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Background: Fatigue is a common and subjective symptom, which is associated with
many diseases and suboptimal health status. A reliable and evidence-based approach
is lacking to distinguish disease fatigue and non-disease fatigue. This study aimed to
establish a method for early differential diagnosis of fatigue, which can be used to
distinguish disease fatigue from non-disease fatigue, and to investigate the feasibility
of characterizing fatigue states in a view of tongue and pulse data analysis.

Methods: Tongue and Face Diagnosis Analysis-1 (TFDA-1) instrument and Pulse
Diagnosis Analysis-1 (PDA-1) instrument were used to collect tongue and pulse data.
Four machine learning models were used to perform classification experiments of
disease fatigue vs. non-disease fatigue.

Results: The results showed that all the four classifiers over “Tongue & Pulse” joint
data showed better performances than those only over tongue data or only over
pulse data. The model accuracy rates based on logistic regression, support vector
machine, random forest, and neural network were (85.51 & 1.87)%, (83.78 & 4.39)%,
(83.27 + 3.48)% and (85.82 + 3.01)%, and with Area Under Curve estimates of
0.9160 4+ 0.0136, 0.9106 + 0.0365, 0.8959 + 0.0254 and 0.9239 + 0.0174,
respectively.

Conclusion: This study proposed and validated an innovative, non-invasive differential
diagnosis approach. Results suggest that it is feasible to characterize disease fatigue
and non-disease fatigue by using objective tongue data and pulse data.

Keywords: fatigue, tongue diagnosis, pulse diagnosis, machine learning, intelligent diagnosis

INTRODUCTION

Fatigue refers to the state that the body cannot endure certain physical intensity with both
physiological and pathological manifestation (Chaudhuri and Behan, 2004). Fatigue is subjective
uncomfortableness. It can be either mental or physical, and can be of different degrees depending
on the health conditions (Persson and Bondke Persson, 2016). Studies have shown that chronic
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fatigue syndrome (CFS) (Wang et al., 2014; Sandler and Lloyd, and various treatment modalities, such as radiotherapy (Hickok
2020), depression (Kim et al., 2019), cancer (Lawrence et al., et al, 2005; Dhruva et al., 2010), chemotherapy (Minton et al.,
2004), and other diseases have obvious fatigue manifestations, 2013), and hormone and biological therapy (Phillips et al., 2013)
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FIGURE 1 | Overall flowchart.
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can aggravate fatigue. Fatigue is one of the most common
subjective symptoms of abnormal health state and can be further
categorized as disease fatigue and non-disease fatigue. Due to the
lack of objective diagnostic tool of fatigue, there is still no reliable
and stable evaluation method to distinguish disease fatigue and
non-disease fatigue.

Traditional Chinese medicine (TCM) leverages symptoms,
physical signs, tongue, and pulse as one of the ways to
characterize patient health status. With rapid development in
computer science, various machine learning methodologies, such
as logistic regression (Bucur et al, 2017; Zhang et al., 2018),
support vector machine (SVM) (Li X. et al, 2019), random
forest (Ozgift, 2011; Kong and Yu, 2018), convolutional neural
network (Shin et al, 2016; Yu et al, 2017), and deep neural
network (Ben-Bassat et al., 2018) have been widely applied in
the field of medical research. Using artificial intelligence methods
in understanding the diagnostic data and syndromes or diseases
can help improve the accuracy and precision of diagnosis in an
objective and efficient manner. In TCM, fatigue is believed to
be related to decline of the whole or local functional state of the
human body-the performance of Qi deficiency. Tongue diagnosis
and pulse diagnosis are recognized diagnostic methods which are
based on overall evaluation of human body; and this is suitable
in functional states evaluation, forming important foundation
for the evaluation of health status and disease diagnosis. Tongue
and pulse manifestations are closely related to heart, lung, spleen,
stomach, liver, and kidney functioning, just as the old saying goes:
“Tongue reflecting sign of heart, “The tongue is the external
phenology of the spleen and stomach,” “Heart dominating blood
and vessel,” “The pulse is the house of blood,” and “Lung
connecting all vessels.” Tongue and pulse conditions can reflect
the function of Qi, blood, and viscera. Therefore, when fatigue
occurs, the changes in functions of the heart, lungs, or other
viscera will be reflected in tongue and pulse manifestations. Thus,
tongue and pulse conditions can be used to understand the
severity and cause of fatigue. Using a large amount of patient level
data collected by modern tongue diagnostic or pulse diagnostic
instruments, a number of diagnostic models have been developed
using machine learning in other disease areas (Wang et al,
2013, 2020; Zhang et al., 2019). Based on modern tongue (Ding
et al, 2015; Li W.L. et al., 2019) and pulse diagnosis (Shi et al.,
2017; Kung et al,, 2020) technology, research on fatigue has
made great progress.

Fatigue is an early sign of abnormal health status, which
plays a very important role in understanding the health status
and early prevention and diagnosis of disease. However, due
to lack of objective evidence for fatigue, especially in the early
stage of the disease, fatigue is often neglected, which delays
diagnosis and timely intervention. A reliable and consistent
method to distinguish disease fatigue and non-disease fatigue
can effectively assist differentiation of disease fatigue and
non-disease fatigue in early diagnosis. This study aims to
establish a method for early differential diagnosis of fatigue, to
facilitate early diagnosis, prevention, and treatment of disease.
This is an interdisciplinary work in which we interpret the
scientific rules of disease diagnosis based on objective data of
tongue and pulse.

MATERIALS AND METHODS
Study Subjects

A total of 486 fatigue patients were included in this study
from January 2015 to December 2018 at Medical Examination
Center of Shuguang Hospital affiliated to Shanghai University
of TCM. Patients were divided into two groups by experienced
clinicians according to disease diagnostic guidelines and fatigue
diagnostic criteria: non-disease fatigue subjects (n = 242), and
disease fatigue subjects (n = 244). The study included a group
of healthy population (n = 250) as controls. Patient selection
and classification is shown in Figure 1. All patients have signed
informed consent form.

Inclusion and Exclusion Criteria
Specific diagnosis of disease for patients with disease fatigue
was made by four experienced clinicians following diagnostic
criteria of Western medicine. Most common diseases included
Chinese Diabetes and Society (2018), Hypertension et al.
(2019), and hyperlipidemia (Yan et al, 2017). Health Status
Assessment Questionnaire Scale (H20 Scale) and the Information
Record Form of Four Diagnosis of TCM (Copyright No.:
2016Z11L025702) (Shi et al., 2021) (as shown in Supplementary
Material 1) were used to further define the state of fatigue.

Inclusion criteria: (1) meeting the diagnostic criteria of disease
or there are obvious abnormal physical signs for diseases. (2)
Have symptom of fatigue.

Exclusion criteria: (1) pregnant or lactating women. (2)
Psychopath. (3) Patients with poor compliance.

Collecting Clinical Tongue Data and

Pulse Data

Tongue and Face Diagnosis Analysis-1 (TFDA-1) instrument and
Pulse Diagnosis Analysis-1 (PDA-1) instrument were used to
collect tongue data and pulse data. TFDA-1 instrument is shown
in Figure 2 and its corresponding analysis software, named

FIGURE 2 | Tongue and Face Diagnosis Analysis-1 (TFDA-1) tongue
diagnosis instrument. (A) Front view. (B) Profile view.
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FIGURE 3 | The corresponding software analysis interface of TFDA-1 equipment.
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FIGURE 4 | Pulse Diagnosis Analysis-1 (PDA-1) pulse diagnosis instrument and sphygmogram. (A) PDA-1 pulse diagnosis instrument. (B) Sphygmogram and its

parameters.
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tongue diagnosis analysis system (TDAS) V2.0, is shown in
Figure 3. The corresponding indices of tongue body and tongue
coating could be obtained via TDAS. All these indices reflect the
tongue characteristics from different perspectives, which served
as important objective basis for health status evaluation and
syndrome diagnosis. PDA-1 instrument and its corresponding
sphygmogram are shown in Figure 4. All investigators were
specialized medical students who had been trained for standard
study operating procedures to ensure consistency and accuracy
of data collection.

The tongue indices were from three color spaces, Lab, HIS,
and YCrCb (Qi et al., 2016; Sun et al., 2016; Schiller et al., 2018),
each tongue and pulse index had its medical meaning (Qi et al.,
2016; Luo et al., 2018; Li et al., 2021b; Shi et al., 2021). The indices
of tongue diagnosis and pulse diagnosis and their corresponding
clinical meaning are shown in Supplementary Table 1.

Statistical Analysis

The SPSS 25.0 software was used for statistical analysis.
Continuous data with normal distribution are presented as mean
and SD, and those with abnormal distribution are presented using
median and interquartile range (IQR). Comparisons between
groups were conducted using ANOVA or Kruskal-Wallis H-test
for continuous variables. A p < 0.05 (two-tailed) was considered
to be statistically significant in comparisons.

Classification by Machine Learning
Approach

In this study, four machine learning methods, such as logistic
regression, SVM, neural network, and random forest were
used. The random forest is an ensemble learning method for
classification and other tasks, which does not utilize the gradient
decent. When modeling data by the random forest, no operations
of normalizing data were performed. In our experiments by
using the three models of logistic regression, SVM, and neural
network, the data were normalized using the method of Z-score.
The preprocessing-data method of Z-score is described as the
following Eq. 1.

(1

where X denotes an element in a data vector, | for mean value,
and o for SD.

Logistic regression, a multivariate analysis method for
studying the relationship between categorical variables and
influencing factors, is usually used to construct prediction models
for exploring risk factors and predicting the probability of a
certain disease. Its accuracy of prediction can be improved
by adjusting regression model parameters (Bucur et al., 2017;
Zhang et al., 2018). Logistic regression model is described by the
following Eq. 2.

Y
1—y
where X denotes a vector for sample, W denotes a vector for the
linear parameters, and b and y are scalars.

Support vector machine is one of the most important
supervised learning models, used to solve classification or
regression problems. Its essence is to find a hyperplane between
different data types to create a boundary, which maximizes the
interval between data points in different classes. SVM is widely
used in face recognition and disease patterns (Li et al., 2012;
Zhang et al., 2017).

Random forest is a classifier that uses multiple decision trees
to train and predict sample. Though it is not the most accurate
classification algorithm, it runs efficiently on large datasets and
can handle thousands of input variables without variable deletion
(Kong and Yu, 2018). In our random forest, two metrics, i.e., Gini
index and information gain, were separately taken as criterion
to select partition attributes. The Gini index was calculated
according to Eqs 3, 4, and the information gain by using Eqs 5, 6.

= WIX+b ®)

In

Gini (D) =1- Y _p}

(3)
k=1
Gini i _VIDVI..V
ini_index(D, a) = Z ﬁsz(D ) (4)
v=1
Ent (D) = — ) prlogapk (5)
k=1 v ,
Gain (D, a) = Ent (D) — > | %Ent(DV) (©6)
v=1

TABLE 1 | Baseline characteristic [median (P25, P75)].

Characteristics Non-disease fatigue

subjects (n = 242)

Disease fatigue subjects (n = 244)

Hypertension and

Hypertension Diabetes and Diabetes,

diabetes (n = 78) hyperlipemia hyperlipemia (n = 87) hypertension, and
(n =166) hyperlipemia (n = 48)
Male/female 146/96 62/16 126/40 72/15 39/9
Age (year) 32.00 (28.00, 37.00) 56.50 (49.75, 65.00)* 50.00 (39.75, 55.00 (48.00, 64.00)** 54.00 (47.25, 64.00)**
58.00)*##
BMI (Kg/m2) 22.39 (20.28, 24.68) 26.15 (24.08, 28.08)** 25.70 (23.70, 27.40)* 26.10 (24.20, 27.70)** 26.30 (24.68, 27.65)**

vs. Non-disease fatigue subjects, “*p < 0.01.
vs. Hypertension and diabetes, *p < 0.01.
vs. Hypertension and hyperlipemia, *p < 0.05.
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where D denotes a data set, n for the total number of categories
in the data set D. Symbol py is a probability of a sample being
classified to be the k-th category. In other words, px means a
ratio that the k-th category accounts for in the dataset. Symbol

TABLE 2 | Statistical analysis of tongue body and tongue coating index [mean
(SD), median (Pos, P7s)].

a represents an attribute, V for the number of sets obtained by
partitioning the set D according to the attribute a, D" for a subset
of the set D corresponding to a value of the attribute a.

Neural network is another important machine learning
method. It can simulate human brain to achieve artificial
intelligence. Our neural network contained one hidden layer with
activation function. Three activation functions, such as Tanh,
Sigmoid, and ReLU, were selected respectively in the hidden
layer. The computation in the hidden layer with activation Tanh
is presented in Eq. 7, Eq. 8 is for computations in the type
of hidden layer with activation Sigmoid, and Eq. 9 for the
type of hidden layer with activation ReLU. Two optimizers, i.e.,
adaptive moment estimation (Adam) and stochastic gradient
decent optimizer (SGD), are taken, respectively.

e(WTxX—G) _ e—(wax—e)

— T — =
y = tanh (W x X e) T eWIxX—8) | o—(WTxX—0) @)
=o(Wl'xX—-0)= ! (8)
y=o (W X=) = s
y = max(0, Wl xX— 0) ©)]

where X is an input vector, W for a weight vector, and 6
for a threshold.

We used SPSS 25.0 to detect outliers or extreme values of
tongue and pulse data, the sample who had outliers or extreme
values were deleted. All tongue and pulse data were extracted
in batches by specialized tongue and pulse diagnosis analysis

TABLE 3 | Statistical analysis of pulse index [median (P25, P75)].

Domain Color Index Healthy Non-disease Disease
space subjects fatigue fatigue
(n = 250) subjects subjects
(n =242) (n = 244)
B Lab TB-L  103.69 (5.37) 103.75(5.68)  104.84 (6.53)
TB-a 19.37 (17.57, 20.47 (18.10, 21.12(18.69,
21.70) 22.68) 23.47)*
TB-b 6.41 (5.03, 5.04 (0.55, 1.71 (-5.33,
7.80) 6.93)** 5.29) ##
HIS TB-H 179.13 176.63 170.80
(177.00, (167.87, (153.12,
181.66) 180.00)* 176.89) " #i#
TB-S 0.17 (0.15, 0.18 (0.15, 0.19(0.16,
0.19) 0.20) 0.21)*
TB-I 117.00 118.00 120.00
(107.00, (106.00, (112.00,
129.00) 130.00) 135.00)"#
YCrCb TB-Y 114.64 (12.77) 114.98 (13.50) 117.98 (15.76)
TB-Cr 151.61 151.31 150.66
(149.13, (148.38, (147.88,
1563.91) 1563.87) 153.85)
TB-Cb 120.28 121.31 124.01
(118.98, (119.883, (120.70,
121.48) 125.29)" 130.69)*##
TC Lab TC-L 107.91 107.93 109.14
(103.96, (104.09, (105.15,
111.42) 112.05) 113.13)*
TC-a 12.14 (2.52) 12.76 (2.75)* 12.71 (3.03)
TC-b 4.84 (3.77, 3.26 (—1.05, 0.88 (—6.59,
6.20) 5.10)* 4.08)*##
HIS TC-H 181.80 177.49 169.76
(180.00, (161.89, (132.783,
184.84) 182.42) 178.59)*##
TC-S 0.12 (0.03) 0.12(0.03) 0.12 (0.03)
TC-l 126.00 127.00 131.00
(115.00, (115.00, (119.00,
137.00) 140.00) 146.00)"#
YCrCb TC-Y 122.89 122.94 125.92
(113.53, (113.80, (116.58,
132.11) 133.72) 137.03)**
TC-Cr 143.66 143.23 142.44
(141.08, (140.683, (138.66,
146.02) 145.77) 145.91)*
TC-Cb 121.78 123.24 125.61
(120.71, (121.68, (122.51,
123.11) 127.73)* 133.18)*##
Areaindex perAll 0.47 (0.40, 0.52 (0.41, 0.62 (0.43,
0.60) 0.76) 0.90)"#
perPart  1.14 (1.04, 1.09 (1.08, 1.05 (1.02,
1.26) 1.22) 1.18)"#

Index Healthy subjects Non-disease Disease fatigue
(n = 250) fatigue subjects subjects (n = 244)
(n = 242)
t1(s) 0.13(0.12,0.14) 0.13(0.12,0.14) 0.14 (0.183,
0.15)*##
t4(s) 0.34 (0.33, 0.36) 0.34 (0.33, 0.36) 0.36 (0.34,
0.38)"*##
t5(s) 0.41(0.39, 0.42) 0.40 (0.39, 0.42) 0.41(0.39, 0.43)
t(s) 0.83(0.77, 0.90) 0.82 (0.77, 0.90) 0.82(0.75, 0.92)
h1(mv) 113.47 (96.27, 110.79 (90.78, 115.17 (88.77,
135.47) 132.993) 146.18)
ha(mv) 72.90 (56.40, 70.12 (56.00, 71.40 (52.46,
90.74) 87.64) 104.51)
ha(mv) 43.92 (35.09, 41.99 (33.05, 41.67 (30.19,
53.81) 51.75) 56.70)
hs(mv) 3.5(1.13,6.71) 3.24 (0.65, 6.09) 0.87 (—0.58,
3.16)"##
w1 (s) 0.17 (0.13,0.19) 0.17 (0.14, 0.19) 0.18 (0.15, 0.20)"#
Wo(s) 0.11(0.09, 0.14) 0.11(0.09, 0.14) 0.13 (0.11,
0.16)"##
wi/t 0.20(0.17,0.23) 0.20(0.18, 0.23) 0.22 (0.19, 0.24)"#
wo/t 0.13(0.11, 0.16) 0.14 (0.11,0.17) 0.16 (0.13,
0.18)*##

vs. Healthy subjects, “p < 0.05, vs. healthy subjects, *p < 0.01.
vs. Non-disease fatigue subjects, #p < 0.05, vs. non-disease fatigue subjects,
##p < 0.01.

vs. Healthy subjects, *p < 0.01.
vs. Non-disease fatigue subjects, #p < 0.05, vs. non-disease fatigue subjects,
##p < 0.01.
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software, at the same time, we conducted a manual check of
all data to ensure that there was no artificial input errors and
missing values. All the experiments were performed in Python
3.6. The metric of area under the curve (AUC) was calculated as
an area under the receiver operating characteristic curve (ROC).
Accuracy, Precision, Sensitivity, Specificity, and F1 were formally
defined in the following Eqs 10-14. The accuracy was defined
as a ratio between the number of correctly classified samples
and the total number of samples. Precision was defined as a
ratio of correctly predicted positive samples out of predicted
positive samples. Fl-score is the harmonic mean of Precision
and Sensitivity (Yang et al., 2018). Sensitivity was defined as the
proportion of positive samples which are correctly identified,
which measures the ability of classifier to correctly identify
positive samples. Specificity is the proportion of negatives which
are correctly predicted (Handelman et al., 2018).

TP + TN

Accuracy = x 100% (10)
TP + TN + FP + FN

Precision = ——— x 100 (11)

TP + FP

o TP

Sensitivity = ——— x 100% (12)

TP + FN
Specificit N 100% (13)

ecificity = ——— x
Py = IN+ FP ’

2 x Precision x Sensitivity
F= — —— (14)
Precision 4 Sensitivity

True Positive (TP) is the number of positive samples which
are correctly predicted. True Negative (TN) is the number of
negative samples which are correctly predicted. False Positive
(FP) denotes the number of negative samples which are predicted
to be positive. False Negative (FN) is the number of positive
samples predicted to be negative.

Visualization of Machine Learning

Predicted results of machine learning models were visualized by
using t-distributed stochastic neighbor embedding (t-SNE). The
visualization intuitively showed predicted results and capabilities
of machine learning models. The t-SNE algorithm was deployed
to reduce the high-dimensional data collected in this study into
two-dimensional data. The features in each dimension of the
obtained two-dimensional data were rescaled to the range of by
using min-max normalization. A general formula for the min-
max normalization was given as Eq. 15, where an original value
in a dimension was the normalized value. Normalized data were
then scattered on a two-dimensional plane.

, X — min(x)

* = max (x) — min(x) (15)

RESULTS

Basic Statistics
The baseline characteristics of the subjects are presented in
Table 1.

There were statistically significant differences in age and
body mass index (BMI) between disease fatigue and non-disease
fatigue group subjects (p < 0.01). Patients with disease fatigue
who were older are associated with higher BMI.

Statistical Analysis Over Tongue Data
We selected the widely recognized tongue indices for statistical
analysis based on experience from previous studies. The result
of tongue indices among three groups are depicted in Table 2.
The prefix TB-represents the tongue body, and TC-represents
the tongue coating.

Statistical results of tongue data showed that TB-a, TB-b,
TB-H, TB-S, TB-1, TB-Cb, TC-L, TC-H, TC-I, TC-Y, TC-Cr, TC-
Cb, perAll, and perPart showed significant differences among

TABLE 4 | Classification results of disease fatigue against non-disease fatigue over four datasets using four classifiers.

Classifiers Data sets Sensitivity (%)  Specificity (%) F1 Precision (%) Accuracy (%) AUC
Logistic regression Tongue 60.82 + 4.26 64.49 + 5.71 0.6192 £0.0272  63.32 + 3.41 62.65 +2.67  0.6666 + 0.0284
Pulse 62.86 + 6.88 63.67 + 4.36 0.6297 £ 0.0476  63.33 £ 3.37 63.27 £3.93  0.6990 + 0.0370
Tongue & Pulse 67.76 £ 6.11 67.14 £6.35 0.6749 £ 0.0457 67.49 £ 4.75 67.45 £ 4.32 0.7395 £ 0.0415
Tongue & Pulse & Age & BMI 84.90 + 3.56 86.12 + 4.36 0.8542 + 0.0181 86.18 + 3.67 85,51+ 1.87 0.9160 + 0.0136
SVM Tongue 56.33 + 4.58 68.78 + 7.13 0.6004 +0.0303  64.71 £4.70 62.55+3.10  0.6470 & 0.0430
Pulse 64.29 £ 4.76 65.71 £ 3.00 0.6468 £ 0.0313  65.21 £2.20 65.00 £2.50  0.7035 + 0.0243
Tongue & Pulse 65.10 + 6.42 68.57 + 5.34 0.6617 £ 0.0506  67.48 + 4.60 66.84 +4.59  0.7203 + 0.0389
Tongue & Pulse & Age & BMI 85.31 +5.83 82.24 + 5.56 0.8399 £ 0.0439 8292 +£4.78 83.78+£4.39  0.9106 + 0.0365
Random forest Tongue 61.84 +£6.89 68.37 + 4.00 0.6380 + 0.0521 66.08 + 4.14 65.10 £4.40  0.6803 + 0.0630
Pulse 60.61 +5.78 61.84 + 6.89 0.6097 +0.0498  61.52 £ 5.39 61.22 £5.14  0.6582 + 0.0509
Tongue & Pulse 66.94 + 5.38 70.41 £5.79 0.6806 + 0.0356  69.57 + 4.22 68.67 £3.32  0.7423 + 0.0444
Tongue & Pulse & Age & BMI 84.90 + 4.40 81.63 +4.74 0.8353 £ 0.0344  82.33 £ 3.99 83.27 £3.48  0.8959 + 0.0254
Neural network Tongue 62.45 + 5.86 63.88 +£5.78 0.6281 £ 0.0403  63.47 £3.72 63.16 £ 3.49  0.6639 + 0.0255
Pulse 65.31 +7.36 64.90 + 6.04 0.6500 +£ 0.0390  65.17 +£2.89 65.10+2.77  0.7087 + 0.0330
Tongue & Pulse 65.7 £12.27 70.2 £13.20 0.6664 +0.0633  70.34 £ 6.27 67.96 £ 3.33  0.7454 + 0.0349
Tongue & Pulse & Age & BMI 85.31 £ 6.57 86.33 + 1.84 0.8562 £ 0.0353  86.19 £ 1.50 85.82 £+ 3.01 0.9239 £ 0.0174
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three groups. The numerical distribution trend of the indices
of TB-L, TB-a, TB-S, TB-I, TB-Y, TB-Cb, TC-L, TC-I, TC-Y,
TC-Cb, and perAll was as follows: healthy subjects < non-
disease fatigue subjects < disease fatigue subjects; the numerical
distribution trend of the indices of TB-b, TC-b, TB-Cr, TC-Cr,
TB-H, TC-H, and perPart had the following order: disease fatigue
subjects < non-disease fatigue subjects < healthy subjects.

Statistical Analysis Over Pulse Data

Similar as in tongue data analysis, the widely used pulse indices
were selected for statistical analysis. Results of pulse indices
among healthy subjects, non-disease fatigue subjects, and disease
fatigue subjects are depicted in Table 3.

Statistical results of pulse indices showed that t;, ts, hs, wi,
w2, wi/t, and wy/t showed significant difference among three
groups (p < 0.05 and p < 0.01), and the numerical distribution
trend of the indices of ty, t4, w1, wy, wi/t, and w,/t was that the

group of disease fatigue was larger than the group of non-disease
fatigue and the health controls, the numerical distribution trend
of hs was as follows: disease fatigue subjects < non-disease fatigue
subjects < healthy subjects.

Results Using Machine Learning and

Visualization

Based on the statistical analysis over tongue data and pulse data
(Tables 2, 3), such tongue indices and pulse indices showing
significant statistic inferences were utilized to characterize
disease fatigue and non-disease fatigue. Logistic regression,
SVM, random forest, and neural network were deployed as
classification models over the datasets, respectively, such as
“Tongue,” “Pulse;” “Tongue & Pulse,” and “Tongue & Pulse &
Age & BML.” A dataset in each of our experiments was randomly
split into training set and testing set according to a ratio of
8:2. For each of the four models, a procedure of adjusting

A
1.0 e
- .1 ryiyheny oy
o 0
,
1!3— ,
& //
0.8 i 52
— 4
T ’
HeETg
- '
L rr ¥ _}IJ P -]
2 06 1, 'Y : i o1 e
2 55wt /// H
E 23 4 o E
H o —Ibﬂ_ T3e g7 S
3 Ee. o~ (AUC=06531) | & ~o- (AUC=0.7793)
F 04 y - o o -o- (AUC=0.6810) | ~ -~ (AUC=0.6443)
o P % (AUC=0.6281) —¥- (AUC=0.6643)
P ". vz =+ (AUC=0.7022) —+ (AUC=0.7364)
€3 b ~+ (AUC=0.6993) ~+  (AUC=0.6626)
w*—-f &7 - (AUC=0.6510) & (AUC=0.7093)
0.2 1 '_'x' ’
oY - ~+ (AUC=0.6760) ~+ (AUC=0.6880)
I T 4 (AUC=0.6901) - (AUC=0.7064)
!’/ =k (AUC=0.6726) =k (AUC=0.7039)
Ao —e- (AUC=0.6127) —e- (AUC=0.6955)
0.0 : 0.0 . ! v
0.0 0.2 0.4 0.6 0.8 1.C 0.0 0.2 0.4 0.6 0.8 10
False Positive Rate False Positive Rate
C D
1.0 4 ~—rmg=d 0] 0 e g——— e s
et T B o S e
T soi [ 1 2 T AN <
. | - eI =135 I & - !- -$- W
p — - - ! ’ & - P
1 ES r-—h ’ 1 ’
= = .,",'..z" o M g < :ﬁ»-c—‘ 17
0.8 { - R = ! 57, 08198 ¢ .
-. = | »t—.—-‘-o =i o | ¥ Se
¢ et c--3 S M .
e 1*3. i s 1 o
g : r 37 1 Ibi l ,
2 il AR _: ¥ e MM s
] - 7’ ] 11 g
& 0.6 0.6
o lt‘L. -.H: /// : 1 | 27
L > 4
S - -y ) B g S 1 : H S
2 s , 3 ’
< 3 _i--ﬂ ~il g 1 . it
] Tl 7 -~ (AUC=0.7114) | § e 77 -~ (AUC=0.8975)
= 0.4 4 ﬁt#gq,... 7 -8~ (AUC=0.7755) = 0.4 4 1 > -~ (AUC=0.9204)
3 14 P - (AUC=0.7193) M Pis —% (AUC=0.9059)
i) , 1 .
! 5 —+ (AUC=0.6676) "‘ 8 —+ (AUC=0.9234)
,ﬁ :" P% ~+ (AUC=0.7397) LY i ~+  (AUC=0.9450)
02 18281 77 - (AUC=0.8172) el i B = (AUC=0.9146)
i ¢ T e ~+ (AUC=0.7043) i 57 —~ (AUC=0.9071)
o 57 - (AUC=0.7851) 1 5] - (AUC=0.9313)
P ~+ (AUC=0.7476) 575 ~~ (AUC=0.9042)
,’/ -~ (AUC=0.7272) +Ad ~e- (AUC=0.9109)
0.0 0.0 . . - -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
False Positive Rate False Positive Rate
FIGURE 5 | Receiver operating characteristics (ROCs) of 10 times repeated experiments obtained using logistic regression over four datasets. (A) ROCs over
“Tongue” dataset. (B) ROCs over “Pulse” dataset. (C) ROCs over “Tongue & Pulse” dataset. (D) ROCs over “Tongue & Pulse & Age & BMI” dataset.
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model parameters was performed separately for each of the
four datasets. A setting of parameters with best performances
was selected for a model over a dataset. Based on the selected
parameters setting, experiments were conducted for 10 times
over the corresponding dataset by using the selected model.
Classification results of 10 experiments were described in the
form of “mean £ SD” for each model over each dataset. They
are depicted in Table 4. The results from 10 times repeated
modeling of the best parameters of each model are depicted in
Supplementary Tables 2-5.

Each subfigure in Figures 5-8 plotted 10 ROC curves which
were obtained in 10 repeated experiments using a machine model
over a dataset, and it gave 10 AUC results corresponding to
area under each one of 10 ROC curves. The 10 ROC curves
were in different colors, each color represented an ROC result
achieved in one experiment. The ROCs of 10 times repeated
experiments obtained using logistic regression, SVM, random

forest, and neural network over four datasets were depicted in
Figures 5-8, respectively. The accuracy rate over four datasets for
four machine learning models are depicted in Figure 9.

For all four classifiers, performance over the “Tongue &
Pulse” dataset were better than those only using tongue data
or pulse data. After adding age and BMI data, the classification
efficiency was improved for each of the four models. Over
“Tongue & Pulse” dataset, neural network and logistic regression
had better classification effects than other classifiers. Overall,
the distribution trend of the average accuracy of different
classifiers except for random forest based on different datasets
had the following order: “Tongue” < “Pulse” < “Tongue &
Pulse” < “Tongue & Pulse &Age & BMI.”

There are many different indices of the same diagnosis
method, data of a single dimension tends to have a high
consistency, so its visualization effect is better. As the data
dimension increases, the data complexity increases, and the
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visualization effect decreases. The visualization of modeling
classification results of tongue and pulse sets based on different
classifiers in this study are shown in Figures 10, 11. In each
subfigure in Figure 10, either blue point or red point represents
a two-dimension data point, which was obtained by performing
dimensional reduction operation over original testing data and
by executing min-max normalization. The abscissa and ordinate
were the two dimensions of the two-dimension data obtained by
dimensional reduction, respectively.

DISCUSSION

The purpose of this study was to determine whether general
fatigue was caused by diseases and to provide a convenient and
reliable method for early screening of fatigue. To achieve this,

we enrolled patients undergoing routine physical examination
as the research subjects, rather than patients with confirmed
disease diagnoses, such as heart disease, cancer, and neurological
degenerative diseases, because these patients typically would have
definite diagnoses and thus would not meet our research objective
to understand early screening for atypical disease fatigue. This
study primarily leveraged basic health information and data of
tongue and pulse to screen for fatigue population for diseases and
non-disease reasons. According to Tables 2, 3, tongue and pulse
data of the healthy population overlaps with the two groups of
patients with fatigue to a certain extent. The healthy population
was selected to serve as baseline to understand general data of
tongue and pulse and was not used in modeling for classification.

Our research team has been continuously working on research
related to tongue diagnosis technology and has established a
relatively reliable analysis methodology for tongue and index, and
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FIGURE 8 | Receiver operating characteristics (ROCs) of 10 times repeated experiments obtained using neural network over four datasets. (A) ROCs over “Tongue”
dataset. (B) ROCs over “Pulse” dataset. (C) ROCs over “Tongue & Pulse” dataset. (D) ROCs over “Tongue & Pulse & Age & BMI” dataset.

has also published findings on tongue diagnosis (Zhang et al.,
2017; Qi et al., 2018; Qiao et al., 2018; Li et al., 2021a,b; Shi et al.,
2021). The index of tongue diagnosis mainly included the color
and texture of tongue body and tongue coating and proportion
of tongue coating. According to the distribution law of perAll,
perPart, TB-Cb, TC-Cb, TB-Cr, TC-Cr, TB-I, TC-I, TB-Y, TC-Y,
TB-L, and TC-L, the increase of TC-I, TB-I, TB-L, TC-L, TB-Y,
and TC-Y in disease fatigue population indicated white tongue
coating, and high perAll and low perPart indicated thick tongue
coating. White greasy or white thick coating is generally seen in
dampness syndrome or cold syndrome, which were commonly
seen in patients with qi deficiency of spleen and stomach or
poor transportation function of spleen and stomach (Zhang et al.,
2013). The increased TB-Cb and TC-Cb, decreased TB-Cr and
TC-Cr indicate purple or more cyanotic tongue body, which
is generally seen in qi stagnation and blood stasis syndrome

or cold syndrome. Generally speaking, patients with coronary
heart disease (Zi et al., 2021), or chronic liver disease (Liu et al.,
2003), or vasculitis (Xu et al., 2020), or cancer (Hao et al.,
2016), often have purple or more cyanotic tongue body. All the
indices were quantified by special TDAS software (TDAS V2.0),
and the conclusions were made through statistical analysis. In
addition, studies have shown that pulse was closely related to
cardiovascular function (Hu et al., 2018; Luo et al., 2018). In our
study, the statistical result of pulse indices showed that compared
with non-disease fatigue and healthy subjects, disease fatigue
subjects had more severe functional decline in left ventricular
function, peripheral resistance, aortic compliance, vascular wall
elasticity, blood viscosity, and other cardiovascular functions. In
addition, pulse was influenced by with these indices.

In the section of modeling using machine learning methods,
age and BMI, as recognized prognostic factors, were closely
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FIGURE 10 | Visualization of “Tongue” data based on different classifiers. (A) Logistic regression. (B) Neural network. (C) Random forest. (D) SVM.
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related to diseases. Age and BMI were basic information
related to human health, which were closely related to diseases.
Studies have shown a correlation between age and the incidence
of diseases (Wolff et al, 2020), with the increase in age,
the risk of disease gradually increased. Previous studies had
shown that BMI (Komatsu et al., 2020) was a key factor
of diseases, it played an important role in the diagnostic
process. Generally speaking, with the increase of age and
BMI, the risk of disease gradually increased. In this study,
classification models were constructed over “Age & BMI”
datasets, and related experimental results showed that age and
BMI had a good classification effect for classifying disease
fatigue and non-disease fatigue. However, our focus in this
study was that whether data of tongue and pulse or tongue
and pulse combined with basic information of age and BMI
could distinguish different fatigue states well. For classification
models only based on “Age & BMI” datasets and that whether
age and BMI had any effect on tongue and pulse, they
were not our focus. In conclusion, models based on “Tongue
& Pulse” datasets had good classification performances for
classifying disease fatigue and non-disease fatigue, and adding
age and BMI could help improve the classification performances
of models. The classification performances of models over

“Tongue & Pulse & Age & BMI” datasets were better than
models based on datasets of “Tongue,” “Pulse;” “Tongue &
Pulse, and “Age & BMI, respectively. Because pulse can
reflect cardiovascular function and was closely related to health
status. It was convincible that the accurate diagnosis rate of
pulse was higher than that of tongue. Therefore, age, BMI,
tongue, and pulse were important factors for the fatigue
classification model.

LIMITATIONS AND FUTURE WORK

This study still had some limitations. First, this study mainly
focused on tongue and pulse data differences between two
“fatigue” groups (disease and non-disease) from a holistic
perspective. However, there are a wide range of diseases
that require further analysis. Second, the baseline clinical
characteristics of the subjects were not comprehensive enough. In
the future, narrowing down the research scope of disease, a large-
scale and multicenter epidemiological investigation should be
combined, and more complete baseline demographic and clinical
characteristics data would be useful in further understanding
tongue and pulse data for other diseases.
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