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In a multiscale simulation of a beating heart, the very large difference in the time
scales between rapid stochastic conformational changes of contractile proteins and
deterministic macroscopic outcomes, such as the ventricular pressure and volume,
have hampered the implementation of an efficient coupling algorithm for the two scales.
Furthermore, the consideration of dynamic changes of muscle stiffness caused by the
cross-bridge activity of motor proteins have not been well established in continuum
mechanics. To overcome these issues, we propose a multiple time step scheme
called the multiple step active stiffness integration scheme (MusAsi) for the coupling
of Monte Carlo (MC) multiple steps and an implicit finite element (FE) time integration
step. The method focuses on the active tension stiffness matrix, where the active
tension derivatives concerning the current displacements in the FE model are correctly
integrated into the total stiffness matrix to avoid instability. A sensitivity analysis of
the number of samples used in the MC model and the combination of time step
sizes confirmed the accuracy and robustness of MusAsi, and we concluded that the
combination of a 1.25 ms FE time step and 0.005 ms MC multiple steps using a
few hundred motor proteins in each finite element was appropriate in the tradeoff
between accuracy and computational time. Furthermore, for a biventricular FE model
consisting of 45,000 tetrahedral elements, one heartbeat could be computed within
1.5 h using 320 cores of a conventional parallel computer system. These results
support the practicality of MusAsi for uses in both the basic research of the relationship
between molecular mechanisms and cardiac outputs, and clinical applications of
perioperative prediction.

Keywords: heart simulation, Monte Carlo method, finite element method, excitation contraction coupling,
multiple time step method, active stiffness, cross-bridge cycle
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INTRODUCTION

Demands for the prediction of outcomes from various types of
operations are emerging in clinical problems of heart disease. At
the present time, we can reconstruct a precise three-dimensional
(3D) model from computed tomography or magnetic resonance
imaging data for an individual patient, and use it for perioperative
simulations to help doctors to choose the best among various
possible operations. However, there are still some difficulties
in the modeling of excitation-contraction coupling, even if
we can precisely predict the excitation propagation from
patient electrocardiogram (ECG) data (Okada et al., 2013).
Such difficulties are because the macroscopic shortening in the
fiber orientation is fed back to the extremely large stochastic
combination consisting of various states of contractile proteins
(Figure 1), and their stochastic responses depend on individual
scenarios that include their neighbors (Figure 2). Although
previous efforts to construct numerical models using a type of
mean field approximation have successfully reproduced specific
tissue-level phenomena (Hunter et al., 1998; Niederer et al., 2006;
Negroni and Lascano, 2008; Rice et al., 2008; Guérin et al., 2011;
Chapelle et al., 2012; Washio et al., 2012; Syomin and Tsaturyan,
2017; Regazzoni et al., 2018; Caruel et al., 2019), these models
have not yet been fully exploited in real-life heart simulations.
The uses of ordinary differential equation (ODE) models that
adopt the phenomenological approximations of the force-pCa
relationship and the force-velocity relationship have become
mainstream instead (Smith et al., 2004; Kerckhoffs et al., 2007;
Gurev et al., 2011; Shavik et al., 2017; Dabiri et al., 2019; Azzolin
et al., 2020; Regazzoni et al., 2020). However, these approaches
appear to have difficulties, particularly in reproducing the realistic
relaxation phase that is important to ease the influx of blood from
the atria to the ventricles.

Two major problems exist in directly coupling a stochastic
molecular model and a living heart model: (i) the time scale
difference between the two models; and (ii) the treatment of
active stiffness in the heart model associated with the stochastic
cross-bridge activity in the molecular model. Regarding the first
problem, cross-bridge activity is typically modeled either using
an ODE model or a Monte Carlo (MC) model that requires
a small time step of microsecond order, whereas millisecond
order is appropriate for the heart model discretized by the finite
element method (FEM) in terms of the computational load and
communication overhead. Regarding the second problem, an
implicit method is typically applied for the FE model because of
the strong anisotropic and volumetric stiffness of living tissue.
When a muscle is excited, active stiffness associated with cross-
bridge activity is generated in the fiber orientation (Figure 1B).
This active stiffness is much greater than passive stiffness, with
the exception of the volumetric stiffness of the incompressibility.
Thus, if the prescribed active tensions computed in the cross-
bridge model are explicitly applied to the FE model, active
stiffness is not taken into account in the total stiffness matrix
of the Newton iteration, which causes some problems of either
convergence or accuracy. Such a problem was analyzed by
Regazzoni and Quarteroni (2021), and the instability was fixed
by introducing an appropriate active stiffness. However, their

study was limited to some phenomenological ODE models that
cannot reproduce a spontaneous oscillation (SPOC) (Ishiwata
et al., 2010; Kagemoto et al., 2015) in low Ca2+ concentrations,
as Regazzoni et al. (2021) remarked. By contrast, we successfully
reproduced a SPOC (Washio et al., 2019; Shintani et al., 2020)
using our MC cross-bridge model (Figure 2), and we addressed
the similarity between the rapid lengthening of sarcomeres in
the SPOC and the quick relaxation of cardiac muscle at early
diastole in the cardiac cycle. Therefore, in this study, we focus
on the stability in the direct coupling of the MC and FE models.
The similarities of the cross-bridge dynamics in the relaxation
phases between the SPOC and the biventricular FE simulations
demonstrate the usefulness of our scheme both in areas of basic
research and clinical applications.

MATERIALS AND METHODS

Coupling of the MC Model and the FEM
Model
In this study, we apply a multiple time step approach in which
about 100 time steps of the MC model are performed within a
single time step of the FE model to reduce the computational
load and communication overhead (Figure 3). In our approach,
to update the variables in both the MC and FE models from the
FE time step at T to the next time step at T +1T, first, the
stretch λT and stretch rate λ̇T in the fiber orientation of the
FE model are used as the initial half-sarcomere length (HSL)
λT ·SL0/2 at T and its shorting velocity −λ̇T ·SL0/2 in the time
interval [T,T1T] of the half-sarcomere model (Figure 3A),
where SL0 is the sarcomere length under the unloaded condition.
This filament sliding information is used to calculate the myosin
rod strains that are referenced to compute the state transitions of
binding myosin molecules. Then, the active tension Tact,[T,T+1T]
and associated stiffness ∂Tact,[T,T+1T]/∂λT+1T are computed
iteratively in Newton iterations by summing the individual
contributions of binding myosin molecules. The myosin rod
strains are recomputed using the interpolated stretches between
λT and λT+1T in the time interval [T,T +1T], whereas the
myosin molecule states already computed in the MC steps are
fixed (Figure 3B) for convergence in the Newton iterations. Thus,
the stretch λT+1T is implicitly integrated into the active tension,
which results in the appropriate evaluation of active stiffness
in the FE model and the stability of the Newton iterations.
Hereafter, we call our approach the “Multiple step Active stiffness
integration” (MusAsi) scheme.

In our previous works (Washio et al., 2013, 2016), the active
tension Tact,[T,T+1T] was implicitly computed by assuming the
shorting velocity −λ̇T+1T ·SL0/2 of the half-sarcomere model in
the time interval [T,T +1T], whereas in the MusAsi scheme, it
is computed by assuming − (λT+1T − λT) ·SL0/21T. Although
both approaches produce almost the same result, the previous
approach is based on the velocities of the continuum, which result
in the inconsistent stiffness of the active tension. By contrast,
active stiffness in the MusAsi scheme is proportional to the total
stiffness of the binding myosin molecules in the half-sarcomere
model, thus the interpretation is consistent with our intuition. In
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FIGURE 1 | (A) Tetrahedral element in (B) the ventricle wall of the FE model. The cylinder in panel (A) indicates the fiber orientation f that is shown in panel (B) using
the integral curves colored according to the longitudinal component of f (blue: –1, red: +1). (C) The half-sarcomere model was assigned for each element. The active
tension Tact is given by summing the forces of the binding myosin molecules composed of the myosin head (ellipse), and the lever arm (bar) and rod (spring). In the
half-sarcomere model, the C-line and thick filaments (green) are fixed. The Z-line and thin filament (gray) slide with the half-sarcomere (HS) shortening velocity
−SL0λ̇/2, where the stretch rate λ̇ along the fiber orientation f is obtained from the FE model. The active tension Tact is given by summing the forces generated by
the binding myosin molecules, and it is used to define the macroscopic active stress tensor Sact that drives the heartbeat in the FE model.

the following, we introduce the MC model applied in this study
and the details of the MusAsi scheme.

MC Cross-Bridge Model
We briefly present an overview of our MC cross-bridge model
(Washio et al., 2016) used in this study. We provide the details
in Supplementary Material 1. A myosin molecule in our cross-
bridge model has three non-binding states (NXB, PXB, and
NATP) and three strong binding states (XBPreR, XBPostR1, and
XBPostR2) (Figure 2A). Ca2+-sensitivity is reproduced using the
state transitions in the troponin/tropomyosin (T/T) units on
the thin filament (Figure 2B). The coefficients knp and kpn in
the rate constants between the non-binding state NXB and the
weakly binding state PXB are changed according to the state of
the T/T unit above the myosin molecule. Co-operativity in the
nearest neighbor interactions is incorporated with the factors γng

and γ−ng to reproduce the force-pCa2+ relationship (Rice et al.,
2003), where γ = 40 is used, and ng = 0, 1, or 2 is the number
of neighboring myosin molecules either in the weakly binding
(PXB) or strong binding (XBPreR, XBPostR1, and XBPostR2) states.
We assume that one real thin filament in the 3D arrangement
corresponds to two thin filaments in our half-sarcomere model.
This is because we assume that co-operative behavior exists along
the tropomyosin and tropomyosin molecules wrapped around
the thin filament in a double spiral manner, and only one of the
spirals is considered in our half-sarcomere model. As shown in
the “Results” section, this co-operative mechanism contributes
to almost completely removing the population of binding states
in the diastolic phase in which nearly 10% of the peak Ca2+

concentration remains (Figure 2C).

Contraction force is generated by the power stroke transitions
in which the strain of the myosin rod increases by s1 and s2 in
the first and second strokes, respectively. In our model, the rate
constants of the power and reverse strokes are given by functions
of the rod strain x (the displacement from the unloaded state) so
that the Boltzmann equilibrium condition is fulfilled:

hf ,i (x)
hb,i (x+ si)

= exp
(
−W (x)− Ei−1 +W (x+ si)+ Ei

kBT

)
, (1)

where Ei−1 and Ei are the free energies before and after the power
stroke under the unloaded condition, respectively. W is the strain
energy of the myosin rod (Figure 2D). With the power stroke,
the free energy decrease Ei−1 − Ei is transferred to the increase of
strain energy W (x+ si)−W (x). The strain energy is used for the
external work via the half-sarcomere shortening that corresponds
to muscle shortening in the fiber direction. In this study, the
individual rate constants for the power and reverse strokes are
determined by hf ,i (x) = hiexp

(
−

Ei−1−W(x+si)−Ei
kBT

)
(2)

hb,i (x+ si) = hiexp
(
−

W(x)
kBT

)
. (3)

.

To achieve stable MC steps, if either hf ,i or hb,i exceeds the
maximum rate rmax = 100,000 [1/s], it is replaced by rmax and
the other parameter is modified so that Eq. 1 is fulfilled.

MusAsi Scheme
For the MC model, the time step size 1t must be chosen so that it
is sufficiently smaller than the reciprocals of the rate constants. In
our case, the choice 1t~5 µs is appropriate. By contrast, the FE
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FIGURE 2 | State transition Monte Carlo model of (A) the myosin molecule and (B) the T/T unit. The myosin molecules in either the NXB or PXB states are assumed
to be detached. The rate constants in the T/T unit state transition are affected by the states of the myosin heads (MHs) below it. The rate constant factors knp and
kpn between NXB and PXB are affected by the state of the T/T unit above it. ng is an integer that takes the values 0, 1, or 2, according to the number of neighboring
MHs attached. γ = 40 was adopted to model the co-operativity of the MHs. The forward transitions from XBPreR to XBPostRs via XBPostR1 are called ‘power strokes,’
whereas the back transitions are called ‘reverse strokes.’ The MHs connected to the extremely strained myosin rods are detached to NATP. (C) The typical transient
of [Ca2+] applied to the T/T unit state transition in panel (B). (D) The strain energy W of the myosin rod and the non-linear force dW/dx.

time step size 1T ∼ 1ms is sufficient to catch the time transients
of macroscopic variables, such as the ventricular cavity volume
and pressure. Because the linear solution, which requires many
communications among processes, must be performed in each
Newton iteration, a FE time step size 1T that is much larger than
1t ∼ 5 µs is desirable. This leads to the use of an approach in
which multiple MC steps are performed in a single FE step.

The feedback to the state transitions in the MC model from
the dynamics of the FE model is given by the stretch in the fiber
orientation f . In the FE model, the stretch and stretch rate are
given by

λ =
∣∣∣∣Ff

∣∣∣∣ (4)

λ̇ =
1
λ

(
Ḟf
)
·
(
Ff
)

(5)

where F = I + ∂u/∂X is the deformation gradient tensor
defined for the displacements u = u (T, X) from the unloaded
configuration. The macroscopic information of the stretch is

provided at the two ends of the time interval at T and T +1T.
The information at T +1T is determined when the macroscopic
displacement u = u (T +1T, X) is determined, which can be
computed only if the active stress during [T,T +1T] is
provided. Thus, the state transitions of myosin molecules in MC
model must be computed before the FE step from T to T +1T.
Hereafter, we denote the time using a subscript, if necessary, for
example, λT and λ̇T . A simple approach to perform the MC steps
with the time step size 1t = 1T/n is to define the stretch λ̃ at the
k-th step as

λ̃T+k1t ≡ λT + k1t λ̇T . (6)

In this case, the rod strain x̃ij (displacement from the unloaded
position) of the (i,j)-th myosin molecule is given by the following
if it is in the binding state:

x̃ij,T+k1t=xA,ij,T+k1t +sij,T+k1t+
SL0

2
(̃
λT+k1t−λ̃A,ij,T+k1t

)
(7)

where the integers i = 1, · · · ,NM and j = 1, · · · ,NF denote
the index of a myosin molecule in a filament and the index

Frontiers in Physiology | www.frontiersin.org 4 August 2021 | Volume 12 | Article 712816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-712816 August 9, 2021 Time: 12:37 # 5

Yoneda et al. Multiple Step Active Stiffness Integration

FIGURE 3 | Difference between the sliding distances of the thin filament in (A) the MC state transition steps and (B) the FE active tension integration steps. An FE
time interval [T, T +1T ] is divided into n MC multiple steps (k = 1, · · · , n). The vertical blue line is the position of the Z-line under the unloaded condition. The sliding
distances in [T, T +1T ] are extrapolated from the sliding velocity −λ̇T · SL0/2 at T in the MC steps, whereas they are interpolated from the stretches λT and λT+1T

at T and T +1T in the active tension integration steps, respectively. The gray arrows around the time axis indicate the flow of the computational process. The MC
state transition steps are performed only once from T to T +1T, whereas the FE active tension integration steps are iterated until the convergence of Newton
iterations, where λT+1T is computed from the updated displacement uT+1T . Note that uT+1T is initialized with uT at the beginning of the Newton iterations in this
study.

of a thin filament in the half-sarcomere model imbedded
in a single finite element in the FE model (Figure 1),
respectively. The variables xA,ij and λ̃A,ij are the initial strain
and the stretch at the most recent attachment (the transition
from PXB to XBPreR), respectively. The initial strain xA,ij
is yielded probabilistically from the Boltzmann distribution
exp

(
−W (x)/kBT

)
. The variable sij = 0, s1 or s1 + s2 is the

power stroke distance. The third term on the right-hand side
is the sliding distance between the thin filament and the thick
filament after the attachment. The constant SL0 is the sarcomere
length under the unloaded condition. In the MC computation,
a state transition of a binding myosin molecule ij at k-th step is
computed based on the rate constant determined by the rod strain
x̃ij,T+k1t .

Once the state transitions in the MC model in the time interval
[T,T +1T] are computed, the active tension Tact,[T,T+1T] of
the FE model is calculated by summing all the forces produced by
individual myosin molecules so that the impulses of both scales
are the same:

Tact,[T,T+1T] =
2 · RS

SA0 · nF · n

NF∑
j=1

NM∑
i=1

n∑
k=1

δA,ij,T+κ1t
dW
dx

(
xij,T+k1t

)
, (8)

where SA0 and RS are the cross-sectional area per thin filament
and the sarcomere volume ratio under the unloaded condition,
respectively. The numerator is multiplied by a factor 2 because
we consider a half the myosin molecules (NM = 38), which are
accessible along a single spiral in the thin filament for the purpose

of co-operative attach-detach control along the tropomyosin.
The variables {δA,ij,T+κ1t=0: non-binding, =1: binding} are
obtained from the MC model. Regarding the forces generated
by the individual myosin molecules, if we define the rod
strain as xij,T+k1t ≡ x̃ij,T+k1t , the active tension Tact,[T,T+1T]
is determined regardless of the stretch λT+1T at T +1T.
Therefore, the active tension stiffness dTact,[T,T+1T]/dλT+1T
associated with the binding myosin molecules in the half-
sarcomere model is not taken into account in the total stiffness
matrix used in the FE Newton iterations. This approach, which
considers the active tension explicitly, results in the instability
of the numerical solution, as seen in the “Results” section.
Therefore, in the MusAsi scheme, the rod strains {xij,T+k1t} used
to determine the active tension are given by

xij,T+k1t ≡ xA,ij,T+k1t + sij,T+k1t +
SL0

2(
λT+k1t − λA,ij,T+k1t

)
, (9)

where the variables
{
xA,ij,T+k1tsij,T+k1t

}
produced in the MC

steps k = 1, · · · , n are used, whereas the current stretch λT+k1t
and the stretch λA,ij,T+k1t at the most recent attachment are
sequentially redefined from the stretch λT+1T at the time step
T +1T as follows:

λT+k1t ≡ λT +
k
n

(λT+1T − λT) (10)

λA,ij,T+k1t

{
λT+k1T, δA,ij,T+κ1t = 1 and δA,ij,T+(k−1)1t = 0

λA,ij,T+(k−1)1t, otherwise.
(11)
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By including λT+1T in the definition of rod strain
{
xij,T+k1t

}
,

the stiffness associated with cross-bridge activity at T +1T is
properly represented as

∂Tact,[T,T+1T]

∂λT+1T
=

2
SA0 · NF · n

NF∑
j=1

NM∑
i=1

n∑
k=1

δA,ij,T+κ1t
d2W
dx2

(
xij,T+k1t

)∂xij,T+k1t

∂λT+1T
(12)

where the derivative with respect to λT+1T is given by

∂xij,T+k1t

∂λT+1T
=

SL0

2

(
∂λT+k1t

∂λT+1T
−

∂λA,ij,T+k1t

∂λT+1T

)
(13)

with

∂λT+k1t

∂λT+1T
=

k
n

(14)

and

∂λA,ij,T+k1t

∂λT+1T
=


k
n , δA,ij,T+κ1t = 1 and δA,ij,T+(k−1)1t = 0

∂λA,ij,T+(k−1)1t
∂λT+1T

, otherwise
(15)

starting from ∂λA,ij,T+k1t
∂λT+1T

= 0 at k = 0. From Eqs 14, 15, we
obtain

∂xij,T+k1t

∂λT+1T
≥ 0. (16)

Therefore, the stiffness ∂Tact,[T,T+1T]/∂λT+1T is always
non-negative, provided the potential W is convex downward
(d2W/dx2

≥ 0).

Active Stress and Stiffness in the FE
Model
The infinitesimal external work per unit volume required to make
an infinitesimal increment of stretch δλ against the active tension
Tact is given by

δWext = Tactδλ. (17)

From the relationship between the stretch λ and the Green–
Lagrange strain tensor E =

(
FTF-I

)
/2, we obtain

f ⊗ f :E =
1
2
(
λ2
− 1

)
. (18)

Thus, the infinitesimal increment of stretch is represented by

δλ =
1
λ

f ⊗ f : δE. (19)

Therefore, if we define the second Kirchhoff active stress
tensor as

Sact =
Tact

λ
f ⊗ f , (20)

the infinitesimal work is represented by δWact = Sact : δ E.
The derivative of the infinitesimal work is given by

δ2Wact =
∂Tact

∂λ
δλ2
+ Tact δ2λ. (21)

If we assume Tact ≡ Tact,[T,T+1T] and λ ≡ λT+1T , the first
term on the right-hand side is non-negative from Eq. 16. The
second term is also non-negative, provided the active tension Tact
is non-negative because the Hessian of λ is represented as

δ2λ =
1
λ

(
f ⊗ f : δ2E−

1
λ2

(
f ⊗ f : δE

)2
)

=
1
λ

((
δFf

)
·
(
δFf

)
−
(
a ·
(
δFf

))2
)

, (22)

with the normal fiber orientation vector in the current
coordinate a = Ff /λ. Therefore, δ2Wact is non-negative,
provided the active tension Tact is non-negative. This
guarantees the stability of the MusAsi scheme during the
contraction phase. Some cases of negative active tension
Tact < 0 may exist. In this case, the negative stiffness appears
in the subspace of variations of deformation gradients δF
that satisfy a ·

(
δFf

)
= 0. However, because the negative

tension is typically small compared with the positive term
from the mass, viscosity, and passive stiffness, stability
is guaranteed for an appropriately small time step size
1T ∼ 1 ms, in our experience. When some impaired cross-
bridge models were tested, we also observed that the deletion
of the second term on the right-hand side of Eq. 21 from
the stiffness matrix for negative active tensions (Tact < 0)
further stabilized the convergence of Newton iterations in
the MusAsi scheme. In our previous approach (Washio
et al., 2016), because λT+k1t ≡ λT + k1t λ̇T+1T was used
instead of Eq. 10, the first term in Eq. 21 was replaced with(
∂Tact/∂λ̇

)
δλ∂λ̇. Therefore, the interpretation of this term

as the stiffness was difficult, although we did not have any
convergence difficulty.

Newton Iterations for the FE Model
In this study, the FE biventricular model was connected
with the systemic and pulmonary circulation models,
and the transfer of blood volume using these circulation
models was described only by the volumetric changes
of ventricular cavities. Thus, the combined system of
equations for the FE model is given by the following six
formulas for the biventricular FE (Eqs 23–26),systemic

Frontiers in Physiology | www.frontiersin.org 6 August 2021 | Volume 12 | Article 712816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-712816 August 9, 2021 Time: 12:37 # 7

Yoneda et al. Multiple Step Active Stiffness Integration

circulation (Eq. 27), and pulmonary circulation models
(Eq. 28):

∫
� δu · ρü d�+

∫
� δE :

(
S−pC−1) d�

−PL
∫
0L

δu · n d0L − PR
∫
0R

δu · n d0R = 0 (23)∫
� δp

(
(J − 1)+

p
κ

)
d� = 0 (24)∫

0L
u̇ · n d0L − (FMI − FAO) = 0 (25)∫

0R
u̇ · n d0R − (FTR − FPA) = 0 (26)

CS (PL, FAO, QS, FTR, PR) = 0 (27)

CP (PR, FPA, QP, FMI, PL) = 0, (28)

where J = detF is the Jacobian, p is the hydrostatic pressure
in the ventricular walls, C = FTF is the right Cauchy-Green
deformation tensor, κ is the bulk modulus, and PL = LVP and
PR = RVP are blood pressure in the left and right ventricular
cavities, respectively. is the muscle domain in the reference
configuration, whereas 0L and 0R are the blood–muscle
interfaces of the left and right ventricles, respectively, in the
configuration at time T, and n is the normal unit vector directed
from the cavity to the muscle at these surfaces. The Dirichlet
boundary condition uT (X) ≡ 0 is imposed on the boundary
nodes around the valve rings. The second Piola–Kirchhoff stress
tensor S consists of the active, passive, and viscous stresses:

S ≡ Sact + Spas + Svis (29)

where Sact is given by Eq. 20, and Spas and Svis are the
passive and viscous stresses, respectively. The ventricle blood
pressures PL and PR are determined through their interactions
with the circulatory system of the body. FMI , FAO, FTR, and
FPA are the flow rates through the mitral, aortic, tricuspid, and
pulmonary valves, respectively. QS and QP are the variables in
the systemic and pulmonary circulatory systems, respectively. We
provide the details and the parameters applied in this study in
Supplementary Material 2.2.

The time integration of the combined system composed of Eqs
23–28 were performed with the Newmark-beta scheme:

U̇T+1T = U̇T +1T
(
γÜT+1T + (1− γ) ÜT

)
(30)

UT+1T = UT +1TU̇T +1T2 (βÜT+1T + (1/2− β) ÜT
)
(31)

R
(
UT+1T, U̇T+1T, ÜT+1T

)
= 0, (32)

where the vector U contains all variables as follows:

U =



u
p
PL
PR
∗

∗

∗

∗

∗

∗


,U̇ =



u̇
∗

∗

∗

FMI
FAO
FPA
FTR
QP
QS


,Ü =



ü
∗

∗

∗

∗

∗

∗

∗

Q̇P
Q̇S


, (33)

and the function R involves all the equilibrium and constraint
conditions in Eqs 23–28. The missing components denoted
by “∗” in Eq. 33 do not appear in the function R. Although
these components are calculated following the rules of
time interpolation in Eqs 30, 31, they do not have any
physical meaning.

Eqs 30–32 are simultaneously solved implicitly using Newton
iterations as follows:

Set the initial guess: U(0)
T+1T = UT ,U̇(0)

T+1T = U̇T ,

Ü(0)
T+1T = ÜT

Iterate k = 0, 1, 2, · · · until
∣∣∣∣∣∣R(k)

∣∣∣∣∣∣ ≤ ε

Compute the residual and the stiffness matrix:

R(k) = R
(

U(k)
T+1T, U̇(k)

T+1T, Ü(k)
T+1T

)

K(k) =
∂R
∂U

, C(k) =
∂R
∂U̇

, M(k) =
∂R
∂Ü

Solve the linear system:(
M(k) + γ1TC(k) + β1T2K(k)

)
1Ü(k)

=

{
−R(0) − C(0)1TÜT − K(0)

(
1TU̇T +

1
21T2ÜT

)
, k = 0

−R(k), k ≥ 1

Update:
Ü(k+1)

T+1T = Ü(k)
T+1T +1Ü(k)

U̇(k+1)
T+1T =

 U̇(0)
T+1T +1T

(
γ1Ü(k)

+ ÜT

)
, k = 0

U̇(k)
T+1T + γ1T1Ü(k)

, k ≥ 1

U(k+1)
T+1T

U(0)
T+1T1TU̇T +1T2

(
β1Ü(0)

+ 1/2ÜT

)
, k = 0

U(k)
T+1T +1T2β1Ü(k)

, k ≥ 1

Because the initial guesses U(0)
T+1T , U̇(0)

T+1T , and Ü(0)
T+1T do not

fulfill the interpolation rules in Eqs 30, 31, whereas the solutions
after that do, different right-hand sides and update rules are
applied. The key issue in the Newton iteration is the treatment
of active stress Sact in the computation of stiffness matrix K =
∂R/∂U . The active force vector and the stiffness matrix associated
with the active stress tensor Sact on an element e are given by

Fact,e =

∫
e
Tact

∂λ

∂ue
d� (34)

Kact,e =

∫
e

∂Tact

∂λ

(
∂λ

∂ue

)T ( ∂λ

∂ue

)
d�+

∫
e
Tact

∂2λ

∂ue2 d� (35)

where the derivatives of stretch λ with respect to nodal
displacements ue of the element e are given by Eqs 19, 22. In
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FIGURE 4 | (A) Micro and (B) macro processes, and (C) communications between them to perform the MusAsi scheme. Before the Newton iterations, the
displacement uT,e and its time derivative u̇T,e on individual elements {e} are sent from the macro process to the micro process to perform the MC steps in the micro
process. In the Newton iterations, the current displacement uT+1T,e is sent to the micro process to compute the active force vector Fact,e and the active stiffness
matrix Kact,e on each element e.

the MusAsi scheme, the active tension Tact and its derivative
∂Tact/∂λ must be computed from the current value of λT+1T as
defined by Eqs 8, 12, respectively, in every Newton iteration step.
The processing flows and the data transfers between the macro
and micro processes are shown in Figure 4.

Computer Resource and the FE Model
The tested biventricular FE model consisted of 45,000 tetrahedral
elements, where the MINI(5/4c) element (Brezzi and Fortin,
1991) was adopted to avoid instability caused by the nearly
incompressible condition in Eq. 24. Although the higher-order
interpolation of MINI elements was applied to the displacement
u to evaluate the integration associated with the passive stress
tensor, standard linear interpolation ignoring the central node
was adopted for active stress. Thus, it was sufficient to assign
one half-sarcomere model to each element. The fiber-sheet
architecture was constructed by applying the optimization
algorithm in our previous work (Washio et al., 2020). The
computations were performed using 20 nodes (320 cores) of
a parallel computer system (Intel Xeon E-2670 [2.6 GHz],
16 cores/node; Intel, Santa Clara, CA, United States). In the
typical MusAsi scheme in which 16 filaments (NF = 16) were
assigned to each half-sarcomere model, the computational time
was about 1.26 h per heartbeat with 1T = 1.25 ms, and
1t = 5 µs. The MS steps and active tension integration steps
(Figure 4A) in the micro process took 0.58 and 0.42 h,
respectively. The remaining computational time was almost
occupied with the linear solutions (Washio and Hisada, 2011;
Kariya et al., 2020) in the macro process (Figure 4B). Because

38 myosin molecules were arranged in each filament, 27 million
myosin molecules were used in total.

The heart rate was set to 60 beats per minute, and the Ca2+-
transient generated by the midmyocardial cell model proposed
by ten Tusscher and Panfilov (2006) was applied (Figure 2C).
Transmural delays were used that were determined by the
distances from the endocardial surfaces of the left and right
ventricles under a transmural condition velocity of 52 cm/s, as
measured by Taggart et al. (2000).

From the numerical results, the output work from the aortic
valve was evaluated as

Wout =

∫ TC

0
FAO · PLdT, (36)

where TC = 1 s is the cardiac cycle period. ATP consumption was
also calculated by counting the transients to NXB from XBPostR2
or NATP (Figure 2A).

RESULTS

Accuracy in Overall Cardiac Outcomes
The influence of the number of filaments NF imbedded in one
element on cardiac outcomes, such as pressure and volume,
are shown in Table 1A and Figure 5. In the simulations,
1T = 1.25 ms and 1t = 5 µs were applied so that 250 MC
steps were performed within a single FE step. Although there was
a little difference in the overall time transients of pressure and
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TABLE 1 | Influence of the filament number NF (A) and FE time step size 1T (B) on overall pumping performance and computational time.

(A) Influence of NF

NF SV/EDV [ml] EDP/Pmax [mmHg] Wout/ATP [J] dP/dTmax [mmHg/s] Time [h]

4 74.4/110.9 13.7/122.8 1.17/5.09 4291 0.75

8 74.0/110.5 13.6/122.1 1.16/4.99 4237 0.94

16 74.0/110.1 13.7/121.9 1.15/4.94 4341 1.26

32 74.0/110.0 13.7/122.0 1.15/4.92 4295 1.88

64 73.8/110.0 13.7/121.9 1.15/4.90 4275 3.19

(B) Influence of 1T

1T SV/EDV [ml] EDP/Pmax [mmHg] Wout/ATP [J] dP/dTmax [mmHg/s] Time [h]

1T0 74.0/110.1 13.7/121.9 1.15/4.94 4341 1.26

1T0/2 73.6/110.2 13.7/121.5 1.14/4.96 4287 1.80

1T0/4 73.6/110.2 13.7/121.4 1.14/4.95 4267 2.92

SV: stroke volume, EDV: end-diastolic volume, EDP: end-diastolic pressure, Pmax : maximal pressure, Wout: work at output, ATP: ATP consumption, time: computational
time for one cycle. These values were taken from the third cycle after the initial process of blood filling.
ATP consumption in the septum was included. 1T = 1.25 ms and 1t = 5 µs were applied in (A). NF = 16 and 1T0 = 1.25 ms were applied in (B).

volume, even for NF = 4, the difference between the minimum
and maximum of these variables from NF = 64 was less than 1%.
The difference in ATP consumption from NF = 64 was slightly
larger than that of pressure and volume. However, it was also less
than 1% for NF = 16. Thus, it seemed to be sufficient to use 16
filaments to obtain the overall cardiac outcomes.

The influence of the FE time step size 1T on the overall
cardiac outcomes was also examined, as shown in Table 1B. The
baseline of the MC time step size was given by 1t0 = 5 µs, and
the number of MC steps n performed within a single FE step was
determined by

n ≡
⌊

1T − 0.51t0
1t0

⌋
+ 1, (37)

where “b c” represents the floor function that rounds down after
the decimal point. Therefore 250, 125, and 63 MC steps were
performed with 1T = 1T0, 1T0/2, and 1T0/4 (1T0 = 1.25 ms),
respectively. As with the number of filaments NF , the difference
with 1T was sufficiently small. As the computational time
increased, 1T decreased because the total Newton iterations and
the communication between the MC and FE models increased.
This result suggests that the choice 1T = 1.25 ms was sufficiently
good and preferable in terms of the computational cost.

To confirm the necessity of the implicit approach for active
tension, an explicit approach with various sizes of the FE time
step 1T was tested (Figure 6). In the explicit approach, only
the calculation of active tension was modified so that it was
determined using the strains

{
x̃ij,T+k1t

}
in Eq. 7 calculated in

the MC steps from the stretch λ and stretch rate λ̇ at time T
instead of

{
xij,T+k1t

}
in Eq. 9 calculated from the stretch λ at

time T +1T. In this explicit case, only the second term on the
right-hand side in Eqs 21, 35 was used to construct the stiffness
matrix because neither the stretch λ or stretch rate λ̇ at time
T +1T was involved in the definition of Tact at time T +1T.
Although there was no breakdown of the Newton iterations
with the explicit approach, incorrect results appeared at certain

times during the contraction phase. The smaller the time step
size 1T, the later the time at which the wrong result appeared.
Additionally, finally, almost the same result as the implicit
approach with 1T = 1T0=1.25 ms was reproduced with quite
a small time step 1T = 1T0/128∼10 µs. This result supports
both the numerical accuracy and computational efficiency of the
MusAsi scheme because the stable explicit approach with 1T =
1T0/128 required communication between the micro and macro
processes and the linear solution in the macro process every MC
step (n = 2) and, thus, a single beat computation took 70 h,
whereas the MusAsi took only 1.26 h with n = 250 without
loss of accuracy.

Accuracy of Local Dynamics
In clinical applications, not only the overall cardiac outputs,
but also the local mechanical load and energy consumption
are important for predicting a remote prognosis. To confirm
the accuracy of local dynamics, the influence of the filament
number NF on the distribution of active tension Tact and
ATP consumption at the peak of the systolic phase were

FIGURE 5 | Time transients of (A) left ventricular pressure (LVP) and (B)
volume (LVV) for NF = 4 (thin red lines), 16 (medium thick blue lines), and 64
(thick gray broken lines). 1T = 1.25 ms and 1t = 5 µs were applied. These
almost equal time transients were taken from the third cycle after the initial
process of blood filling.
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FIGURE 6 | Time transients of (A) left ventricular pressure (LVP) and (B)
volume (LVV) obtained by the MusAsi with the FE time step size 1T = 1T0

(thick gray broken lines) and the explicit active tension approach with the finer
time steps 1T = 1T0/8 (blue lines), 1T0/32 (green lines), and 1T0/128 (red
lines).

examined (Figure 7). Although the discontinuities of active
tensions at element boundaries was slightly noticeable, even
for NF = 64 (Figure 7A), it became inconspicuous when the
elementwise variables were averaged at the nodes for NF ≥ 16
(Figures 7B,C). The distributions of the active tension values and

the ATP consumption values over the entire cycle are shown in
Supplementary Video 1. A more detailed comparison of the time
transients of active tensions at a single element further indicated
that the choice NF = 16 was sufficient for analyzing the local
mechanical load (Figure 8).

It is somewhat counter-intuitive that the highest ATP
consumption is not happening in the regions of highest active
tension production (Figures 7B,C). Since the ATP consumption
in Figure 7C is the cumulative value over the time interval [0.0 s,
0.2 s], it is difficult to find temporal relationship with the active
tension. In Supplementary Material 3, the active tension, the
stretch rate, and the ATP consumption rate at T = 0.2 s are
shown. Here, due to the force-velocity relationship (Figure 10B),
the higher the shortening velocity (negative stretch rate) is,
the smaller the active tension gets. Because the shortening of
half-sarcomere shifts the rod strain distribution to the negative
direction (Figure 1C) resulting in the facilitation of power stroke
(hf ,1 and hf ,2 in Figure 13A), the higher the shortening velocity
is, the higher the ATP consumption rate gets. Therefore, the
lowest ATP consumption rate is happening in the region of
highest active tension production when the stretch is relatively
uniform over the region.

FIGURE 7 | Distributions of active tension and ATP consumption at T = 0.2 s in the contraction phase in the middle cross-section perpendicular to the long axis.
(A) The active tensions calculated in the individual elements are shown. The lines indicate the segmentation to elements. The black lines are element boundaries.
(B) The active tensions in elements were averaged on the nodes in the FE mesh. (C) The ATP consumption in the interval [0.0 s, 0.2 s] for the individual elements
was averaged on the nodes in the FE mesh.
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FIGURE 8 | Time transients of local active tensions at the Endo, Mid, and Epi sites in the lateral left ventricular wall. (A) The active tensions Tact at a single element
are plotted for NF = 4 (blue lines), 16 (green lines), and 64 (red lines). (B) The averaged values with surrounding elements within 2 mm are plotted.

Sensitivity of the Nearest Neighbor
Co-operative Parameter
To confirm the importance of the neighboring co-operative
mechanism for the relaxation phase in the cardiac cycle,
pumping performances were compared for different co-operative
parameters γ = 40, 20, and 10 (Figures 9A,B). Because the
Ca2+-concentration did not disappear, even in the diastolic phase
(Figure 2C), active tensions were not completely removed with
the impaired co-operativity (Figure 9C). Thus, the insufficient
drop of left ventricular pressure (LVP) blocked the filling
of blood through the mitral valve. The time transients of
[XBPostR2] indicate that even a small binding population less
than 1% was likely to hamper the extension of the ventricular
cavity (Figure 9D).

Sensitivity of the Power and Reverse
Stroke Rate Constants
To examine the capability of MusAsi to reflect the stochastic
behavior of the power and reverse strokes on cardiac outcomes,
we examined the following alternative of the load dependent
power stroke model, which we adopted in our previous work
to reproduce the SPOC of a single myofibril of rabbit iliopsoas
muscle (Washio et al., 2019): hf ,i (x) = giexp

(
Ei−1+W(x)−Ei−W(x+si/2)

kBT

)
(38)

hb,i (x+ si) = giexp
(
W(x+si)−W(x+si/2)

kBT

)
. (39)

This model originated from the Kramers escape theory (Kramers,
1940; Scherer and Fischer, 2017), in which the rate constants were
defined by the Boltzmann factor associated with the height of the

energy barrier from the origin, whereas the previous definition
in Eqs 2, 3 used the strain energy at the destination. In Eqs 38,
39, W (x+ si/2) was introduced to represent the contribution of
the strain energy at the energy barrier that was assumed to be
located at the mid strain (Washio et al., 2017). The contribution
of the free energy of the myosin head at the barrier was included
in the constant gi. In this study, g1 = 20 [1/s] and g2 = 0.1 [1/s]
were adopted, as in our previous work (Washio et al., 2019).
Furthermore, the rate constant (knp in Figure 2A) from the non-
binding state NXB to the weak binding state PXB was multiplied
by the factor 1.1 so that the same maximal pressure (Pmax: the
maximum of LVP) was achieved by both models. Hereafter, we
call the power stroke models of Eqs 2, 3 and of Eqs 38, 39) the
destination strain energy (DSE) model and barrier strain energy
(BSE) model, respectively.

Both models reproduced similar tendencies in the force-pCa
relationship (Figure 10A) and the force-velocity relationship
(Figure 10B) though the active tensions of the BSE model
were slightly smaller than that of the DSE model for a large
Ca2+ concentration (>0.5 µM) or a small half-sarcomere
shorting velocity (<1 µm/s). The SPOCs on the single myofibril
model consisting of 40 half-sarcomeres under the constant[
Ca2+]

= 0.3 µM were also reproduced by both models
(Figures 10C,D). However, their periods and amplitudes were
different (Figures 11A–F). In particular, the remarkable increases
of two reverse stroke rates, which we called the avalanche of
reverse strokes in our previous works (Washio et al., 2017, 2019),
were observed for the two reverse rates at the lengthening in the
BSE model, whereas such an increase was slightly recognized only
in the reverse stroke rate from XBPostR1 and XBPreR in the DSE
model. Furthermore, the ratios of the reverse rates to the forward
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FIGURE 9 | Effects of the nearest neighbor co-operative parameter γ on the time transients of (A) left ventricular pressure (LVP), (B) volume (LVV), (C) the force-pCa
relationship under the unloaded sarcomere length, and (D) time transient of state ratio [XBPostR2] in the logarithmic scale. The black, blue, and red lines indicate
γ = 40, 20, and 10, respectively.

FIGURE 10 | Comparisons of the DSE and BSE models in (A) the force-pCa relationship under the unloaded sarcomere length, (B) the force-velocity relationship at
[Ca2+] = 0.7 µM. Both the (C) DSE and (D) BSE models reproduced the SPOC for 20 sarcomeres in a single myofibril under the constant Ca2+ concentration
([Ca2+] = 0.3 µM).

rates were higher for the DSE model than for the BSE model.
These differences in the SPOCs of the two models were also
recognized in the numerical results for the ventricle FE model
(Figures 12A–F). The local contraction duration of the DSE
model was longer than that of the BSE model (Figures 12C,D)
as the difference in the SPOC periods between the two models
(Figures 11A,B). The rise and drop of LVP for the BSE model
were slower than for the DSE model. In particular, for the BSE
model, there was a small rebound of the binding population

once after the binding myosin molecules almost disappeared.
Although the rebound population was small, the binding myosin
molecules clearly hampered the drop of LVP. In the BSE model,
though the quick lengthening of sarcomere accompanying the
avalanche of reverse strokes was observed, it was not reflected in
the rapid transition from the systolic phase to the diastolic phase
because of the rebounds.

In Figure 13, the distribution of binding states on the rod
strain space x ∈ [−10 nm, 10 nm] on the elements at the endo
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FIGURE 11 | (A,B) Time transients of the sarcomere length (SL), (C,D) ratio of binding states, and (E,F) transition rates between the binding states for the
half-sarcomere model imbedded at the center of the myofibril model consisting of 20 sarcomeres during the SPOC with [Ca2+] = 0.3 µM. Panels (A,C,E) and panels
(B,D,F) are the results of the DSE and BSE models, respectively. (E,F) Transition rates were calculated by dividing the total number of transitions per unit time by the
total number of myosin molecules.

lateral left ventricular wall are provided with the rate constants.
The large magnitude of the reverse stroke rates (hb,1, hb,2) of
the BSE model (Figure 13B) caused an avalanche of reverse
strokes and local quick lengthening (Figure 12F). The small
distribution of the rebound after lengthening was recognized
(Figure 13D). Note that the MusAsi scheme allowed us to directly
couple such distributions of rod strains with wall motion in the
biventricular FE model.

DISCUSSION

Practicality in Clinical Applications
Using 320 cores of a conventional parallel computer system, one
cardiac cycle of the MusAsi scheme could be computed within
1.5 h for a sufficiently fine FE biventricle model consisting of
45,000 tetrahedral elements. Accuracy and robustness were also
confirmed through sensitivity tests with the various parameters
of sample numbers and time step sizes. In fact, we have already
applied the approach to follow-up verifications of practical
clinical problems (Kariya et al., 2020; Masuda et al., 2021). In
these cases, pumping performance after operations was predicted
not only using the standard indices, such as LVP, ejection fraction
(EF), and stroke volume (SV), but also the energy consumption.
Now, we are moving to the next stage of applying our simulator
using the MusAsi scheme in prospective clinical trials in an
ongoing project on congenital heart disease.

Relaxation Mechanism
How the rapid drop of LVP can be achieved for the intracellular
Ca2+ transient with a slow attenuation (Figure 2C) may be still
a controversial issue. Furthermore, the population of binding
myosin molecules must almost vanish in the relaxation phase,

whereas nearly 10% of the maximum is left in the Ca2+

concentration (Figures 12C,D). In our model, the latter problem
was resolved by adopting the nearest neighbor co-operative
mechanism in transitions between the non-binding state and
weak binding state (Figures 2A, 9), whereas the former problem
was resolved by the reverse stroke mechanism introduced by the
load-dependent power stroke model (Figure 12). The MusAsi
scheme enabled the stochastic cross-bridge mechanisms and the
macroscopic dynamics to be directly coupled, and we confirmed
that these molecular mechanisms work efficiently to achieve the
physiological relaxation of cardiac muscle in the beating cycle.
A comparison of relaxation in the two power stroke models
indicated the usefulness of the MusAsi scheme as a basic research
tool in fields that study the role of molecular-level observation
in the heartbeat (Figures 10–13). In our previous work (Washio
et al., 2018) in which we directly coupled the Langevin dynamics
model and the FE ventricle model, we detected the same problem
of the slowed LVP drop caused by the rebounds observed
in the BSE model. This problem was resolved by introducing
the trapping mechanism that inhibits the reverse strokes when
the rod strains increased quickly over a certain threshold. The
trapping mechanism may have similar effects to the DSE model
in which the reverse rates are drastically reduced for large strains
(Figure 13A). Furthermore, the experimental measurements
made by Hwang et al. (2021) revealed a higher frequency of
backward steps at lower loads of the cardiac myofilaments than
those of fast skeletal myofilaments like the higher reverse rate hb,1
of the DSE model than that of the BSE model (Figures 13A,B).
Our numerical results suggest that such a characteristic of the
reverse rate brings the benefit to the cardiac myofilaments for
quick relaxation. Note that achieving the quick relaxation of
muscle is crucial in simulations of congenital heart disease
because heart rates are more than a hundred, in most cases.
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FIGURE 12 | (A,B) Time transients of the left ventricular pressure (LVP) and volume (LVV) of the FE ventricle model, (C,D) the ratio of binding states to the Ca2+

concentration, and (E,F) the transition rates between the binding states and the stretch given by averaging the half-sarcomere models imbedded at the endo lateral
left ventricular wall (elements inside a sphere of 3 mm radius). Panels (A,C,E) and panels (B,D,F) are the results of the DSE and BSE models, respectively. In panels
(A,B), the broken lines indicate the results of counterparts. The transition rates in panels (E,F) were calculated by dividing the total number of transitions per unit time
by the total number of myosin molecules.

FIGURE 13 | (A,B) Rate constants in the logarithmic scale between the binding states, and (C,D) time transients of the distribution of binding states in the rod strain
space in the half-sarcomere models imbedded at the endo lateral left ventricular wall (elements inside a sphere of 3 mm radius). Red and blue indicate high and low
density, respectively. Panels (A,C) and panels (B,D) are for the DSE and BSE models, respectively.
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Significance of Active Stiffness
A key factor for stability in the MusAsi scheme is the implicit
treatment of the active stress tensor Sact in the standard
FE framework using Newton iterations. Assuming a constant
stiffness krod per binding myosin molecule and a binding ratio
RB in the half-sarcomere model, the macroscopic axial stiffness
coefficient KA in the fiber orientation for the active tension in
Eq. 8 is estimated as

KA =
RS
SA0

RB2NMkrod
SL0

2
= 104.2 RBMPa (40)

with the adopted parameters: sarcomere volume ratio RS = 0.5,
cross-sectional area SA0 = 693 nm2 (Sato et al., 2013), number
of accessible myosin molecules 2NM = 76 per thin filament,
spring coefficient of the myosin rod with positive strains krod =
2 pN/nm, and HSL SL0/2 = 0.95 µm. Because we applied the
viscosity coefficient µS = 36.66 Pa·s, the stability condition for
the time step size in the explicit approach is roughly estimated as

1T ≤
µS

KA
∼

0.35
RB

µs. (41)

Note that the stiffness coefficients for passive stress are in
the order of kPa for strains less than 0.2 (see Supplementary
Material 2.1 for details of the passive material parameters).
Therefore, the contribution of passive stiffness, which is dealt
with implicitly, is negligible compared with active stiffness in
Eq. 40, even if only a few percent of myosin molecules are
in binding states (RB ∼ 0.02). The above estimations of the
limitation of the time step size in the explicit approach for active
tension are good fit for the instability depending on the time step
size in Figure 6. The stiffness estimation in Eq. 40 also justifies
the significant influence of a single binding myosin molecule
contained in the half-sarcomere model (RB∼1/38) regarding
hampering the diastole as observed in Figure 9.

Future Directions
In the one-dimensional (1D) half-sarcomere model adopted
in this study, the characteristics of the realistic 3D regular
arrangements of myosin molecules on the thick filament and
the binding sites on the double spirals on the thin filament
(Hussan et al., 2006) were not taken into account. These
geometrical parameters are likely to have been optimized in
the process of evolution. Thus, they may have a significant
influence on the rate constant of binding transitions from the
PXB state to the XBPreR state and the initial rod strains that
were provided probabilistically from the Boltzmann distribution
exp

(
−W(x)/kBT

)
of strain energyW in this study. The modeling

of active stress was also limited only to the fiber orientations in
this study. However, actin filaments are pulled not only in the
longitudinal direction of the sarcomere but also in the lateral
direction by myosin rods. These limitations should be removed
by extending the MusAsi scheme from the 1D model to an
appropriate 3D model in our future work.

In this study, we applied the MusAsi scheme to the simplified
model to focus on the impact of the properties of contractile
proteins on the macroscopic outcomes. In the heart model of our

previous work (Kariya et al., 2020) in which a similar approach for
coupling MC and FEM simulations (Washio et al., 2016) has been
used, three species of ventricular myocytes, i.e., endocardial, mid-
myocardial, and epicardial cells, were implemented. Therefore,
we believe that the current scheme will also work in a model
implemented with the realistic electrophysiology. In that work,
we also assumed that the heart walls were surrounded by the
pericardium, which was fixed in space by the planar springs,
and we incorporated the impact of pericardial pressure that
was generated based on volume conservation of pericardial
liquid. It is expected that the negative pericardial pressure also
facilitates the drop of LVP at the early diastole. The contributions
of these more realistic boundary conditions will be evaluated
in future studies that should also take the pre-stress of the
myocardium into account.
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