACGUA-3′) and Orai1 (5′-
GCCAUAAGACGGACCGGCA-3′) (Dietrich et al., 2007; Potier
et al., 2009) and scrambled siRNA (5′-ACGCGUAACGCGGGAA
UUU-3′) were designed and synthesized by Biomics Company.

Cell Culture and siRNA Transfection
MUS-M1, a mouse SISM cell line, was purchased from the
Kunming Cell Bank of the Chinese Academy of Sciences and
cultured in Dulbecco’s Modified Eagle’s Medium supplemented
with 100 U/mL penicillin, 100 µg/mL streptomycin, and 10%
fetal bovine serum. Only sub-passage 3–10 MUS-M1 cells
were used in the present study. For the group with normal
glucose (NG) levels, the culture medium contained 5.6 mM
glucose and 20 mM α-mannitol as an osmotic control. In the
group exposed to high glucose (HG), the medium contained
25 mM glucose (Chaudhari et al., 2014). The medium was
replaced every other day. Specific siRNAs against mouse
STIM1 and Orai1 or scrambled control siRNA were transiently
transfected into MUS-M1 cells using Lipofectamine 2000 reagent
(Invitrogen) according to the manufacturer’s protocol. Cells
were harvested for the following experiments 36 h after
siRNA transfection.

Intracellular Ca2+ Measurement
The cytosolic Ca2+ concentration ([Ca2+]i) was measured as
described previously (Chen et al., 2016). Briefly, MUS-M1 cells
were plated at 1 × 105 per well on glass coverslips in 12-
well culture plates as described above. Cells were loaded with
a fluorescent Ca2+ ion indicator Fluo-8/AM (6 µmol/L) and
0.02% pluronic F-127 at 37◦C for 30 min. The Ca2+ stores in
MUS-M1 cells were depleted using 2 µmol/L TG or 100 µmol/L
CCh for 10 min in Ca2+-free saline solution, which contained
(in mmol/L) 140 NaCl, 5 KCl, 1 MgCl2, 10 glucose, 0.2 EGTA,
and 5 HEPES at pH 7.4. The Ca2+ influx was initiated by
applying 2 mmol/L extracellular Ca2+. The fluorescence signal
was recorded using a Nikon fluorescence microscope with 488-
nm excitation and 515-nm long pass emission wavelengths.
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Changes in the peak value of cytosolic [Ca2+]i were displayed
as the ratio of fluorescence intensities relative to the baseline
intensity before the application of extracellular Ca2+ (F1/F0).
Each data point is an average of 20–30 cells.

Western Blotting and
Co-immunoprecipitation
Western blotting and co-immunoprecipitation assays were
performed as described in our previous study (Chen et al.,
2016). Proteins were extracted from the lysates of MUS-M1
cells and the SISM tissue from diabetic and normal mice with
detergent extraction buffer, which contained 1% Nonidet P-40,
150 mmol/L NaCl, and 20 mmol/L Tris–HCl at pH 8.0, plus
protease inhibitor cocktail tablets. For SISM tissue, the peripheral
adipose tissue and intestinal villi was removed. The extracts
were fractionated by 12% SDS-PAGE and then transferred
to polyvinylidene difluoride membranes. The membrane was
blocked with 5% non-fat milk diluted by PBST for 1 h at room
temperature and incubated at 4◦C overnight with anti-Orai1 and
anti-STIM1 primary antibodies. The next day, the membrane
was washed three times and then incubated with a horseradish
peroxidase-conjugated secondary antibody. The signal for each
protein was detected using an ECL system. The optical densities
of the protein bands were normalized to that of α-actin analyzed
within the same lane and presented as the percentage of the
optical density.

Induction of Type 1 Diabetes
All animal experiments were performed according to the
guidelines presented in NIH publication no. 8523 and approved
by the Experimentation Ethics Committee of Anhui Medical
University. Five-week-old Kunming mice (male) were provided
by the Experimental Animal Center of Anhui Medical University
and randomly divided into two groups: STZ and age-matched
controls. Both groups were fed regular chow and given
free access to tap water. STZ (6 mg/mL) was dissolved in
50 mM sodium citrate buffer (pH 4.4) before the injection.
As previously described, mice in the STZ group were injected
with STZ (40 mg/kg) intraperitoneally for five consecutive
days to induce type 1 diabetes (Furman, 2015). Mice in the
control group received injections of acetate buffer. Plasma
glucose levels were determined with a One Touch Blood Glucose
Monitoring System (LifeScan, Inc., United States). Mice with
fasting plasma glucose levels higher than 11.1 mmol/L were
selected for use.

In vivo siRNA Injections
Diabetic mice were randomly separated into three groups. Each
mouse received two injections every 3 days of Orai1 siRNA,
STIM1 siRNA, or scrambled control siRNA. Based on previous
studies (Filleur et al., 2003; Sang et al., 2018), all siRNA (in
50 µL of saline in each case) injections were administered
intraperitoneally (125 µg/kg/day). The mice were used 3 days
after the second siRNA treatment. In our intestinal smooth
muscle cell culture studies using MUS-M1 cells, siRNA-mediated
suppression of either Orai1 or STIM1 by 36% was sufficient to

inhibit SOCE significantly. Based on these findings, we set a
threshold of a minimum of 36% reduction in Orai1 or STIM1
protein within the intestinal wall as an inclusion criterion when
assessing mice treated with siRNA in vivo via i.p. injections. With
our approach, 80% of the animals injected with siRNA met this
criterion and were analyzed as described.

Intestinal Transit Speed
The small intestinal transit speed experiment was performed
as described elsewhere (Yuece et al., 2007). Briefly, after an
overnight fast (water ad libitum), a charcoal meal marker (10%
charcoal suspension in 5% gum arabic, 0.1 mL per 10 g body
weight) was freshly prepared by dispersion. The mixture was
administered orally to assess upper gastrointestinal transit speed.
After 20 min, the mice were euthanized using an overdose of CO2
gas, and the intestines were immediately isolated. The distance
traveled by the marker was measured (in centimeters). The
results of the intestinal transit speed experiment are shown as a
percentage of the total length of the mouse small intestine, from
the pylorus to the terminal ileum.

Preparation of Small Intestine Segment
and Tension Measurement
Small intestine segment preparation and tension measurements
were performed as described elsewhere (Montgomery et al.,
2016). Briefly, the mice were killed by an overdose of CO2
gas. The small intestine was quickly dissected and placed in
Krebs-Henseleit solution containing (in mmol/L) 118 NaCl,
4.7 KCl, 2.5 CaCl2, 1.2 KH2PO4, 1.2 MgSO4, 25.2 NaHCO3,
and 11.1 glucose, pH 7.4 at room temperature. The peripheral
adipose tissue was removed. The small intestine was cut into
segments 2 cm in length. One end of the tissue was fastened
to a hook on the bottom of a glass organ bath. The other
end was connected to an isometric force transducer, which
was connected to an amplifier. The bubbling O2 should mix
the solution. The tension signal was recorded and analyzed by
a data acquisition and analysis system (BL-420E+, Chengdu
Technology & Market Corp.). The segments were placed in
5 mL organ baths containing Krebs solution at 37◦C and
continuously bubbled with a gas mixture of 95% O2 and 5%
CO2 to maintain pH at 7.4. After equilibrating for 60 min with
1 g passive tension, the small intestine segments were activated
by two applications of high-K+ solution, containing 60 mmol/L
K+, prepared by replacing NaCl with an equimolar amount of
KCl. Next, the contractile response to CCh (100 µmol/L) or
Ca2+ (2 mmol/L) was determined. Detailed group treatments
are described in the section “Results.” For the IbTX group,
IbTX (50 nmol/L) was added to Krebs-Henseleit solution for
20 min pretreatment.

Statistical Analysis
Data are presented as means ± SEM. Student’s unpaired t-test
was used to analyze the difference between two groups with
SigmaPlot 12.5 software. A value of P < 0.05 was considered
statistically significant.
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RESULTS

Effect of a High Glucose Environment on
Store-Operated Ca2+ Entry in MUS-M1
Cells
Store-operated Ca2+ entry is a crucial Ca2+ signal that initiates
many cellular biological processes (Putney, 2011; Chaudhari and
Ma, 2016). Several cell types cultured in HG medium mimicking
diabetic hyperglycemia in vitro show enhanced SOCE (Tamareille
et al., 2006; Chaudhari et al., 2014; Daskoulidou et al., 2015). To
determine the effect of an HG environment on SOCE in intestinal
smooth muscle cells, we used Ca2+ imaging and measured the
change in [Ca2+]i evoked by SOCE in NG- and HG-cultured
MUS-M1 cells. The Ca2+ store in MUS-M1 cells was depleted
by 2 µM TG (a Ca2+ pump inhibitor in the ER) and 100 µM
CCh (a muscarinic receptor activator). SOCE was initiated by the
re-addition of 2 mM Ca2+ using a classic “Ca2+ added back”

protocol. MUS-M1 cells were cultured in NG and HG media
for 1, 3, and 7 days. The SOCE evoked by TG and CCh was
significantly increased in HG-cultured cells at 3 and 7 days, but
not at 1 day, compared with that in NG-cultured cells at 1, 3,
and 7 days (Figure 1). By contrast, TG- and CCh-induced Ca2+

transients in Ca2+-free solution were not significantly changed
between NG- and HG-cultured cells (Supplementary Figure 1).
These results indicate that a HG environment enhances SOCE
in MUS-M1 cells.

Role of Orai1 and Stromal Interaction
Molecule 1 in Enhanced Store-Operated
Ca2+ Entry in High Glucose-Cultured
MUS-M1 Cells
Orai1 and STIM1 are two essential components in SOCE.
Therefore, changes in Orai1 and STIM1 protein expression may
affect the intensity of SOCE. Thus, we examined the expression

FIGURE 1 | Effect of high glucose (HG) culture medium on store-operated Ca2+ entry (SOCE) in MUS-M1 cells. (A) SOCE was evoked by a classic “Ca2+ added
back” protocol. Images showing fluorescence intensity indicating the change of transient intracellular Ca2+ concentration ([Ca2+]i). Scale bars, 10 µm.
Representative traces (B,D) and summarized data (C,E) showing the change in [Ca2+]i (SOCE) evoked by extracellular application of 2 mM Ca2+ after the treatment
of 2 µM thapsigargin (TG) (B,C) or 100 µM carbachol (D,E) for 20 min in Ca2+-free solution to deplete internal Ca2+ stores in MUS-M1 cells cultured in normal
glucose (NG, 5.6 mM D-glucose + 20 mM α-mannitol) or HG (25 mM D-glucose) medium for 1, 3, and 7 days. Values are shown as the mean ± SEM (n = 5–6);
*P < 0.05, NG vs. HG on the same day.
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FIGURE 2 | Effect of high glucose (HG) culture medium on Orai1 and STIM1
protein expression in MUS-M1 cells. Representative immunoblotting images
(A) and summarized data (B,C) showing the expression levels of Orai1 (B)
and STIM1 (C) proteins in MUS-M1 cells cultured in normal glucose (NG,
5.6 mM D-glucose + 20 mM α-mannitol) or HG (25 mM D-glucose) medium for
1, 3, and 7 days. Alpha-actin was used as a loading control. Values are shown
as the mean ± SEM (n = 3); **, and *** denote P < 0.01, and P < 0.001,
respectively. NS means non-significant, NG vs. HG on the same day.

profiles of Orai1 and STIM1 proteins in NG- and HG-cultured
MUS-M1 cells. We found that Orai1 and STIM1 expression levels
were significantly enhanced in HG-cultured cells on 3 and 7 days,
but not 1 day, compared with those in NG-cultured cells on 1, 3,
and 7 days (Figure 2).

To further identify the role of Orai1 and STIM1 in the SOCE of
MUS-M1 cells, we used an RNA interfering technique to suppress
Orai1 and STIM1 protein expression. We found that compared
with the scrambled siRNA control, Orai1- and STIM1-specific
siRNAs knocked down Orai1 and STIM1 expression, respectively,
in MUS-M1 cells (Figures 3A,B). In addition, our [Ca2+]i
measurement data indicated that compared with the scrambled
siRNA control, Orai1- and STIM1-specific siRNAs significantly
reduced CCh-evoked SOCE in NG- or HG-cultured (for 7 days)
MUS-M1 cells (Figures 3C–F). However, CCh-induced Ca2+

transients in Ca2+-free solution were not significantly changed
among scrambled, STIM1, and Orai1 siRNA-transfected cells
(Supplementary Figures 2A,B). Pre-incubation with BTP-2
(20 µM) for 20 min significantly inhibited the SOCE of MUS-
M1 cells on the 7 days in NG and HG-cultured (Supplementary
Figures 2C,D). This result is consistent with the result using
specific siRNA. Taken together, these data indicate that Orai1 and
STIM1 are two important proteins participating in SOCE, and the

increased Orai1 and STIM1 expression may amplify the SOCE
intensity in HG-cultured MUS-M1 cells.

Role of Orai1 and Stromal Interaction
Molecule 1 in Small Intestine Contraction
and Gastrointestinal Transit Speed in
Diabetic Mice
Type 1 diabetes commonly induces gastrointestinal dysfunction,
including constipation and diarrhea. The results above indicated
that culturing cells in an HG environment increased Orai1
and STIM1 expression levels. Therefore, we generated type 1
diabetic mice by injecting them with STZ intraperitoneally, and
investigated Orai1 and STIM1 protein expression in SISM. We
found that Orai1 and STIM1 expression levels in the SISM of
diabetic mice were significantly increased compared with those
in age-matched controls (Figures 4A–C). Ca2+ is crucial for
inducing smooth muscle contractions, and Orai1 and STIM1
mediate Ca2+ influx. Thus, altered Orai1 and STIM1 expression
may affect the SOCE-mediated contraction of the small intestine.
We next used 100 µM CCh to evoke SOCE in fresh-isolated
small intestine segments bathed in Ca2+-free Krebs solution,
in which 0.2 mM EGTA was used to chelate residual Ca2+

ions in the bath, and 1 µM verapamil to inhibit voltage-
dependent Ca2+ channels (VDCCs). Re-adding 2 mM Ca2+

induced longitudinal contractions of the small intestine segment.
Because VDCCs were inhibited by verapamil, any contraction
induced by re-adding Ca2+ would be due mainly to the SOCE-
mediated Ca2+ influx. These results indicated that SOCE-
mediated small intestine segment contractions were significantly
increased in diabetic mice compared with those in control
mice (Figures 4D,E). However, 60 mM (high) K+-induced and
CCh-induced contractions were not altered in diabetic mice
(Supplementary Figures 3A,C). Additionally, hematoxylin and
eosin (HE) staining showed no obvious difference in the thickness
of the smooth muscle layer of the small intestine between the
mouse groups (Supplementary Figure 4).

To verify the role of Orai1 and STIM1 in the enhanced small
intestine contractions mediated by SOCE, we intraperitoneally
injected Orai1- or STIM1-specific siRNA into diabetic mice
to suppress Orai1 or STIM1 expression, respectively, in SISM
cells. After siRNA treatment for 6 days (two injections
every 3 days), western blotting analysis showed that Orai1
and STIM1 expression levels were significantly reduced in
the SISM of diabetic mice (Figures 4F,G). Our contraction
experiments indicated that compared with scrambled siRNA
transfection, Orai1- or STIM1-specific siRNA transfection largely
suppressed the SOCE-mediated small intestine contraction in
diabetic mice (Figure 4H) but did not affect 60 mM (high)
K+-induced contraction caused by voltage-dependent Ca2+

channel-mediated Ca2+ influx in Krebs solution or CCh-
induced contraction in Ca2+-free solution, in which CCh-
induced contraction is induced by Ca2+ release from Ca2+ store
(Supplementary Figures 3B,D).

Small intestinal longitudinal contractions are correlated with
gastrointestinal transit speed (Grider, 2003). Therefore, we
investigated gastrointestinal transit speed in another group of
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FIGURE 3 | Effect of Orai1 and STIM1 siRNAs on store-operated Ca2+ entry (SOCE) in MUS-M1 cells. (A,B) Representative immunoblotting images showing Orai1
and STIM1 expression levels in MUS-M1 cells transfected with Orai1 siRNA (A), STIM1 siRNA (B), or scrambled control siRNA. **, and *** denote P < 0.01, and
P < 0.001, respectively. Representative traces (C,E) and summarized data (D,F) showing the alterations in [Ca2+]i (SOCE) evoked by extracellular application of
2 mM Ca2+ after the treatment of 100 µM carbachol for 10 min in Ca2+-free solution to deplete internal Ca2+ stores in MUS-M1 cells cultured in normal glucose
(NG, C,D, 5.6 mM D-glucose + 20 mM α-mannitol) or high glucose (HG, E,F, 25 mM D-glucose) medium for 7 days. Alpha-actin was used as a loading control.
Values are shown as the mean ± SEM (n = 5–6); *P < 0.05, scrambled siRNA vs. Orai1 or STIM1 siRNA transfections.

diabetic mice. Gastrointestinal transit speed was significantly
increased in diabetic mice compared with that in age-
matched controls (Figures 4I,J). Additionally, transfections with
Orai1- and STIM1-specific siRNAs significantly decreased the

gastrointestinal transit speed of diabetic mice (Figures 4K,L).
These results suggest that increased Orai1 and STIM1 expression
may contribute to the enhancement of agonist-induced small
intestine contraction and gastrointestinal transit speed.
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FIGURE 4 | Orai1 and STIM1 protein expression levels, store-operated Ca2+ entry (SOCE)-mediated mouse small intestinal longitudinal contraction and intestinal
transit time alterations in diabetic mice and the effect of Orai1 and STIM1 siRNA transfections. Representative immunoblotting images (A) and summarized data
(B,C) showing the expression levels of Orai1 (A,B) and STIM1 (A,C) proteins in small intestinal smooth muscle cells of age-matched control (CON) and diabetic (DM)
mice. Alpha-actin was used as a loading control. Values are shown as the mean ± SEM (n = 4–5); *P < 0.05, age-matched control vs. diabetic mice. Mouse small
intestine segments were precontracted by the application of 100 µM carbachol in Ca2+-free Krebs solution to evoke SOCE. Then, re-addition of 2 mM Ca2+

induced longitudinal contractions of small intestine segments. Representative traces (D) and summarized data (E,F) showing SOCE-mediated small intestinal
longitudinal contraction in age-matched control (CON) and diabetic (DM) mice (D,E). Representative immunoblotting images and summarized data showing Orai1
and STIM1 expression levels in diabetic mice small intestinal smooth muscle cells transfected with Orai1 siRNA or STIM1 siRNA or scrambled control siRNA.

(Continued).
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FIGURE 4 | (Continued)
Alpha-actin was used as a loading control (F,G). Values are shown as the mean ± SEM (n = 4); *P < 0.05, scrambled siRNA vs. Orai1 or STIM1 siRNA transfection.
SOCE-mediated small intestinal longitudinal contraction in diabetic mice transfected with scrambled, Orai1 or STIM1 siRNA (H). Values are shown as the
mean ± SEM (n = 6–16); *P < 0.05, age-matched control vs. diabetic mice; #P < 0.05, scrambled siRNA vs. Orai1 or STIM1 siRNA. Representative images (I,K)
and summarized data (J,L) showing intestinal transit distance in age-matched control (CON) and diabetic (DM) mice (I,K), or diabetic mice transfected with
scrambled, Orai1, or STIM1 siRNA (J,L). The dark charcoal marker appeared as indicated (red arrows). Values are shown as the mean ± SEM (n = 4–11);
*P < 0.05, age-matched control vs. diabetic mice; #P < 0.05, scrambled siRNA vs. Orai1 or STIM1 siRNA.

Role of the Orai1-Large Conductance
Ca2+-Activated K+ Channel Interaction
in Agonist-Induced Small Intestine
Contraction
Our recent studies have demonstrated that Orai1 associates with
Ca2+-activated K+ channels (for example, the small conductance
Ca2+-activated K+ channel 3 and BKCa channel) to form
signal complexes regulating smooth muscle contraction (Song
et al., 2015; Chen et al., 2016). Here, we also investigated
the interaction of Orai1 and the BKCa channel in SISM.
We first used co-immunoprecipitation assays followed by
immunoblotting and found that Orai1 pulled down the BKCa
channel from mouse SISM (Figure 5A). We then used tension
measurements to examine the function of the Orai1-BKCa
complex in SISM. In normal mice, our data showed that IbTX
(a specific inhibitor of BKCa channels, 50 nM) and Orai1
siRNA transfection (Supplementary Figure 5) significantly
increased 100 µM CCh-induced small intestinal longitudinal
contractions (Figures 5D–G), but did not affect 60 mM
(high) K+-induced contractions in Krebs solution without
verapamil (Supplementary Figure 6), indicating that the Orai1-
BKCa complex can negatively regulate agonist-induced small
intestine contractions.

Orai1-BKCa Interaction Alteration in
Small Intestinal Smooth Muscle of
Diabetic Mice
To further investigate the pathological relevance of the Orai1-
BKCa interaction, we used co-immunoprecipitation assays to
examine changes in the association between Orai1 and the BKCa
channel. Our data indicated that compared with that in age-
matched controls, the amount of BKCa protein pulled down by
Orai1 was markedly decreased in the SISM of diabetic mice
(Figure 5A). Western blotting analysis showed that the BKCa
protein expression has not changed (Figures 5B,C). These results
suggest that compared with that in control mice, the Orai1 and
BKCa channel interaction in the SISM of diabetic mice is weaker.

DISCUSSION

Here, we examined SOCE in SISM cells cultured in HG
medium or in a mouse model of type 1 diabetes. Our
major findings are as follows: (1) SOCE activity and Orai1
and STIM1 expression levels in SISM cells were significantly
increased in HG culture conditions or in diabetic mice compared
with those in NG culture conditions or age-matched control

mice, respectively; (2) gastrointestinal transit speed and SOCE-
mediated contractions were markedly increased in diabetic mice;
(3) siRNA knockdown of Orai1 or STIM1 rescued the augmented
gastrointestinal transit speed and SOCE-mediated contractions
in diabetic mice; (4) Orai1 pulled down the BKCa channel in
SISM cells, and the interaction between Orai1 and the BKCa
channel was decreased in diabetic mice; (5) suppressing Orai1
expression or inhibiting BKCa channel activity increased agonist-
induced small intestine contractions. Thus, we demonstrated that
SOCE activity and SOCE-mediated contraction were significantly
increased in SISM cells cultured in HG medium or in mice
with type 1 diabetes and that altered SOCE activity and
Orai1-BKCa channel interactions might contribute to accelerated
gastrointestinal transit speed.

Although diabetic enteropathy affects the life quality of
patients with type 1 diabetes (Cheng and Yilmaz, 2015),
compared with other more serious complications, patients often
feel that the gastrointestinal symptoms are less likely to cause
critical disabilities or death. Thus, owing to limited attention
and research, the effect of type 1 diabetes on SISM is poorly
understood. An imbalance in the Ca2+ homeostasis of muscle
cells disrupts contractile function and gastrointestinal motility,
and SOCE disorders may lead to many dysfunctions, ranging
from immunodeficiency to myopathy and vascular diseases
(Feske, 2007; Duke et al., 2010; Voelkers et al., 2010). To our
knowledge, this study is the first to report the physiological
mechanisms of SOCE in the SISM associated with type 1
diabetes. We found that the SOCE of MUS-M1 cells cultured
in HG was increased without significantly altering Ca2+ store
release. As expected, our western blot data showed that Orai1
and STIM1 protein expression was also significantly increased.
In diabetic mice, Orai1 and STIM1 protein expression and
SOCE-mediated small intestine contraction were also markedly
increased, whereas high-K+- and CCh-induced contractions
were not significantly altered. Moreover, HE staining showed
that the thickness of the smooth muscle layer in the small
intestine did not differ between age-matched control and
diabetic mice. Suppressing Orai1 or STIM1 expression using
specific siRNA did not significantly affect Ca2+ store release
but significantly inhibited SOCE in MUS-M1 cells and SOCE-
mediated small intestine contractions in diabetic and control
mice without affecting high-K+- and CCh-induced contractions.
Together these results suggest that a HG environment and
diabetes enhance SOCE in SISM cells, leading to increased Ca2+

mobilization and small intestine contraction.
Recently, we and another group reported that Orai1

associates with the KCa channel to participate in smooth muscle
contraction as well as cancer cell migration and bone metastasis
(Chantome et al., 2013; Song et al., 2015; Chen et al., 2016). In
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FIGURE 5 | Orai1-BKCa interaction and BKCa channel protein expression level alterations in diabetic mouse small intestinal smooth muscle cells and role of
store-operated Ca2+ entry (SOCE) and the BKCa channel in carbachol (CCh)-induced mouse small intestinal longitudinal contraction. (A) Representative paired
images and summarized data showing co-immunoprecipitation followed by immunoblotting (IB) with anti-BKCa channel or anti-Orai1. Proteins from small intestinal
smooth muscle of age-matched control (CON) or diabetic (DM) mice were immunoprecipitated with anti-Orai1 antibody; n = 4 experiments. Representative images
(B) and summarized data (C) showing the expression level of the BKCa channel protein. Alpha-actin was used as a loading control. Values are shown as the
mean ± SEM (n = 4); P > 0.05, age-matched control vs. diabetic mice. Representative traces (D,E) and summarized data (E,G) showing 100 µM CCh-induced
mouse small intestine contractions. The segments of the small intestine were pretreated with 50 nM IbTX for 20 min (D,E) or transfected with scrambled or Orai1
siRNA (F,G) by intraperitoneal injections. Values are shown as the mean ± SEM (n = 7–10); *P < 0.05, control (CON) vs. IbTX treatment, or scrambled siRNA vs.
Orai1 siRNA.
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the present study, we found that Orai1 also associated with
the BKCa channel to regulate mouse small intestine contraction.
In the flow chart of our study hypothesis, Orai1-mediated
Ca2+ influx activates the BKCa channel, leading to membrane
hyperpolarization (Supplementary Figure 7). The membrane
hyperpolarization inhibits VDCCs to prevent agonist-induced
small intestine contraction. Additionally, our results showed that
Orai1 siRNA transfection to suppress Orai1 protein expression
or IbTX administration to inhibit the BKCa channel significantly
increased CCh-induced mouse small intestine contractions, but
did not affect high-K+-induced contractions. Moreover, Orai1
protein expression and SOCE activity were increased in the
SISM cells of diabetic mice. According to the working model
of the Orai1-BKCa complex shown in Supplementary Figure 7,
increasing Orai1 activity and SOCE should strongly activate BKCa
channels, which in turn would inhibit small intestine contraction
and motility largely by inhibiting VDCC opening. However,
in contrast to this hypothetical model, our data indicated
that small intestine transit speed was markedly increased in
diabetic mice. To determine the reason for this acceleration, we
investigated alterations in the Orai1-BKCa channel interaction
in the SISM cells of diabetic mice. Our co-immunoprecipitation
data showed that the Orai1-BKCa complex interaction was
markedly weakened in the SISM cells of diabetic mice. Based on
this finding, we speculate that although Orai1 protein expression
and SOCE activity were increased, Orai1-mediated Ca2+ influx
did not effectively activate BKCa channels but more likely induced
muscle contraction and intestine motility. Therefore, increased
Orai1 protein expression but decreased Orai1-BKCa interaction
may reconcile this conflicting result. How best to alter this
weakened Orai1-BKCa channel interaction in diabetic animals to
achieve a therapeutic response will be examined in future studies.

Numerous previous studies have shown that the alteration of
gastrointestinal tract motility in type 1 diabetes is controversial.
Several studies have reported that gastrointestinal transit speed is
faster in patients with type 1 diabetes than in controls (Rosa-e-
Silva et al., 1996; Perano et al., 2015), but other reports indicate
delayed gastrointestinal activity in these patients (Zhao et al.,
2006; Faria et al., 2013). Conflicting results are also found in
rodent models of type 1 diabetes (Martin et al., 2004; Izbeki et al.,
2008; Umathe et al., 2009; Durmus-Altun et al., 2011; Hu and
Feng, 2012). Our data indicated that gastrointestinal transit speed
was markedly increased in a mouse model of type 1 diabetes.
Suppressing Orai1 and STIM1 with siRNA-specific transfections
reduced the gastrointestinal transit speed in diabetic mice to
that of control mice. Zheng et al. (2018) reported that SOCE-
mediated Ca2+ influx is necessary to maintain interstitial cells
of Cajal (ICC) pacemaker activity. Besides, colonic pacemaker
ICC-SM exhibit complex Ca2+-firing patterns and drive smooth
muscle activity and overall colonic contractions (Baker et al.,
2021). Maintenance and refilling of cellular Ca2+ stores by SOCE
may also be important for mediation and shaping of Ca2+

signals in ICC-SM. Therefore, increased SOCE activity and Ca2+

mobilization in SISM, ICC cells and/or even nervous system may
all contribute to the accelerated gastrointestinal transit speed and
diabetes-associated diarrhea because in body Orai1 and STIM1
siRNAs may affect many cell types involving gastrointestinal
transit speed. However, which cell is more important and

why the gastrointestinal transit speed was shown to be faster
in some studies but delayed in others in animal or patients
with type 1 diabetes is unknown. Perhaps factors such as the
stage of type 1 diabetes, meals, degree of blood glucose, etc.,
may differentially affect gastrointestinal transit speed. This issue
should be addressed in future studies.

Store-operated Ca2+ entry regulates various cellular
functions, including cell proliferation, contraction, and
secretion (Parekh and Putney, 2005). In type 1 diabetes,
morphological changes and biomechanical remodeling occur
in the small intestine, manifesting as proliferation in all layers
of gastrointestinal wall, increasing cross-section thickness
and length and altering opening angles and residual strain
(Domenech et al., 2011; Liu et al., 2012). In addition to muscle
contraction, SOCE is also involved in muscle proliferation,
including that of cardiomyocytes, aortic smooth muscle cells,
and bronchial smooth muscle cells (Sweeney et al., 2002; Berra-
Romani et al., 2008; Luo et al., 2012). To exclude this effect on
the small intestine transit speed, we compared high-K+-induced
small intestine contractions between diabetic and age-matched
control mice and found no significant difference between
them. Our HE staining results also showed that the SISM layer
thickness was not altered in diabetic mice. Therefore, our results
exclude the effect of proliferation or hypertrophy of SISM cells
on enhanced small intestine transit speed.

In live cells, Ca2+ homeostasis regulation and Ca2+-mediated
signal transduction are complicated. Although we demonstrated
that the SOCE-mediated Ca2+ signal was increased in the SISM
cells of mice with type 1 diabetes, another group found that
Ca2+-activated Cl− channels also participate in glucose-induced
[Ca2+]i increase in small intestine cells (Yin et al., 2014). In
diabetes, the body is under a high oxidative state. Excessive
reactive oxygen species can induce numerous cellular disorders,
destroying Ca2+ homeostasis. Therefore, our finding may be only
one of the pathways involved in type 1 diabetes pathology.

CONCLUSION

We demonstrated that SOCE activity was significantly increased
in SISM cells cultured in HG medium or in mice with type 1
diabetes. Upregulated SOCE promoted small intestinal muscle
contractions and gastrointestinal transit speed, which may be
among the factors inducing diabetic diarrhea. Therefore, the
SOCE pathway likely represents a potential therapeutic target for
diabetic diarrhea.
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