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Introduction: In female athletes, the interpretation of doping tests is complex due
to hormonal variations during the menstrual cycle and hormonal contraceptive use,
both influencing the urinary steroid profile. Exercise is suggested to affect circulating
steroid hormone levels, and in women, the urinary steroid profile differs between in
competition testing and out of competition testing. No previous study has investigated
the relationship between amount of exercise and the urinary steroid profile in female elite
athletes.

Purpose: To compare the urinary steroid profile between female Olympic athletes and
age- and BMI-matched untrained controls, and to study the urinary steroid profile in
relation to serum hormones and amount of exercise.

Methods: In this cross-sectional study conducted at the Women’s Health Research
Unit, Karolinska University Hospital, Stockholm, 94 female elite athletes and 86 untrained
controls were included. Serum estrogens and testosterone and the urinary steroid
profile were analyzed by liquid chromatography–tandem mass spectrometry and gas
chromatography-tandem mass spectrometry, respectively. Exercise hours/week were
evaluated by questionnaire.

Results: Although serum steroid hormones were comparable between groups,
the athletes demonstrated approximately 30% lower urinary steroid metabolites of
testosterone, epitestosterone, androsterone, etiocholanolone, 5α-androstan-3α,17β-
diol, and 5β-androstan-3α,17β-diol compared to the controls. The urinary steroid
metabolites correlated positively with serum steroid hormones. In the athletes, urinary
steroid metabolites: androsterone (rs = −0.28, p = 0.007), epitestosterone (rs = −0.22,
p = 0.034), 5αAdiol (rs = −0.31, p = 0.002) and testosterone (rs = −0.24, p = 0.026),
were negatively correlated with amount of training (hours per week).
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Conclusion: The urinary concentrations of steroid metabolites were lower in elite
athletes than in sedentary controls, although serum steroids were comparable
between groups. Moreover, exercise time was negatively associated with the urinary
concentrations. Our findings suggest alternative excretion routes of androgens in the
athletes related to training.

Keywords: serum androgens, urinary steroid profile, athlete biological passport, exercise, female athlete

INTRODUCTION

Since 2014, the athlete biological passport (ABP) has been used
to identify doping with endogenous anabolic steroids, such as
testosterone (T). The urinary concentrations of T, its isomer
epitestosterone (E), and the T metabolites, androsterone (A),
etiocholanolone (Etio), 5α-androstanediol (5αAdiol), and 5β-
androstanediol (5βAdiol) are analyzed by gas chromatography-
tandem mass spectrometry (GC-MS/MS). These concentrations
are combined into five ABP ratios (T/E, A/Etio, 5αAdiol/E,
5αAdiol/5βAdiol, and A/T), and an adaptive Bayesian algorithm
calculates individual reference thresholds (Sottas et al., 2010;
Sottas and Vernec, 2012). An atypical passport finding is
obtained when a sample in the passport goes outside the
individually calculated reference ranges, which may trigger a
confirmatory isotope ratio mass spectrometry analysis to identify
if testosterone is of endogenous or exogenous origin (Wada Wada
Technical Document, 2021a,b). The urinary profile is analyzed
after the urine has been hydrolyzed with β-glucuronidase and
consequently, it is the unconjugated, as well as the glucuronidated
fractions that are quantified. Even though glucuronidation is
the main excretion route of androgens, the ABP metabolites are
also to a lesser extent excreted as sulfate-conjugates (Rane and
Ekstrom, 2012; Schiffer et al., 2019).

We, and others, have previously shown that implementation
of the ABP increases the chance to detect testosterone intake in
men as compared to traditional population based cut-off values
after administration of low dose of testosterone (Strahm et al.,
2015; Mullen J. et al., 2017; Nair et al., 2020). Furthermore,
in women the longitudinal ABP approach is superior to the
population-based thresholds to detect administered T, however,
not all women are identified as having atypical findings
(Handelsman and Bermon, 2019; Knutsson et al., 2020; Salamin
et al., 2020). It has been shown that after 10 weeks of
transdermal T application in healthy women, only 40% were
identified as having atypical passport findings (Knutsson et al.,
2020) even though their serum T levels were elevated to
concentrations associated with performance enhancing effects
(Hirschberg et al., 2020). As a supplementary method, the serum
concentration of T, androstenedione and dihydrotestosterone
may be co-monitored (Salamin et al., 2020) and subsequently
there is an interest to understand the relation between the
serum steroid concentrations and urinary excretion rate of the
ABP metabolites.

It is well known that hormones fluctuate during the
menstrual cycle. For example, urinary E is at the highest
concentrations in the luteal phase, whereas the other ABP
metabolites show minor fluctuations during a menstrual cycle.

These variations result in larger individual ABP-thresholds
in women (Schulze et al., 2020). Other challenges associated
with ABP interpretation in female athletes include the use of
hormonal contraceptives (HC) (Schulze et al., 2014; Ekström
et al., 2019), and the impact of genetic polymorphisms in UDP-
glucuronosyltransferases (UGTs), such as UGT2B17 (Schulze
et al., 2014). The time of sampling may also be pivotal for test-
results. In a large compilation of ABP data from over 11,000
Swedish and Norwegian athletes, both the intra- and inter-
individual variations for all ABP ratios were larger in women
than men. Furthermore, women demonstrated 65% higher T
excretion in competition (IC) as compared to out of competition
(OOC), whereas men’s urinary steroid profile did not differ to the
same extent between IC and OOC testing (Mullen et al., 2020).
In women, a great part of the androgen production occurs in
the adrenal gland stimulated by adrenocorticotropic hormone
(ACTH) from the pituitary gland (Burger, 2002; Schiffer et al.,
2019). Since physiological stress stimulates ACTH secretion
and in turn androgen and cortisol from the adrenal gland
(Schiffer et al., 2019) this may explain the higher T excretion
IC found in women.

In addition, previous studies suggest that exercise affects the
concentrations of circulatory hormones (Nindl et al., 2001; Enea
et al., 2011), whereas there are no studies investigating the
relationship between the amount of exercise and excretion rate
of androgens. Therefore, we aimed to investigate the excretion
profile of glucuronides and sulfate androgen conjugates in elite
female athletes in relation to matched sedentary controls, and
further to study the ABP urinary steroid profiles in relation to
serum hormones, genetic variation in androgen metabolism and
amount of exercise.

MATERIALS AND METHODS

Study Population
The athletes participating in this study were part of a cohort of
106 Swedish female Olympic athletes, members of an Olympic
team or part of the high-performance programs of the Swedish
Olympic Committee (SOC). In addition, 117 healthy female
controls [body mass index (BMI)- and age-matched, allowed a
maximum of 2 h training/week and no prior participation in elite
level sports] were recruited. A more detailed description of the
study cohort is previously published (Eklund et al., 2017).

The present study population included 94 female Olympic
athletes and 86 controls, from which urinary samples were
available for analysis. Serum androgen levels and urinary sulphate
levels were previously analyzed (Eklund et al., 2017, 2020) and are
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here presented for the same 94 athletes and 86 controls included
in the current study.

The participants were investigated in connection with training
camps or at the Women’s Health Research Unit, Karolinska
University Hospital. Health status, training hours/week and
gynecological data (hormonal contraceptive use, menstrual cycle
data, pregnancies) were collected by a questionnaire. A blood
sample and urinary samples were collected in a fasted, rested state
between 07.00 and 10.00 h and stored at −20◦C until further
analyses. Blood and urine samples were collected randomly
during the menstrual cycle.

The study was conducted according to the Declaration of
Helsinki and was approved by the Regional Ethics Committee,
Stockholm (EPN 2011/1426-32) and informed consent was
acquired from all participants.

Serum Hormonal Analyses
Serum T, estrone (E1), and estradiol (E2) were determined by
liquid chromatography tandem mass spectrometry (LC-MS/MS)
at the Endoceutics laboratory, Quebec, Canada, as previously
described (Ke et al., 2014, 2015). Free androgen index (FAI) was
calculated, testosterone nmol/L divided by sex hormone- binding
globulin (SHBG) nmol/L × 100. Follicle stimulating hormone
(FSH), luteinizing hormone (LH), SHBG and cortisol were
analyzed by electrochemiluminescence immunoassay (ECLIA)
using commercial kits from Roche Diagnostics AG (CH 6343
Rotkreuz, Switzerland) (Cobas8000), at the Department of
Clinical Chemistry, Karolinska University hospital, Stockholm
(Eklund et al., 2017). Detection limits and within and between
assay coefficients of variation were for FSH 0.1 IU/L, 2.6 and 3.6%,
for LH 0.1 IU/L, 1.2 and 2.0%, for SHBG 0.04 µg/mL, 1.3 and
2.1%, and for cortisol 1.5 nmol/L, 1.7 and 2.2%, respectively.

Urinary Steroid Profile
The urinary levels (glucuronide and unconjugated fractions) of
T, E, A, Etio, 5αAdiol, and 5βAdiol were determined with GC-
MS/MS at the World Anti-doping agency (WADA) accredited
anti-doping Laboratory at the Karolinska University Hospital,
Huddinge, Stockholm as previously described (Mullen J.E. et al.,
2017). Briefly, internal standard, phosphate buffer (pH 6.5) and
β-glucuronidase from E. coli was added to 2 mL sample. The mix
was incubated for 60 min at 50◦C. Once cooled, the sample was
extracted using potassium carbonate and methyl tert-butyl ether
which was dried using sodium sulfate. After centrifugation the
water phase was frozen, and the ether decanted into a fresh tube.
The ether was evaporated under a gentle stream of nitrogen and
placed in a desiccator. 100 µL derivatization reagent was added
and left to react (incubated for 30 min at 50◦C) to form tri-
methyl silyl derivates. The sample was transferred to injection
vials and injected to an Agilent 7890B gas chromatograph and
7000C Triple Quadrupole mass spectrometer.

Urinary sulphate metabolite levels [testosterone–sulphate
(T–S), epitestosterone-sulphate (EpiT-S), androsterone-sulphate
(ADT-S), and etiocholanolone-sulphate (Etio-S)], were analyzed
using LC-MS/MS at the WADA accredited anti-doping
Laboratory at the Karolinska University Hospital, Huddinge,

Stockholm as previously described (Mullen J.E. et al., 2017;
Eklund et al., 2020).

Specific gravity (SG) was measured with a Digital
Refractometer to adjust for the dilution of the urine, using
formula; Ccorrected = Cmeasured × (1.020− 1/SG− 1).

Genotyping
Genomic DNA was extracted from whole blood using QIAmp
DNA Blood Mini Kit (Qiagen). Twenty ng was used as
template in 15 µL reactions using UGT2B17 copy number assay
(#Hs03185327_cn, Life Technologies, Holland), and 2× TaqMan
Universal Master Mix II, no UNG (#4440043, Life Technology,
Holland). The ubiquitously expressed RNase P (#4403326,
Control Reagents, Life Technologies, Holland) was used as an
endogenous reference gene for reaction quality control. Samples
with RNase P signals but no UGT2B17 amplification were
identified as del/del.

Statistical Analyses
Continuous data was presented as mean ± SD when
symmetrically distributed or as median and interquartile
range (25th–75th percentile) otherwise. For comparisons
between athletes and controls regarding HC use and the
number of individuals with UGT2B17 del/del, the Pearson
Chi-square test was applied. Mean serum hormones were
compared between the groups using the student’s t-test
when approximate normal distributions could be assumed.
The Mann-Whitney U-test was used otherwise. Urinary
androgen metabolites were not normally distributed and
was therefore square root-transformed (testosterone, T/E
ratio, and A/Etio) or log- transformed (all remaining
urinary steroid metabolites and ratios) prior to parametric
statistical tests. Concerning age, BMI, training hours per
week and urinary androgen metabolites, comparison between
groups were performed using the student’s t-test. Two-
way ANOVA was applied to evaluate the potential impact
of HC use when comparing urinary androgen metabolites
and cortisol between athletes and controls (the interaction
term group × HC use). In case of a significant interaction,
differences between groups were tested with/and without HC
use. Spearman correlation was used to evaluate association
between variables. UGT2B17 del/del individuals were excluded
in the Spearman correlations analyses between U-Testosterone
and all serum androgens. P-values < 0.05 were considered
statistically significant. Statistical analyses were performed
using Statistica version 13 [TIBCO Software Inc. (2018)].

RESULTS

Age and BMI were comparable between groups. When
comparing the frequency of HC use and UGT2B17 del/del
individuals no significant differences were found between athletes
and controls. As expected, the athletes had significantly higher
amount of training per week (h/w) than the controls. As
previously published, the athletes had significantly lower E1
levels compared to controls but no significant difference was
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found for serum T levels or FAI between athletes and controls
(Eklund et al., 2017). The athletes demonstrated significantly
lower urinary steroid metabolites (glucuronide and sulphate
metabolites) compared to controls (Table 1).

In the athletes and controls not using HC, similar results
were found when comparing urinary steroid metabolites
(Supplementary Table 1). For the T/E ratio, two–way ANOVA
indicated an interaction for HC use. Subgroup analyses found a

TABLE 1 | General characteristics, serum hormones and urinary androgen
metabolites in female Olympic athletes and controls.

Parameter Controls Athletes

n 86 94

Age 26.3 ± 6.0 25.8 ± 5.5

BMI 22.0 ± 2.8 22.0 ± 1.9

HC use, n (%) 31 (36%) 36 (38%)

UGT2B17 del/del, n (%) 8 (9.4) 9 (9.7)

Amount of training (h/w) 0.7 ± 0.8 18.2 ± 5.8***

Serum hormones

n 86 94

E1 (pg/mL) 47.4 (26.5–78.7) 34.9 (21.8–58.8)*

E2 (pg/mL) 55.5 (25.8–122.8) 35.6 (14.3–87.5)

T (pg/mL) 290.0 ± 105.6 284.9 ± 116.4

T (nmol/L) 1.0 ± 0.37 0.99 ± 0.40

FSH (IU/L) 4.0 (2.4–5.7) 4.6 (2.7–6.2)

LH (IU/L) 5.8 (3.4–7.9) 5.6 (2.4–8.9)

SHBG (nmol/L) 80.5 (62.0–129.0) 82.0 (57.0–117.0)

FAI 1.1 (0.6–1.8) 1.1 (0.6–1.9)

Cortisol (nmol/L)∧ 516.0 ± 263.6 579.0 ± 216.3

U-androgen metabolites

n 86 94

U-Testosterone-G (ng/mL) 6.90 (4.27–14.30) 4.59 (2.25–8.00)***

U-Testosterone-S (ng/mL) 1.77 (1.28–3.16) 1.55 (0.94–2.56)*

U-Epitestosterone-G (ng/mL) 10.99 (6.34–19.64) 6.09 (3.60–11.41)***

U-Epitestosterone-S (ng/mL) 5.79 (3.24–9.64) 2.69 (1.69–5.83)***

U-Androsterone-G (ng/mL) 3,386 (2,390–5,627) 2,178 (1,278–3,554)***

U-Androsterone-S (ng/mL) 756 (292–1,361) 519 (263–975)*

U-Etiocholanolone-G (ng/mL) 3,647 (2,504–4,838) 2,762 (1,769–4,139)**

U-Etiocholanolone-S (ng/mL) 273 (163–461) 255 (116–479)

U-5αAdiol-G (ng/mL) 33.4 (21.3–52.7) 19.6 (12.4–30.0)***

U-5βAdiol-G (ng/mL) 86.8 (53.0–197.1) 84.5 (39.1–132.8)*

T/E ratio∧ 0.7 (0.5–1.1) 0.7 (0.4–1.3)

A/Etio ratio 1.0 (0.8–1.3) 0.8 (0.6–1.1)*

A/T ratio 458 (294–767) 428 (329–696)

5αAdiol/E 3.2 (1.9–5.0) 3.6 (2.4–4.8)

5αAdiol/5βAdiol 0.3 (0.2–0.6) 0.3 (0.2–0.5)

Values presented as mean ± SD or median and interquartile range (25th–
75th percentile).
A, androsterone; 5αAdiol, U-5α-Androstane-3α,17β-diol; 5βAdiol, U-5β-
Androstane-3α,17β-diol; BMI, body mass index; E, epitestosterone; E1, estrone;
E2, estradiol; Etio, etiocholanolone; FAI, free androgen index; FSH, follicular-
stimulating hormone; h, hours; HC, hormonal contraceptive; LH, luteinizing
hormone; SHBG, sex hormone-binding globulin; T, testosterone; S, sulphate
metabolite; w, week.
∧Two-way ANOVA indicated that HC use interacted with the
comparison between groups.
*p < 0.05; **p < 0.01; ***p < 0.001.

significantly higher T/E ratio in controls using HC compared to
controls not using HC [1.0 (0.7–1.5) vs. 0.6 (0.4–0.9), p < 0.001].

For cortisol, two- way ANOVA indicated that the differences
between groups may be dependent on HC use. Comparison
between groups demonstrated that in the subgroup of
participants not using HC, athletes demonstrated significantly
higher cortisol than controls (474.1 ± 131.2 vs. 376.4 ± 108.0,
p = 0.004). In the subgroup using HC, no significant difference
was found. As expected, HC users had significantly higher
cortisol levels than non-users (athletes: 748.0 ± 220.7 vs.
474.1 ± 131.2, p = <0.0001, and controls: 759.1 ± 279.0 vs.
376.4± 108.0, p = <0.0001).

Correlations Between Serum Hormones
and Urinary Steroid Metabolites
Correlation analysis between the urinary androgen metabolites
and serum androgens can be found in Table 2. In the subgroup
of athletes and controls not using HC, similar correlations were
found between serum hormones and urinary steroid metabolites
(data not shown).

Correlations Between Training Hours per
Week, Serum and Urinary Steroid
Metabolites
In the athletes, significant negative correlations were found
between training hours per week and U-Androsterone,
U-Epitestosterone, U-5αAdiol, and U-testosterone, respectively
(Figure 1). One of the ratios included in the ABP, A/Etio, also
correlated negatively with training hours per week (rs = −0.22,
p = 0.036). No significant correlations were found between serum
androgens and trainings hours per week.

DISCUSSION

For the first time, we demonstrate a difference in urinary
steroid levels between female athletes and sedentary controls,
i.e., the urinary levels of steroid metabolites both glucuronide
and sulfate conjugated, were lower in the athlete population.
Similar findings have previously been described when comparing
male athletes and controls (Timon et al., 2008). Since it has
been shown that exercise acutely increases the production and
serum concentrations of androgens, lower levels of all the ABP
metabolites may appear contradictory. Stress has been discussed
as an influencing factor that may increase the excretion rate of
urinary steroids IC, particularly in women (Mullen et al., 2020).
There was no difference in cortisol levels between the sedentary
controls and the athletes, however, when HC users were excluded,
cortisol levels were higher in the athletes, and hence the influence
of stress cannot explain the lower levels of steroid metabolites
in the athletes.

The consistently lower urinary steroid levels in the athletes
are not reflective of the serum steroids. In our participants, there
were no differences in circulatory levels of any of the ABP related
androgens studied between groups. In contrast, as previously
published in the total cohort of Swedish female Olympic athletes,
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TABLE 2 | Correlation matrix between serum androgens and urinary androgen metabolites in female Olympic athletes (n = 94) and controls (n = 86).

U-androgen metabolites Serum androgens

E1 E2 T FAI FSH LH

U-testosterone#

Athletes 0.27* ns 0.48*** 0.72*** 0.31** 0.26*

Controls 0.25* 0.31** 0.32** 0.48*** ns 0.37**

Epitestosterone

Athletes 0.73*** 0.65*** 0.57*** 0.61*** 0.24* 0.54***

Controls 0.63*** 0.65*** 0.53*** 0.65*** ns 0.55***

U-Androsterone

Athletes 0.32** 0.22* 0.44*** 0.51*** ns 0.21*

Controls 0.22* ns 0.40*** 0.32** ns 0.22*

U-Etiocholanolone

Athletes 0.23* ns 0.49*** 0.61*** 0.26* ns

Controls ns ns 0.29** 0.33** ns 0.26*

U- 5α Adiol

Athletes 0.35*** 0.27** 0.40*** 0.62*** ns 0.24*

Controls 0.32** 0.26* 0.31** 0.49*** 0.30** 0.37***

U- 5β Adiol

Athletes 0.21* ns 0.35*** 0.51*** 0.21* ns

Controls ns ns ns 0.22* ns ns

Values reported are Spearman rank-order correlation (rs).
E1, estrone; E2, estradiol; FAI, free androgen index; FSH, follicle-stimulating hormone; LH, luteinizing hormone; ns, non-significant; T, testosterone; U-5αAdiol, U-5α-
Androstane-3α, 17β-diol; U-5βAdiol, U-5β-Androstane-3α,17β -diol.
#del/del (n = 8 controls, n = 9 athletes) excluded from analyses.
*<0.05; **<0.01; ***<0.001.

the serum androgen precursor dehydroepiandrosterone (DHEA)
was higher in the athletes compared to controls (Eklund et al.,
2017). A possible explanation may be that androgens in athletes
are also eliminated by additional routes, i.e., in feces and/or
sweat. However, quantification of steroids in feces have been
poorly studied in humans. In eight healthy men, Colldén et al.
(2019) showed that T and DHT are highly abundant in feces.
Sweat might be a potential excretion route due to the lipophilic
properties of steroids (Thieme, 2012). Already in 1983, it was
reported that steroid metabolites included in the ABP (A and T)
can be excreted as sulphate conjugates in human axillary sweat
(Tóth and Faredin, 1985), whereas the glucuronide conjugated
metabolites have not been evaluated in sweat. It is unlikely
that different phase II metabolism explain the different urinary
excretion rate of ABP markers between athletes and sedentary
controls as the androgen-sulfates levels were also higher in the
controls. It is therefore possible that sweat excretion might at
least partly explain the negative correlations between amount of
training (hours) and urinary levels observed herein.

After transdermal application of estr-4-ene diol, the
metabolites nortestosterone, and estr-4-enedione were found
in sweat collected after physical exercise (Thieme et al., 2003).
The sweat production may depend on training intensity, sport
activity, and temperature, etc. No difference between sport
categories could be discerned (data not shown), possibly due to
lack of power. As the ratios (particularly T/E) rather than the
metabolites are monitored in the ABP, the non-urinary excretion
routes may not have a direct impact on doping testing. However,

it is possible that training mediated fluctuations in absolute
androgen concentrations may be visible in an athlete’s passport,
particularly in connection to situations where large differences
in training load are expected, i.e., between in and off-seasons
and after injuries. A future longitudinal study with controlled
training schedule and analyses of additional sample matrixes
(sweat) would be of interest to understand the connection
between amount of training and urinary excretion rates of
androgens. Moreover, sweat has been discussed as an alternative
matrix in forensic toxicology, including detection of steroid
abuse (Thieme, 2012).

The knowledge on how urine and serum androgen
metabolites are connected may be of interest in anti-doping
since quantification of endogenous serum steroids may be
a complementary approach to the urinary steroid profile
method in the future (Salamin et al., 2020). The monitoring
of serum T may increase the likelihood to detect T intake in
female athletes as serum T is superior compared to the urinary
steroid profile (Handelsman and Bermon, 2019; Börjesson
et al., 2020; Knutsson et al., 2020). Our correlations between
the urinary ABP metabolites and serum hormones are in
agreement with previously published data (Knutsson et al., 2020;
Schulze et al., 2020).

Certain limitation of the present study should be addressed.
Due to the cross-sectional study design, causality cannot be
concluded. Even though blood and urine samples were collected
by a standardized procedure (in a fasted and over-night
rested state), we acknowledge that the sampling was performed
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FIGURE 1 | (A) In the athletes, significant negative correlations were found between amount of training (hours/week) and (A) U-Androsterone, (B) U-Epitestosterone,
(C) U-5αAdiol (U-5α-Androstane-3α,17β-diol) and (D) U-testosterone. In the U-testosterone correlations, UGT2B17 del/del individuals (n = 9) were excluded from the
analyses.

randomly according to the menstrual cycle. In premenopausal
women, there is a small mid-cycle increase in serum T
(Handelsman et al., 2018). In addition, urinary androgens,
especially urinary E, fluctuates during the menstrual cycle
(Schulze et al., 2020). We found that urinary E demonstrated
the strongest association with serum estrogens. Subsequently E is
more sensitive to menstrual cycle fluctuations than other urinary
metabolites (Schulze et al., 2020), resulting in larger individual
ABP ranges in women than in men (Mullen et al., 2020).
However, since doping tests are collected randomly, we believe
that the results presented here provide valuable information.

It is well known that HC use affects serum T and SHBG levels
(Sonalkar et al., 2000; Zimmerman et al., 2014). Furthermore,
urinary androgens vary depending on HC use. In a previous
study including female athletes, we showed that urinary E was
suppressed in HC users (Schulze et al., 2014). These findings were
confirmed in an intervention study examining the disposition
of the androgen metabolites and ABP ratios in relation to HC
use (Ekström et al., 2019). In the current study, the correlation
analyses between serum and urinary androgens were evaluated
in both HC and non-HC users. When HC-users were excluded,

we did not observe any significant difference in the associations
between serum- and urine androgens. Therefore, we suggest
that regardless of HC use, the urinary metabolites reflect the
androgenic load (serum concentrations of T, FAI, and LH) to the
same degree in both athletes and controls. Furthermore, we found
comparable differences in urinary steroid levels between athletes
and controls in the subgroup not using HC.

It is well known that UGT2B17 exerts a large impact on
the urinary concentrations of T (i.e., T-glucuronide). Therefore,
we excluded the del/del subjects from the statistical analyses
including urinary T. The UGT2B17 deletion polymorphism
was found in same frequency in athletes and controls, i.e.,
approximately 10% being homozygous for the deletion allele.
This allele frequency corroborates with other studies conducted
in samples from athletes (Anielski et al., 2011; Choong et al.,
2016). Another limitation is that training hours per week were
based on self-reported data by the athletes.

In conclusion, we have shown that the urinary excretion rate of
androgen metabolites monitored in ABP are higher in sedentary
controls than in elite athletes, and that the amount of training
is negatively associated with the urinary concentrations. Further
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studies are needed to understand the association between training
and urinary excretion rate of androgens in athletes.
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