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Patient-specific computational fluid dynamics (CFD) simulations can provide invaluable

insight into the interaction of left atrial appendage (LAA) morphology, hemodynamics,

and the formation of thrombi in atrial fibrillation (AF) patients. Nonetheless, CFD

solvers are notoriously time-consuming and computationally demanding, which has

sparked an ever-growing body of literature aiming to develop surrogate models of

fluid simulations based on neural networks. The present study aims at developing

a deep learning (DL) framework capable of predicting the endothelial cell activation

potential (ECAP), an in-silico index linked to the risk of thrombosis, typically derived

from CFD simulations, solely from the patient-specific LAA morphology. To this end,

a set of popular DL approaches were evaluated, including fully connected networks

(FCN), convolutional neural networks (CNN), and geometric deep learning. While the

latter directly operated over non-Euclidean domains, the FCN and CNN approaches

required previous registration or 2D mapping of the input LAA mesh. First, the superior

performance of the graph-based DL model was demonstrated in a dataset consisting of

256 synthetic and real LAA, where CFD simulations with simplified boundary conditions

were run. Subsequently, the adaptability of the geometric DL model was further proven

in a more realistic dataset of 114 cases, which included the complete patient-specific

LA and CFD simulations with more complex boundary conditions. The resulting DL

framework successfully predicted the overall distribution of the ECAP in both datasets,

based solely on anatomical features, while reducing computational times by orders of

magnitude compared to conventional CFD solvers.

Keywords: geometric deep learning, left atrial appendage, convolutional neural network, thrombus-atrial

fibrillation, computational fluid dynamics, principal component analysis

1. INTRODUCTION

Atrial fibrillation (AF) is the most common clinically significant arrhythmia, with a cumulative
lifetime development risk above 30% in individuals of European ancestry (Benjamin et al., 2019).
AF is defined by a quivering or irregular heartbeat (arrhythmia) caused by chaotic electric activity,
which leads to irregular contraction and wall rigidity of the left atrium (LA), preventing effective

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.694945
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.694945&domain=pdf&date_stamp=2021-06-28
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xabier.morales@upf.edu
https://doi.org/10.3389/fphys.2021.694945
https://www.frontiersin.org/articles/10.3389/fphys.2021.694945/full


Morales Ferez et al. DL-Based Estimation of Thrombotic Risk

flow of the blood to the ventricles. Such hemodynamic
alterations, alongside factors such as endothelial or endocardial
dysfunction, including a state of hypercoagulability, increase
the risk of cerebrovascular accidents by allowing thrombus
formation within the LA (Watson et al., 2009); if dislodged,
such thrombi can occlude the cerebral circulation, causing a
thromboembolic (ischemic) stroke. In fact, non-valvular AF is
responsible for 15–20% of all cardioembolic ischemic strokes,
which preferentially form at the left atrial appendage (LAA)
(Cresti et al., 2019), an heterogeneous, tubular structure derived
from the anterior wall of the LA.

In this regard, researchers have explored the correlation
between LAA morphology and the risk of stroke (Yaghi et al.,
2020; Dudzińska-Szczerba et al., 2021; Słodowska et al., 2021).
Nonetheless, so far the results have been ambiguous, as the
current classifications and associated morphological parameters
of the LAA are often entirely subjective, hand-crafted features;
there is a need formore systematic shape analysis of the LAAwith
advanced and observer-independent computational tools such as
statistical atlases (Slipsager et al., 2019).

Besides, due to the critical role of blood stasis in
thrombogenesis, the interest in the analysis of LA hemodynamics
is gaining momentum. Yet, the intricate behavior of the left
atrium as a modulator of left ventricular filling (reservoir,
conduit, and booster pump function; Vieira et al., 2014), coupled
to a substantial anatomical heterogeneity, makes modeling left
atrial hemodynamics a notoriously difficult task. Consequently,
computational fluid dynamics (CFD) analyses have emerged
as an invaluable tool in analyzing the mechanistic relationship
between patient-specific organ morphology and blood stasis
(García-Isla et al., 2018; Masci et al., 2019; García-Villalba et al.,
2021). Nevertheless, conventional CFD methods are renowned
for their large memory requirements and long computing times
(Liang et al., 2018), which also involve extensive pre-processing
of each patient-specific mesh, resulting in studies with very
limited sample sizes and severely hindering its suitability for
time-sensitive clinical applications.

As a response, neural networks have increasingly been
employed in complex dynamical systems such as fluid dynamics,
resulting in highly accurate surrogate models that can be
evaluated with significantly less computational resources and
several orders of magnitude faster than conventional finite
element solvers (Hennigh, 2017). Recently, deep learning (DL)
has made its way into biological fluid modeling, aiming at
predicting blood velocity vector fields or derived hemodynamic
parameters that play a crucial role in the diagnosis and
development of several cardiovascular diseases (Liang et al.,
2018; Li et al., 2021). Nevertheless, most studies have mostly
focused on structures such as the aorta, which present a less
complex morphology and hemodynamic profile than the LA
and LAA. That being said, applying conventional DL models to
non-Euclidean domains, such as graphs and meshes, in which
medical data is often best represented, is not a trivial task, as
most widespread neural networks can only operate over regular
data such as images (Fey et al., 2018). In this regard, geometric
deep learning approaches, which are tailored to operate over
graph data, have already been applied to biomedical meshes,

especially in cardiac electrophysiological models (Grandits et al.,
2021; Meister et al., 2021).

Hence, in the present study, we have leveraged a collection
of distinct DL models, which are well-tailored to deal with mesh
data, to develop a CFD surrogate capable of learning the complex
relationship between the heterogeneous LAA morphology and
the endothelial cell activation potential (ECAP), parameter
linked to an increased risk of thrombosis. By employing neural
networks, there is no need to manually craft morphological
features, ensuring that the model only learns the most relevant
anatomical characteristics toward the automatic prediction of
ECAP. Moreover, once trained, neural networks allow the
prediction of ECAP maps in new unseen patients, orders of
magnitude faster than it is possible with current CFD solvers.
The implemented DL approaches included principal component
analysis (PCA) based shape analysis coupled to fully connected
layers, flattening the LAA morphology to a UV space to
leverage convolutional neural networks (CNN) and geometric
deep learning, which is perfectly suited to non-Euclidean data
such as meshes. All the mentioned methods were first tested on
a simplified LA model containing 256 real and synthetic LAA
(dataset 1). In addition, the best performing model was further
tested on a second, more realistic 114 patient dataset, which
incorporated the entire patient-specific LA anatomy (dataset 2).

2. METHODS

The overall pipeline employed to generate the ground-truth data
(i.e., the in-silico ECAP index from CFD simulations in the whole
dataset of 370 geometries) is shown in Figure 1. Preprocessing
slightly differed between the two datasets: LAA comprising
dataset 1 were all assembled to an oval LA, while in dataset
2, which considered the whole patient-specific LA anatomy, all
pulmonary veins (PV) were trimmed at the first branching to
define the inlets and outlets. Later, tetrahedral volumetric meshes
were generated to run the CFD simulations and compute the
ground truth ECAP maps. For the networks to capture the most
relevant morphological features, the triangular meshes employed
to describe the anatomy of each LAA had to be transformed
according to the prerequisites of each of the implemented DL
methods. Lastly, the neural networks were trained to learn the
arbitrary non-linear function linking the geometry of the LAA
and its corresponding ECAP maps. Model prototyping and fine-
tuning were completed on the synthetic LA dataset (dataset 1).
Afterward, the best-performing network was further tested in the
more realistic, complete LA dataset (dataset 2).

2.1. Data
The first dataset (dataset 1) was derived from computed
tomography (CT) images provided by the Department of
Radiology at Rigshospitalet (Copenhagen, Denmark) acquired as
part of the Copenhagen General Population Study (Nordestgaard
et al., 2012). It was comprised of 256 LAA, combining 54 real
patients and 202 synthetic LA geometries. The latter, being
borrowed from a preceding study (Morales et al., 2020), stem
from a statistical shape model (SSM) based on 103 real LAA
surfaces (Slipsager et al., 2019). In this synthetic LA model, only
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FIGURE 1 | Pipeline to generate the ground truth ECAP maps for the two datasets. LA, left atrium; LAA, left atrial appendage; PV, pulmonary veins; CFD,

computational fluid dynamics; ECAP, endothelial cell activation potential.

the geometry of the LAA was considered, as incorporating the
highly heterogeneous LA anatomy would qualitatively increase
the inter-subject variability of the hemodynamic parameters.
Thus, all appendages were assembled to a common oval
approximation of the LA (García-Isla et al., 2018), reducing
the complexity of the maps to be predicted, and ensuring that
the LAA morphology remained the only independent variable
affecting the ECAP values.

Conversely, the second dataset considered the complete
patient-specific LAmorphology during CFD simulations (dataset
2). The data was provided by Hospital Haut-Lévêque (Bordeaux,
France), originating from pre-procedural high-quality CT scans
from 114 AF patients that underwent a left atrial appendage
occlusion (LAAO) intervention. Both studies were approved
by the local Institutional Ethics Committees, and all patients
provided informed consent.

2.2. CFD Simulations
A total of 370 CFD simulations were run to generate the ground-
truth data, 256 of which corresponded to the synthetic LA
dataset, while the remaining 114 were part of dataset 2. All
synthetic LAA simulations on dataset 1 were borrowed from
a preceding study, adjusting the setup of the simulations for
the remaining 54 real morphologies accordingly (Morales et al.,
2020). First, an input velocity profile was set in the PV, based
on clinical observations (Fernández-Pérez et al., 2012). Second,
the mitral valve (MV) was considered as a wall boundary during
diastole, while an outlet pressure of 1,067 Pa was set through
systole. The motion of the LA was based on a diffusion-based
dynamic mesh emanating from the MV ring plane, adjusted
according to literature (Veronesi et al., 2008; Mill et al., 2019).
Only a single heartbeat was completed for each simulation.

On the other hand, simulations from dataset 2 featured
more complex boundary conditions (BC), with the inlet being
defined at the PV based on pressure wave measurements from
an AF patient; the velocity outlet was set on the MV based
on Doppler ultrasound velocity profiles derived from a single

patient. Therefore, while the LA morphology was completely
patient-specific, the same boundary conditions were shared
among all cases. However, all BCs were synchronized to their
corresponding patient’s electrocardiogram. The dynamic mesh
governing LA motion was changed to a spring-based model.
Unlike in dataset 1, three full heartbeats were completed for each
simulation, aiming to reach a steady state. Only the last heartbeat
was considered when computing the risk indices of thrombosis.
Lastly, whereas final tetrahedral volumetric meshes for dataset 1
consisted of∼350 k elements, each mesh from dataset 2 doubled
that figure at around 800 and 900 k elements, after a mesh
convergence study that included meshes up to 1 M elements.

Simulations were computed on Ansys Fluent 19 R32 (ANSYS
Inc,USA)1 and automatized leveraging the MATLAB AAS
toolbox,2 while post-processing was performed in Paraview3

alongside in-house python scripts. The blood was treated as a
Newtonian fluid, with a density of 1,060 Kg/m3 and a viscosity
of 0.0035 Pa/s, while using time-steps of 0.1 s.

The endothelial cell activation potential (ECAP), proposed by
Di Achille et al. (2014), was the parameter chosen to evaluate
the risk of thrombosis in the LAA. Since the pathophysiology of
thromboembolism in AF is based upon the formation of mural
thrombi, the ECAP focuses on hemodynamic behavior in the
proximity of the vessel wall. More precisely, the ECAP is defined
as the ratio between the oscillatory shear index (OSI) and the
time-averaged wall shear stress (TAWSS).

ECAP =
OSI

TAWSS
. (1)

Thereby, a dimensionless parameter related to thrombosis is
obtained, thus, avoiding the need for a more complicated neural
network architecture capable of handling temporal sequential
data. High ECAP values result from low TAWSS and high OSI
values, indicating the presence of low velocities and high flow

1https://www.ansys.com/products/fluids/ansys-fluent
2https://es.mathworks.com/products/matlab.html
3https://www.paraview.org/
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complexity, which is associated with endothelial susceptibility
and risk of thrombus formation.

2.3. Deep Learning Architectures
2.3.1. Principal Component Analysis—Fully

Connected Model
Although it is gradually being replaced by more sophisticated
non-linear models, principal component analysis (PCA), has
long been employed to learn a linear latent space of 3D registered
meshes, for tasks such as compression, reconstruction, and
animation (Zhou et al., 2020). Nevertheless, PCA requires all
meshes to be registered to a common template so that the
same topology and connectivity are shared among them. In
our case, this step was completed through non-rigid volumetric
registration of signed distance fields, based on the work by
Slipsager et al. (2019), registering all meshes to a common
template comprised of 2,466 vertices. For the PCA analysis,
the spatial coordinate of the nodes composing the mesh were
employed as the input features. Thus, the morphology of each
LAA can be expressed by a small set of scalar values through
truncated PCA following:

X = X +
M

∑

i=1

αi

√

λiWi, → αi =
WT

i (Y − Y)
√

λi
, (2)

where X is the mean shape, Wi and λi being the set of
eigenvectors and eigenvalues of the covariance matrix for the
retained number, i, of principal components (PC). Hereby, if the
variability of the dataset is explained by a small set of PCs, each
LAA anatomy can be expressed by a number i, of αi scalars that
can be fed directly to any regular neural network. For our dataset,
a total of n = 32 PCs were kept, provided that the training dataset
was large enough. By doing so, 97.6% of the morphological
variability was retained for the synthetic cases and 94.1% for
the real LAA geometries. Afterward, the non-linear mapping
between the low dimensional representation of LAAmorphology
and its corresponding ECAPmaps was completed through a fully
connected feed-forward neural network (FCN). It comprised five
hidden layers, as shown in Figure 2A, sequentially increasing the
size of each layer. The whole model was implemented in Keras,4

using TensorFlow5 as backend.

2.3.2. UV Mapping—U-Net Model
Although PCA models have been extremely successful (Tewari
et al., 2017), they often struggle to capture finer details,
since the resulting latent space is a linear combination of the
input features. Alternative models such as convolutional neural
networks (CNN) are widely employed to capture spatial features
in regular grids (Zhou et al., 2020), which owing to a combination
of desirable properties, such as local connectivity, weight sharing,
and displacement invariance, became the backbone of fields such
as computer vision. That being said, due to the irregular nature
of mesh data, spatially-shared convolution kernels cannot be

4https://keras.io/
5https://www.tensorflow.org/

directly leveraged, unless the 3D mesh data is mapped to a UV
space, also known as flattening.

Consequently, the LAA were “flattened” based on the
approach described in Acebes et al. (2021). First, each LAA was
divided into an equivalent number of isolines, based on the
geodesic distance from the ostium to the LAA apex, which was
computed through a heat equation method (Crane et al., 2013).
Subsequently, an equivalent number of vertices were sampled
from each isoline, through an angular mapping performed by
pivoting around the centroid of each isoline. Meanwhile, the
points closest to the position of the circumflex artery, which
was manually marked from the CT images, were chosen as
the reference 0–360◦ angle. Once polar coordinates had been
derived, each LAA mesh was represented as a 2D image either
as a circumferential polar plot, also known as a Bull’s eye plot
(Cerqueira et al., 2002), with the apex of the LAA located
in the center of the circumference (see Figure 2B), or as a
rectangular image whose two axes consist in the apical-ostium
distance and angular mapping. Even though the outer ring of
the bull’s eye plot undergoes distortion, it better preserves the
LAA topology avoiding the cut-off produced by the flattening
process. Conversely, the Cartesian grid representation faces
much stronger warping in the area close to the apex, which is
far overrepresented relative to its actual surface area in the 3D
mesh. Therefore, both flattened representations were included to
weigh up their trade-offs. Lastly, as shown in Figure 3, the bull’s
eye plot was padded to a rectangular image before feeding it to
the neural network. During training, the padded regions were
not taken into account when performing the loss calculation and
subsequent accuracy measurements.

With regards to the DL model, we opted for a conventional
U-Net architecture which is comprised of overlapping
convolutional layers arranged in a typical encoder-decoder
bowtie structure (Ronneberger et al., 2015), consisting in
sequential pooling operations that ensure that multi-scale
features are learned from the input data. In addition, skip
connections, encourage the network to reuse low-level features in
the decoding layers, which result in state-of-the-art performance
in several tasks such as medical segmentation. The vanilla U-Net
provided by Thuerey et al. (2020) was leveraged, which was
implemented to predict turbulent flow over a set of distinct
airfoils. In our case, the input features consisted in the spatial
coordinates of the vertices sampled from each LAA mesh
during UV mapping, arranged as a three-channel depth tensor,
analogous to an RGB image in computer vision tasks. Similarly
to the original paper, seven convolutional blocks were employed
(Figure 3), each including batch normalization layers and ReLU
activations after convolution layers, as is the standard practice.

2.3.3. Geometric Deep Learning
While UV mapping enables the direct leveraging of CNNs over
meshes, the resulting 2D image suffers from distortion as the
original mesh data must be cut and warped. Moreover, it cannot
be easily extended to more general volumetric data. Whilst
alternative workarounds such as voxelization exist, the most
efficient way of representing 3D surface shapes and topologies
is through polygonal meshes (Hanocka et al., 2019). As a
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FIGURE 2 | (A) Scheme of the principal component analysis model (PCA). Once each shape was parameterized, the ECAP values were predicted through a simple

multilayer perceptron formed by fully connected layers (FCN). Numbers below each layer represent the number of nodes in each of them. (B) The LAA morphology is

flattened to a new 2D UV space in which the new axes are represented by the geodesic apical-ostium distance and the angle formed with respect to the centroid of

each isoline, using the closest point to the circumflex artery as reference. ECAP, endothelial cell activation potential.

FIGURE 3 | Each left atrial appendage (LAA) went through UV mapping, more colloquially known as flattening, and represented as a 2D image either as Bull’s eye plot

or a polar coordinate-based Cartesian grid representation. The U-Net architecture based on the work by Thuerey et al. (2020), received the spatial coordinates of the

vertices sampled during the flattening process as the input features and then performed regression to predict their corresponding ECAP maps.

response, a set of emerging methods, under the umbrella term
of Geometric DL, are succeeding in generalizing DL models to
non-Euclidean domains such as polygonal meshes, seamlessly
extending operations such as convolutions to the native form of
the data (Bronstein et al., 2017).

Among the array of available graph CNN layers, we opted for
SplineCNN (Fey et al., 2018), since being a spatial method, it
offers several advantages when dealing withmeshes. In particular,
it avoids the need of establishing mesh correspondence.
Additionally, defining the spatial relations between vertex

features becomes trivial by employing pseudo-coordinates. In
our use case, pseudo-coordinates were obtained by computing
the relative distance in Cartesian coordinates between the
vertices of each edge. During the training process, these edge
attributes define how the input features will be aggregated in
the neighborhood of a given node. Additionally, the vertex-wise
curvature and normals were fed to the network as vertex features.

As aforementioned, besides convolution, operations such as
pooling and strided convolutions play a key role in the success
of CNNs, by allowing the network to sequentially extract larger
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FIGURE 4 | General overview of the geometric deep learning network architecture. The input vertex features consisted of the point-wise curvature and normal

vectors. The spatial relations between the nodes were stored as edge attributes through Cartesian pseudo-coordinates. Twelve consecutive SplineConv layers (Fey

et al., 2018) were employed in the local feature module, while a 1,024 feature vector was obtained after max pooling, representing the global features of each mesh.

Numbers adjacent to each layer indicate the number of output features.

scale and abstract features. Consequently, a PointNet-inspired
(Qi et al., 2016) architecture was implemented, in which a
series of consecutive layers focus on learning local features.
Subsequently, the resulting feature arrays are concatenated and
fed to a multilayer perceptron that generates a vector of global
features using max-pooling, as shown in Figure 4. An almost
identical model was employed by Meister et al. (2021) to estimate
left ventricular depolarization times, albeit using a distinct
convolutional operator. By swapping the multilayer perceptrons
employed on the original PointNet (Qi et al., 2016) for graph
convolutional layers, we expect to better exploit local correlations
and weight sharing, while providing topological information to
the network, which is explicitly absent in point cloud data.

The model was constructed by using PyTorch Geometric
(PyG),6 a Geometric DL extension of PyTorch.7 PyG offers a
broad set of convolution and pooling operations that extend
the capabilities of traditional CNNs to irregularly structured
data such as graphs and manifolds. With this in mind, the
mesh dataset resulting from the simulations were converted into
individual graphs. Together with PyVista,8 we converted each
mesh to a graph represented by G = (V ,E), with V = 1, . . . ,N
being the set of nodes, and E corresponds to the set of edges of
the triangular faces. For each vertex, we computed the curvature
and surface normal vectors, totaling four input feature channels.

2.4. Hyperparameter Tuning
A thorough grid search was carried out to fine-tune the models
by iteratively swapping several hyperparameters while keeping
a fixed seed in the dataset split. In the PCA-FCN and U-Net

6https://github.com/rusty1s/pytorch_geometric
7https://pytorch.org/
8https://docs.pyvista.org/

model, ReLU activations were employed coupled with a learning
rate of lr = 0.01 and lr = 0.0005 and trained during 150 and
300 epochs, respectively. Concerning general hyperparameters
of the geometric DL model, the exponential linear unit (ELU)
provided the best results among all activation functions, as it is
standard in many mesh-related tasks. In addition, the training
loop was carried out through 300 epochs with a batch size of 16
and a learning rate of 0.001. In regards to the parameters of the
SplineConv layer, a B-spline basis of degree 1 and a kernel size
of k = 5 were chosen, following suggestions by the authors (Fey
et al., 2018). All models employed a dropout of 0.1 and included
Adam as the optimizer. Similarly to Thuerey et al. (2020), while
alternative loss functions such as L2 Loss and smooth-L1 yielded
similar results, the L1 loss still had an edge over them.

2.5. Experimental Setup
All of the above-presented models were first tested on the
synthetic LA dataset (dataset 1). Some of the experiments aimed
to determine whether the synthetic data resulting from the
statistical shape model were sufficiently representative of real
patient data. If so, synthetic data could be of help with the data-
hungry nature of neural networks in the face of data scarcity,
which is a recurring issue in themedical field. On the one hand, k-
fold cross-validation was performed, first training in the real (n =
54) and synthetic (n = 202) cases separately, and later combining
both datasets. We have called these experiments “Cross real,”
“Cross synth,” and “Cross,” respectively. The experiment in
the real dataset was divided into 6-folds while the latter two
experiments run 8-folds to ensure the groups were even. In
addition, as only the areas of high ECAP values are pro-
thrombotic, we wanted to assess the capability of the models in
predicting the areas with the highest ECAP. For this purpose,
a binary classification was performed taking the 90th percentile
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TABLE 1 | Prediction accuracy results in terms of mean absolute error (MAE) and true positive rate (TPR) for the cross-validation experiments.

Model
Cross Cross real Cross synth Cross (%) Cross real (%) Cross synth (%)

Mean absolute error (MAE) True positive rate (TPR)

PCA-FCN 0.608 ± 0.021 0.591 ± 0.023 0.603 ± 0.008 69 41 69

Cartesian 0.651 ± 0.007 0.661 ± 0.028 0.617 ± 0.017 55 20 64

Bull’s eye 0.654 ± 0.009 0.582 ± 0.027 0.628 ± 0.009 64 33 65

Geometric 0.521 ± 0.013 0.519 ± 0.021 0.514 ± 0.017 77 57 79

PCA, principal component analysis; FCN, fully connected network. Bold signals the model with the best value for a given experiment and metric.

of the distribution as the threshold, which roughly equated to
4, following a similar approach to Di Achille et al. (2014) in
abdominal aortic aneurysms.

On the other hand, the second set of experiments was
conducted in which the amount of training data was sequentially
scaled, to monitor the generalization and accuracy improvement
(or lack thereof) on the testing dataset. Therefore, the testing
scheme from the cross-validation experiments was maintained,
but several runs were completed for each testing fold, changing
the amount of available training data on each. For the first two
experiments, which we deemed “Sequential Real” and “Sequential
synthetic,” the real and synthetic morphologies were trained
and tested separately. These experiments aimed to learn which
models performed better with few amounts of data. Alternatively,
in a third experiment, all the 202 synthetic LAA were employed
as the training baseline. On top of this baseline, real geometries
were sequentially added while testing on the remaining real
cases. The objective of this experiment, deemed as “Sequential
real+synthetic,” focused on the number of real cases required
to build a model just trained on synthetic data, being able to
properly generalize to patient-specific LAA morphologies. In all
the aforementioned experiments, 10% of all the training data was
employed as validation and used to select the best performing
model. In addition, due to the stochastic nature of the training
process in neural networks, the presented results have been
averaged across several runs.

Lastly, the best-performing model from the previous
experiments underwent further testing on dataset 2. While
the complete patient-specific LA morphology was included
during simulation, solely the LAA anatomy was fed to the
neural network during the prediction of the ECAP maps. A
single 10-fold cross-validation experiment was completed in this
dataset along with the binary classification. The 90th percentile
equalled 16 in this case.

3. RESULTS

The ECAP distributions resulting from both simulations were
distinct due to the different geometry and boundary conditions.
The ECAP maps from the LA synthetic dataset had a mean value
of µ = 2.14 ± 1.41, whereas dataset 2 exhibited a far more
lopsided distribution, with a mean value of µ = 34.82 ± 251.68
but a median equal to 0.492.

Each simulation in the synthetic LA dataset lasted around 3–4
h, whereas it took at least 24 h to complete every single dataset

2 simulation, some requiring up to 48 h. Conversely, the PCA
model was the fastest training DL network by a long margin,
only requiring an average of 2 min to train. The training runs
of the remaining two networks (i.e., UV mapping—U-net and
Geometric DL) by contrast, lasted around 15–20 min. Once the
models were trained, the prediction of ECAP maps pertaining
to new unseen cases was instantaneous. On the other hand, the
graph-based network was the lightest, with a total of 1.686.097
trainable parameters, in comparison to the 7.846.178 weights in
the PCA model, and 9.304.833 for the U-Net.

The accuracy results for the cross-validation experiments are
provided in Table 1, both in terms of the mean absolute error
(MAE) of the ECAP and the true positive error (TPR), that is,
the percentage of areas above the 90th percentile that have been
predicted as such by the network. The geometric DL network
outperformed the remaining approaches in all cross-validation
experiments for both metrics. Nonetheless, there is a noticeable
disparity between the MAE and classification results, given that
even though the cross-validation on real data has provided
accuracy on par to the other two scenarios in terms of MAE, it
has a significantly lower TPR among all models.

Additionally, a small batch of seven testing geometries from
one random fold of the “Cross” cross-validation experiment is
shown in Figure 5. Cases in rows 1–4 of the figure were derived
from the SSM model while the remaining three represent real
patient cases. The results from the remaining test samples in
the fold are provided as Supplementary Material. In order to
visually compare with the rest of the approaches, the results
derived from the flattening models were interpolated back to the
original mesh. Furthermore, the mean absolute error is provided
for each prediction instance.

In Figure 6, the results from the sequential experiments
are provided. Once again the graph-based model outscored
its counterparts by some margin. Conversely, the PCA model
struggled whenever few data was available as the maximum
number of PCs had to be lowered in folds with <32 training
instances. Interestingly, the bull’s eye representation also had
an edge over the rectangular Cartesian grid in the majority of
tasks. Furthermore, the addition of synthetic cases in the training
dataset for experiment “Sequential Real + Synthetic,” did not
improve upon the results of models solely trained on real data
for the “Sequential Real” experiment.

Lastly, some exemplary results from the Geometric PointNet
on the more complex dataset 2 are showcased in Figure 7. The
remaining test subjects are provided as Supplementary Material.

Frontiers in Physiology | www.frontiersin.org 7 June 2021 | Volume 12 | Article 694945

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Morales Ferez et al. DL-Based Estimation of Thrombotic Risk

FIGURE 5 | From left to right: ground-truth endothelial cell activation potential (ECAP) from fluid simulations; principal component analysis model (PCA-FCN)

prediction; Cartesian grid and Bull’s eye plot prediction; geometric deep learning prediction (Geometric). The mean absolute error (MAE) is also provided alongside.

Higher ECAP values (in red) are linked to a higher risk of thrombus formation.

The cross-validation resulted in a MAE= 1, 506± 0, 543, while a
TPR of 70% was achieved on the binary classification task.

4. DISCUSSION

The primary goal of this work was to accurately estimate the
ECAP, an in-silico thrombosis risk index, with a set of distinct
deep learning approaches, thus, being able to instantaneously
predict the risk indices when presented with new morphologies,
without the need of running time-intensive and computationally

demanding simulations. It is evident from Figures 5, 7 that the
developed framework, especially the one based on geometric
DL, successfully mimicked the behavior of two distinct sets of
CFD simulations with different boundary conditions, managing
to capture the global ECAP distributions solely on the basis
of LAA morphology. Moreover, the geometric DL model
seamlessly extends to realistic data without the need for template
registration or 2D mapping. More importantly, the training
and prediction of the in-silico index were completed orders of
magnitude faster than conventional solvers of fluid simulations
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FIGURE 6 | All results are shown on terms of the mean absolute error (MAE). (A) Results from the “Sequential Synthetic” experiment in which only the synthetic data

was employed for training. (B) Results from the “Sequential Real” experiment which only trained and tested on the real cases. (C) Results from the “Sequential Real +

Synthetic” test, in which all the synthetic geometries were employed as the training baseline and subsequently, batches of real data were sequentially added on top.

(i.e., tens ofminutes vs. several hours). Furthermore, once trained
inference can be completed instantaneously.

In this regard, a proper understanding of the data to be learned
by the network was imperative in simplifying the space of results
and achieving good accuracy. In our case, proper scaling of
the data turned out to be crucial in improving the results. For
instance, the input tensor to the U-Net model, containing the
spatial coordinates of the vertices was standardized. Similarly,
power transforming of the curvature data in the graph neural
network also offered superior performance. The clearest example,
however, involved the ECAP maps obtained from dataset 2
(e.g., with patient-specific LA data) which had a very marked
positive skew compared to dataset 1 (e.g., with synthetic LA),
rendering the model completely unable to learn. This issue was
easily resolved by log transforming the ECAP maps for training,
resulting in an almost symmetrical data distribution which could

then be reconstructed back to visualize the results. The resulting
distribution densities are provided as Supplementary Material.

By far, the most laborious and time-consuming aspect
of the study consisted in setting up and running the 370
CFD simulations. Several of the steps typically involved
in a geometry-specific fluid modeling pipeline (i.e., medical
image segmentation, mesh building, the definition of boundary
conditions, simulation execution), often necessitate manual
intervention (e.g., mesh corrections). This lack of automatization
represents a major bottleneck when simulating large datasets,
hence most fluid dynamics studies end up including <10 cases
when focused on complex morphologies such as the LA and
LAA. By automating several of the aforementioned procedures
we managed to streamline most of the simulation workflow,
thus enabling the formation of a dataset large enough to train
neural networks.
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FIGURE 7 | Predicted endothelial cell activation potential (ECAP) maps in a batch of left atrial appendages (LAA) from dataset 2 (i.e., patient-specific LA) alongside the

ground-truth (GT) from fluid simulations. Higher ECAP values (in red) are linked to a higher risk of thrombus formation.

4.1. Dataset 1—Synthetic LA Dataset
Careful inspection of the results presented in Table 1 indicates
that the geometric DLmodel outperformed all its counterparts in
the three designated tasks. A look at Figure 5 further supports
this hypothesis, as the geometric DL network obtains a better
accuracy than the rest of the models in 5 out of 7 of the
shown cases. Interestingly, despite having a more rudimentary
DL architecture, the PCA model was the best non-geometric DL
approach, even when trained on the real cases alone. An strong
performance of the PCA network on the synthetic dataset was to
be expected since the geometries were sampled from a statistical
shape model based on the same methodology. Regardless, the
PCA model is second only to the geometric DL network on the
“Cross real” experiment in terms of TPR and is very close to the
Bull’s eye regarding MAE, highlighting the strength of PCA as a
shape analysis tool. As for the flattening approaches, the results
obtained were ambiguous: while both the Cartesian and Bull’s
eye model perform similarly in terms of MAE in the experiments
including synthetic data (“Sequential Synthetic” and “Sequential
Real + Synthetic”), the circumferential approach generalized far
more effectively to the real dataset. In fact, the Cartesian grid
method was the only model to worsen its accuracy in the realistic
LAAs. A possible explanation may be related to the cut-off
introduced in the Cartesian grid representation when performing
the flattening, which results in the loss of the original mesh
topology. This gives rise to a discontinuity when performing
the convolution over the flattened mesh, which produces a very
prominent cut (see white arrows in Figure 5). As real geometries
are far more heterogeneous, the position of the reference 0–360◦

line marked by the circumflex artery localization might fluctuate
more often, which we hypothesize leads to inconsistent learning
of the morphological features for the Cartesian method.

On the other hand, the disparity observed between the MAE
and the TPR in the real and synthetic cases seems to stem from

a distinct distribution of the data. In this respect, the ECAP in
the real LAA dataset has a lower µ = 1.664 and a 90th percentile
equal to 3.313, whereas the synthetic cases have aµ = 2.266 and a
90th percentile of 4.343. With fewer training data encompassing
vertices with ECAP values above the 90th percentile threshold,
the model is more prone to fail when confronted with higher
ECAP values, leading to far worse TPR (see Table 1). Concerning
the gap in the distribution of ECAP values between real and
synthetic cases, we observed a prevalence of “Cauliflower” like
appendages in the synthetic geometries. These morphologies are
characterized by having several lobes, such as cases [2,3,4] in
Figure 5. As observed in these three anatomies, the ECAP in
these lobes tends to be quite high, probably due to increased
blood stasis, which might explain the disparity in the values of
ECAP between the two populations. In turn, this is the reason
that seems to jeopardize the potential accuracy improvement
from including synthetic data.

Moving on to the sequential experiments, all models keep
improving as more training data is added, which suggests that
further increasing the size of the simulation datasets could
be highly beneficial for the overall accuracy. Similarly to the
previous experiments, the geometric DL model continues to
exhibit superior performance over all the other approaches. This
time, it is the PCA-FCN network that struggles the most, as
appreciated in the “Sequential Real” and “Sequential Synthetic”
experiments, shown in Figure 6, since the amount of initial
training data in both of these experiments is well below the
32 principal components that yielded the best results with the
PCA model. In fact, the PCA approach was not able to obtain
good predictions until the training dataset amounted to about
40 geometries. More interestingly, even though the baseline
training dataset already comprised 202 synthetic geometries in
the “Sequential Real + Synthetic” experiment, the PCAmodel did
not perform well (i.e., MAE >> 1) until a minimum number
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of real geometries were provided. Finally, the “Sequential Real +
Synthetic” experiment suggests that the inclusion of the synthetic
data was not of particular help in improving the accuracy of
patient-specific LAA. One would expect that, as the amount
of real training data increases, the accuracy achieved would
eventually exceed that of the model solely trained in the 54
real cases or alternatively, that a similar level of accuracy would
be obtained but utilizing a smaller number of real geometries.
Neither of these two scenarios held true for any of the models, as
accuracy actually worsened overall. Only the geometric DLmodel
managed to achieve accuracy on par with that obtained in the
“Sequential Real” experiment, so it appears to have learned more
relevant and universal morphological features.

All things considered, the graph-based neural network was
superior not only in terms of performance but also regarding the
ease of deployment, while the PCA-FCN and flattening models
each had their strengths and weaknesses. First, the PCA-FCN
model showcased good robustness with regards to real data and
it was the faster training model by far. Nonetheless, the need
for registration was a major handicap during mesh processing,
given that mesh connectivity had to be preserved, which greatly
restricted employing tools such as remeshing, vital to avoid mesh
quality problems. Not to mention the employed registration
itself, which entailed a degree of deformation in the mesh
being registered. In regards to flattening, although altogether
bypasses the need for registration and template selection, it only
succeeded in overcoming the above approach in cases where a
very small amount of data was available for training. Besides, UV
mapping can not be easily extended to other topologies should
we consider including the full LA geometry. All that being said,
flattening representations are still very useful for visualization
and comparison of large LAA populations. Concerning the
geometric DL model, it delivered the best results while working
directly over the native form of the data, and using almost
an order of magnitude fewer weights than its counterparts.
In addition, as no correspondences were required the initial
pre-processing was minimal, thus facilitating the editing of the
meshes and avoid mesh quality issues. For all these reasons,
the graph-based model was chosen for further testing on the
second dataset.

4.2. Dataset 2—Complete LA Dataset
As aforementioned, an inspection of Figure 7 shows that the
distribution of ECAP maps in dataset 2 differs from the synthetic
LA dataset (dataset 1). The more complex boundary conditions
used in dataset 2 have strengthened the washout in the proximal
portion of the LAA. Only in those recesses and cavities in which
the inflow fails to reach, the ECAP is higher than in the first
dataset. On the other hand, the incorporation of the entire LA
geometry during simulation signifies that the ECAP no longer
solely depends on the variation of LAA morphology; other
anatomical features such as the orientation of the pulmonary
veins (García-Isla et al., 2018) will play a role in shaping the
variability of the risk index. Despite the added complexity
of the second dataset the geometric DL network effectively
learned the abstract set of anatomical features related to blood
stagnation. Unfortunately, owing to the “black box” nature of

neural networks, it is difficult to pinpoint what the model is
learning, whether it is a combination of the distance to the
ostium along with local curvature on a given bulge or some other
arrangement of features that might be challenging for humans to
grasp. Although the MAE results effectively tripled in this second
dataset relative to dataset 1, it was to be expected given the skewed
nature of the data and the extremely high values at given spots.

4.3. Limitations and Future Work
Despite the promising results, the presented study has several
limitations that must be addressed before it can be of any use in a
clinical setting.

First, the choice of the ECAP as a thrombosis risk index
may be a subject of contention, since its validity has yet to be
proven on the LAA. At first, the ECAP was chosen as it provides
a dimensionless scalar field that captures some of the most
relevant hemodynamic characteristics related to the formation
of thrombi in the LAA, which in turn, allows simplifying the
required DL model architecture. Moreover, even though the
ECAP index was originally developed in carotid and abdominal
aorta fluid models (Di Achille et al., 2014), it has already seen
some use in clinical studies exploring device-related thrombus
formation in LAA occlusion surgeries (Aguado et al., 2019;
Mill et al., 2020). In any case, the underlying mechanisms of
thrombus formation in the aforementioned situations always
involve some degree of blood stagnation or re-circulation at low
velocities that the ECAP should be able to grasp to some extent.
Furthermore, there is mounting evidence challenging the utility
of standard clinical scores such as the CHAD2DS2-VASc, which
has been long held as the main guide for anticoagulation therapy
in AF patients, highlighting the need for more advanced risk
indexes accounting for AF-specific factors such as hemodynamic
alterations (Siddiqi et al., 2021). In this regard, the geometric DL
model could seamlessly extend to 3D data allowing to predict
more recently adopted indexes of blood stagnation such as the
residence time, which offers an approximate measure of blood
stagnation time scale, based on LA flow velocity vector fields
(García-Villalba et al., 2021).

On the other hand, the hemodynamic variability arising from
the heterogeneous anatomy of the LA was completely neglected
when training the network for the sake of simplicity. Nonetheless,
since the geometric DL framework does not involve any kind
of mesh correspondence it should be fairly trivial to include the
complete LA anatomy. Moreover, the network should be capable
of learning the ECAP fluctuations caused by factors such as
the interaction between the orientation of the pulmonary veins.
Yet, an increase in the size of the input graph could render
the current local convolution scheme insufficient. In this sense,
the network could greatly benefit from widespread approaches
in computer vision such as strided convolutions or pooling,
aimed at extracting multi-scale features. Nonetheless, although
we tested several of the available approaches to construct an
encoder-decoder-like architecture such as in Hanocka et al.
(2019) and Zhou et al. (2020), for the time being, we have not
been able to successfully integrate any of them in the graph-based
model. Future work should also be focused on the interpretability
of themodels, as learning the features that the network is focusing
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on is a crucial step before being able to deploy the model in a
clinical environment.

At the moment, the model is completely agnostic to flow
dynamics and distinct boundary conditions that play a key role
in the process of thrombogenesis. To address this challenge,
we intend on capitalizing on the rapid advances in the field of
physics-informed neural networks, with examples such as the
study by Pfaff et al. (2021). This may enable the full exploitation
by artificial neural networks of the rich Spatio-temporal data
available within CFD data, which may pave the way toward the
real-time prediction of the full velocity vector field in the LA
without the need for hour-long fluid dynamics simulations.

The ground truth from fluid simulations could also be
substituted by 4D flow magnetic resonance imaging (MRI),
which enables a full non-invasive mapping of the intravascular
3D velocity field over time. Nevertheless, for the time being,
most of currently available 4D flow MRI acquisitions employ
velocity encodings (Venc) better suited to higher velocity vessels
and continue to suffer from poor signal-to-noise ratio and
spatiotemporal resolution (Jiang et al., 2015). As a result,
reliable imaging of the LAA flow field is extremely challenging,
especially in the proximity of the vessel wall, making it nearly
impossible to obtain accurate values of derived hemodynamic
indices such as the wall shear stress or the ECAP (Petersson
et al., 2012). In this regard, attempts have already been
made to tackle said limitations such as the development of
Dual-Venc acquisition sequences (Callahan et al., 2019) or
leveraging CFD simulations to obtain 4D flow super-resolution
(Ferdian et al., 2020).

Lastly, to get the full picture of the risk of thrombus formation
the inclusion of factors such as endothelial damage/dysfunction
could be of particular interest. Scar segmentation in AF
patients can be performed automatically by employing
neural networks over MRI acquisitions (Li et al., 2020;
Yang et al., 2020), allowing detection of left atrium wall fibrosis
which is independently associated with LAA thrombogenesis
(Guo et al., 2012).

5. CONCLUSION

In the present study, we have successfully leveraged a set of
deep learning frameworks to instantaneously predict the ECAP
mapping in the LAA solely from its anatomical mesh, effectively
skipping the need to run CFD simulations at inference time. All
models were effective in a simplified LA model, the graph-based
geometrical DL network repeatedly outscoring its competitors.
Moreover, this same model exhibited good predictive capability
even in more advanced simulations with improved boundary
conditions and including the entire LA anatomy. These results
could lay the foundation for real-time monitoring of LAA
thrombosis risk in the future and open exciting avenues for

future preoperative applications and interfaces in which a clinical
user could interactively change settings of a left atrial appendage
occluder device and instantaneously assess the associated risk of
device-related thrombus generation.
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