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Background: Arterial stiffness assessed by pulse wave velocity is a major risk
factor for cardiovascular diseases. The incidence of cardiovascular events remains
high in diabetics. However, a clinical prediction model for elevated arterial stiffness
using machine learning to identify subjects consequently at higher risk remains
to be developed.

Methods: Least absolute shrinkage and selection operator and support vector
machine-recursive feature elimination were used for feature selection. Four machine
learning algorithms were used to construct a prediction model, and their performance
was compared based on the area under the receiver operating characteristic curve
metric in a discovery dataset (n = 760). The model with the best performance
was selected and validated in an independent dataset (n = 912) from the Dryad
Digital Repository (https://doi.org/10.5061/dryad.m484p). To apply our model to clinical
practice, we built a free and user-friendly web online tool.

Results: The predictive model includes the predictors: age, systolic blood pressure,
diastolic blood pressure, and body mass index. In the discovery cohort, the gradient
boosting-based model outperformed other methods in the elevated arterial stiffness
prediction. In the validation cohort, the gradient boosting model showed a good
discrimination capacity. A cutoff value of 0.46 for the elevated arterial stiffness risk score
in the gradient boosting model resulted in a good specificity (0.813 in the discovery
data and 0.761 in the validation data) and sensitivity (0.875 and 0.738, respectively)
trade-off points.

Conclusion: The gradient boosting-based prediction system presents a good
classification in elevated arterial stiffness prediction. The web online tool makes
our gradient boosting-based model easily accessible for further clinical studies
and utilization.
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INTRODUCTION

Cardiovascular disease (CVD) remains the leading cause of
death worldwide (Zhao et al., 2019). Arterial stiffness is a
vascular measure that has been reported to predict cardiovascular
events (Munakata, 2014). It is the common pathological basis
for CVD, such as hypertension, atherosclerosis, and stroke,
and has been linked to the aging cardiovascular continuum
(O’Rourke et al., 2010; Donato et al., 2018; Zhang and Hong,
2019). Arterial stiffness increases with vascular aging due to
gradual loss of arterial elasticity and is accelerated by conditions
that increase cardiovascular risk, including diabetes mellitus
(DM) (Horton et al., 2021). Clinically, brachial-ankle pulse wave
velocity (baPWV) is a unique measure of systemic arterial
stiffness (Munakata, 2014). Individuals with baPWV > 1400 cm/s
are considered to have vascular aging (VA) (Sang et al., 2020),
indicating a moderate risk level of the Framingham Risk Score
(Yamashina et al., 2003) and increased risk of hypertension
(Tomiyama et al., 2009; Wang Y. et al., 2016; Chen et al., 2017;
Yang et al., 2018). Although considerable effort has been made
to reduce the CVD risk, the number of individuals with elevated
arterial stiffness risk for CVD is large and the application of the
baPWV measurement is limited. Thus, the necessity of a simple
and convenient clinical tool to assess elevated arterial stiffness in
daily clinical practice is highlighted.

The development of a risk scoring system based on simple
predictors, i.e., clinical data, is an important step toward
the monitoring and diagnosis of elevated arterial stiffness.
SAGE based on a multiple logistic regression (LG) was
introduced as a method to predict elevated arterial stiffness
(Xaplanteris et al., 2019). However, the LG-based approach
fails to consider the complex non-linear interactions between
variables, which can be captured by more sophisticated model
algorithms, thus improving the accuracy of risk prediction.
Recently, machine learning has been widely applied to the
development of clinical tools for disease diagnosis (Rajkomar
et al., 2019; de Gonzalo-Calvo et al., 2020; Zhang Z. et al., 2021).
Unlike the traditional LG-based approach, machine learning
can recognize hidden patterns and non-linear interactions in
complex data, allowing for a better assessment of clinical
outcomes (Myszczynska et al., 2020).

In this study, to our knowledge, we have developed the
first machine learning-based clinical scoring system for elevated
arterial stiffness in patients with diabetes, validating the model
in an independent dataset from a Japanese cohort. We have also
developed a user-friendly web application using this risk scoring
system, allowing for further study and application of this system.

MATERIALS AND METHODS

Patients
The discovery dataset included a total of 760 patients recruited
from Fujian Medical University Union Hospital (Fujian, China)
from April 2017 to January 2019. The inclusion criteria were
as follows: patients diagnosed with DM (American Diabetes
Association, 2019), older than 18 years, first visited our clinic,

and underwent a baPWV test. The exclusion criteria were as
follows: patients with an ankle-brachial index (ABI) less than
0.9 (Ato, 2018); diagnosis of severe arrhythmia, pulmonary,
renal, rheumatic diseases, heart valve disease, aortopathy, and
myocarditis; and antibiotic and probiotic usage in the past
3 months. The study was conducted in accordance with the
Declaration of Helsinki (as revised in 2013). The study was
approved by the Medical Faculty of Fujian Medical University
Union Hospital Ethics Committee (NO.: 2020KY031) and
individual consent for this retrospective analysis was waived.

The validation dataset from an existing study from the Dryad
Digital Repository1 (Fukuda et al., 2014b) was used to further
evaluate the performance of the predictive model. A total of 912
patients from Murakami Memorial Hospital in Japan from March
2004 to December 2012 were recruited in this study. Detailed
information about this cohort is described in the original study
publication (Fukuda et al., 2014a).

Assessment of Elevated Arterial Stiffness
and Measurement of Other Covariants
The automatic artery stiffness tester BP203RPE-II (VP-1000;
Omron, Kyoto, Japan) was used to measure baPWV, blood
pressure, and ABI. The patients were divided into two
groups: baPWV ≥ 1,400 cm/s as the elevated arterial stiffness
(EAS) group and baPWV < 1,400 cm/s as the non-EAS
group (non-EAS).

A standardized questionnaire regarding demographic
characteristics, blood test indicators, arterial elasticity indicators,
hemodynamic parameters, echocardiographic parameters, and
carotid artery ultrasound parameters was administered by the
same trained team of interviewers. The body mass index (BMI)
was based on the height and weight: BMI (kg/m2) = weight
(kg)/height2 (m2). The estimated glomerular filtration rate
(eGFR) was calculated according to the CKD-EPI formula (Biljak
et al., 2017). The ascending aortic diameter (AO) and other
parameters were measured via echocardiography according to
the American Society of Echocardiography guidelines (Mitchell
et al., 2019). The internal diameter of the common carotid
artery and other parameters were measured by carotid vascular
ultrasound. Alcohol consumption was categorized into two
groups: no alcohol and > 30 g/week beginning at least 1 year
after drinking (Yang et al., 2010). The smoking status was
classified into two groups: non-smoker and current smoker
(continuously smoking one or more cigarettes a day for at
least 6 months) (Qian et al., 2010). Postmenopausal state was
defined as amenorrhea for 12 consecutive months, excluding
other pathological or physiological causes (Hamaguchi et al.,
2012). Coronary heart disease was diagnosed according to the
European Society of Cardiology (ESC) guidelines (Taylor, 2013).
Hypertension was diagnosed according to the ESC guidelines
(Williams et al., 2018). Diabetes was diagnosed according
to the American Diabetes Association guidelines (American
Diabetes Association, 2019). Carotid artery plaque was diagnosed
according to the European Mannheim consensus (Touboul et al.,
2012). Carotid intima-media thickness (CIMT) was evaluated

1https://doi.org/10.5061/dryad.m484p
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using ultrasound, and CIMT > 1 mm signified the thickening of
carotid intima (Guo et al., 2020).

Feature Selection
Least absolute shrinkage and selection operator (LASSO) is
a compression estimation algorithm, which adds a penalty
parameter to least squares regression to compress the estimated
variables, thereby improving the prediction accuracy and
interpretation of a model (Cecelja et al., 2020; Zhang K. et al.,
2021). Thus, we used LASSO to select candidate variables. In
addition, a support vector machine-recursive feature elimination
(SVM-RFE) analysis was performed for variable selection
(Wang L. et al., 2016). Finally, we combined variables from either
the LASSO or SVM-RFE algorithm and then selected variables
that are easily available in clinical practice for subsequent
model development. LASSO and SVM-RFE were performed
using glmnet (version 3.0−2) and e1071 (version 1.7−3) R
packages, respectively.

Machine Learning and Parameter Tuning
Accurate prediction of EAS is important for clinical treatment
decisions and can avoid excessive medical treatment caused by
false-positive prediction. Thus, in this study, we aimed to achieve
a simple and high-accuracy predictive model. Machine learning
algorithms, including decision tree (DT), support vector machine
(SVM), random forest (RF), and gradient boosting (GB), were
used to construct the model, and then their performances were
compared to determine the best model.

Decision tree is a tree structure model that consists of a root
node and several internal nodes and leaf nodes. The root node
contains all samples, each internal node represents a decision
point corresponding to a single attribute, and each leaf represents
a single class label (Podgorelec et al., 2002; Krzywinski and
Altman, 2017). The sample was classified based on the structure
of the DT model level by level. Given that DT has a high degree
of transparency and is not affected by data scaling, we first
used DT to construct the model. Although DT can provide a
complete decision-making process for clinical problems, it often
suffers from overfitting, which increases the complexity of the
model and may result in poor performance on generalization.
Thus, the second algorithm, SVM, with excellent generalization
capability, is also used to construct an optimal classification
hyperplane in an N-dimensional feature space (N: the number
of features) to separate the two classes of data points. SVM is a
supervised learning method based on the principle of structural
risk minimization for classification prediction and non-linear
regression (Nedaie and Najafi, 2018). Finally, ensemble learning
methods including RF and GB, which aim to reduce the variance
in models and further improve the accuracy of predictions by
combining multiple models instead of using a single model, were
used to develop the models. The RF model is based on the DT
method, which parallelly combines a large number of DTs using
bootstrap resampling to generate a model with a lower variance
and better generalization than a single DT (Friedman, 2001).
GB goes one step further, improving performance over iterations
rather than averaging predictive results from all DTs in an RF

(Friedman, 2001). GB generates a new DT based on previous DTs
by reducing prediction errors when blended with previous ones.

To obtain optimal hyperparameters, the area under the
receiver operating characteristic curve (AUROC) was evaluated
based on a 10-fold cross-validation with different parameters in
the discovery cohort. We tuned the complexity parameter for
the DT model, the ntree and mtry parameters for the RF model,
and multiple parameters (interaction.depth, n.tree, shrinkage,
and n.minobsinnode) for the GB model. The SVM, DT, RF,
and GB models were constructed using svm (version 1.4.0),
rpart (version 4.1−15), randomForest (version 4.6−14), and gbm
(version 2.1.5) R packages, respectively. p < 0.05 indicates a
statistically significant difference.

Assessment of the Model Performance
and Model Validation
The discovery data were randomly split into two groups 100
times: training data (70%) and testing data (30%). Each time,
we first developed the four different machine learning models
on the training data based on the previous tuning parameters.
We then calculated the AUROC and area under the precision-
recall curve (AUPRC) of the four machine learning algorithms
on the testing data. Finally, we compared the values of AUROC
and AUPRC from the four models to determine which model
performed best. After selecting the best-performing model as the
final model, we constructed the GB model using the full discovery
data. Youden’s index was calculated to determine the best cutoff
value of the GB model. To further validate the classification
capacity of the GB model, we applied our trained GB model
on an independent validation cohort. The ROC and PRC were
analyzed using pROC (version 1.16.2) and PRROC (version 1.3.1)
R packages, respectively.

Web Application Development
To develop a web application for EAS assessment that is
applicable in daily clinical practice, we designed a web-based
tool, an EAS predictor, allowing access to our final trained
model. Specifically, we used front-end development technologies,
Node.js (v12.14.0), React (v16.13.1), and Ant Design (v4.5.4), to
simplify the development process. RestRserve (v0.3.0) back-end
development technology was used to load the final trained model.
Data required for prediction were received by the model using
the TCP/IP method, and then the predictive result was returned.
This web tool is hosted on our server, which is freely accessible
via http://vascularagingpredictor.top/.

Statistical Analysis
The Kolmogorov–Smirnov (K–S) test was used to assess the
normality of data. Continuous data with a normal distribution
are presented as mean values ± standard deviation (SD), whereas
continuous data with non-normal distribution are presented
as median values (quartile). Student’s t-test was used for the
comparison of continuous data following a normal distribution,
and Mann–Whitney U test was used for the comparison of data
with a non-normal distribution. Categorical data are presented
as frequency (percentage), and comparisons between two groups
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were performed using the χ2 test or Fisher’s exact test (if
theoretical frequency T < 5). The above statistical analysis was
performed using R software 3.6.22.

RESULTS

Subject Characteristics
This study enrolled 760 subjects with a mean age of 56 ± 12 years
(60.1% male, 39.9% female). Based on the dividing value of
1,400 cm/s of baPWV, the subjects were divided into two
groups: non-EAS and EAS. The complete data of patients
include demographic information, chemistry indicators, diseases,
hemodynamic parameters, and echocardiographic and carotid
artery ultrasound parameters in each group (Table 1 and
Supplementary Tables 1–3). A total of 230 patients with a mean
age ± SD of 48 ± 13 (66.5% male, 33.5% female) are in the non-
EAS group, whereas a total of 530 patients with age of 60 ± 9
(57.4% male, 42.6% female) are in the EAS group. Significant
differences in baPWV values were observed between the non-
EAS and EAS groups.

Feature Selection
Two different algorithms, LASSO and SVM-RFE, were applied
to select the most significant features for classifying individuals
with normal (<1,400 cm/s) or abnormally elevated baPWV
(≥1,400 cm/s). First, all features (a total of 99 variables) were
included in the LASSO regression analysis and narrowed down to
15 features with non-zero β coefficients in the LASSO regression
model (Figures 1A,B and Supplementary Table 4). Second,
SVM-RFE was analyzed to select the top 15 important features
(Supplementary Table 5). We combined features from either the
LASSO or SVM-RFE algorithm, and then we further selected four
variables (age, SBP, DBP, and BMI) that are easily available in
clinical practice for subsequent model construction.

Parameter Optimization and Model
Selection
Before the model construction using the full discovery dataset,
we first tuned the parameters of the model based on a 10-fold
cross-validation. We found that when the complexity parameter
of the DT model was set as 0, the model achieved the highest
AUC value, whereas when the RF ntree = 1,000 and mtry = 2,
the model achieved the best performance. For the GB model,
the best performance was obtained when interaction.depth = 2,
n.trees = 400, shrinkage = 0.02, and n.minobsinnode = 5
(Supplementary Figures 1A–C).

Next, we randomly divided the discovery dataset into two
groups 100 times: training data (70%) and testing data (30%).
Each time, four cutting-edge machine learning algorithms with
the optimized parameters were used to develop models on the
training data. Based on the obtained models, we used the testing
data to assess the probability of EAS of the testing population, and
ROC and PRC analyses were performed, followed by calculating
the AUC values on the testing data. We compared the models

2https://www.R-project.org

and observed that DT was associated with significantly lower
AUROC and AUPRC values, whereas the GB approach has
higher AUROC and AUPRC values (Figure 2). Moreover, the
two ensemble learning algorithms (RF and GB), especially GB,
have lower variances compared to DT and SVM (Figure 2).
Altogether, the GB algorithm outperformed the other machine
learning algorithms in terms of the classification capacity of EAS.

Predictive Model Construction and
Validation
Based on the GB algorithm, we finalized our EAS predictive
model by training the GB model on the full discovery data
with optimized parameters and calculated GB-based risk scores.
In addition, we applied the GB model to the validation data
from an independent Japanese cohort. Each predictor and other
demographic information for the discovery and validation data
are shown in Table 2. The AUROC and AUPRC values were
assessed in both cohorts. The results showed high AUROC
values of 0.928 and 0.821 and AUPRC values of 0.964 and 0.798
in the discovery and validation datasets, respectively, for the
classification between non-EAS and EAS (Figures 3A,B).

To determine the best cutoff value of the GB model, Youden’s
indexes were calculated in both cohorts. The cutoff value (0.75)
built on the discovery cohort was higher than that (0.46) of the
validation cohort (Figure 4), suggesting that the cutoff value
derived from one cohort might not be ideal for other cohorts
from different countries. Given that a cutoff value of 0.46 resulted
in a better classification performance in both cohorts relative
to a cutoff value of 0.75, which led to more false negative
findings due to low sensitivity (0.677; Supplementary Table 6),
we, therefore, selected 0.46 as a cutoff value for GB scores. The
specificity/sensitivity in the discovery and validation cohorts at
this cutoff value for the GB scoring system were 0.813/0.875 and
0.761/0.738, respectively (Supplementary Table 6).

Web Tool Development
To facilitate further study and use of this GB model for EAS
prediction, we built a free and user-friendly online web-based
tool (elevated arterial stiffness predictor: 3). Figure 5 shows the
user interface (UI) of the web tool. To use this web application,
one only needs to input values for age, SBP, DBP, weight, and
height, followed by clicking the “Predictor” button. Then, the UI
will display the BMI and GB risk score value for this subject.

DISCUSSION

The increase in baPWV is considered a characteristic
manifestation of EAS (Cunha et al., 2017). An increase of 1 m/s in
baPWV will increase the mortality due to cardiovascular events,
CVDs, and all-cause mortality by 12, 13, and 6%, respectively
(Vlachopoulos et al., 2012). Thus, an affordable, reproducible,
and accurate method for predicting EAS is desirable to support
longitudinal surveillance and clinical decision making. In this
study, we aim to construct a new EAS scoring system based on

3http://vascularagingpredictor.top/
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TABLE 1 | Clinical characteristics of the patients.

Total Non-EAS EAS P

n 760 230 (30.26%) 530 (69.74%) –

Male, n(%) 457 (60.13%) 153 (66.52%) 304 (57.36%) 0.018

Age, years 56.39 ± 12.07 47.77 ± 13.13 60.14 ± 9.37 0.000

Age ≥ 65 years, n(%) 224 (29.47%) 23 (10.00%) 201 (26.48%) 0.000

Height, cm 163.96 ± 8.94 166.43 ± 9.32 162.89 ± 8.56 0.000

Weight, kg 65.69 ± 12.34 67.09 ± 13.12 65.08 ± 11.94 0.039

BMI, kg/m2 24.35 ± 3.73 24.14 ± 3.97 24.44 ± 3.62 0.306

Waist, cm 88.36 ± 9.94 87.04 ± 9.95 88.94 ± 9.90 0.015

Postmenopausal (female), n(%) 244 (80.53%) 36 (46.75%) 208 (92.04%) 0.000

Current smoker, n(%) 172 (22.63%) 25 (10.87%) 147 (27.74%) 0.000

Current drinker, n(%) 182 (23.94%) 40 (17.39%) 142 (26.79%) 0.005

Comorbidity, n(%) – – – –

Hypertension 352 (46.32%) 51 (22.17%) 301 (56.79%) 0.000

Coronary heart disease 47 (6.18%) 8 (3.48%) 39 (7.36%) 0.041

Ischemic stroke 25 (3.29%) 3 (1.30%) 22 4.15%) 0.043

Type of diabetes, n(%) – – – –

Type 1 64 (8.42%) 37 (16.09%) 27 (5.09%) –

Type 2 689 (90.66%) 188 (81.74%) 501 (94.53%) –

Other type 7 (0.92%) 5 (2.17%) 2 (0.37%) 0.000

Complication of diabetes, n(%) – – – –

Nephropathy 150 (30.8%) 13 (9.77%) 137 (38.7%) 0.000

Retinopathy 167 (34.29%) 26 (19.55%) 141 (39.83%) 0.000

Peripheral neuropathy 340 (69.82%) 75 (56.39%) 265 (74.86%) 0.000

Visceral fat area, cm2 77.71 ± 43.65 67.45 ± 43.67 81.49 ± 43.10 0.002

Atherosclerosis, n(%) – – – –

Carotid atherosclerosis 304 (66.38%) 56 (45.53%) 248 (74.03%) 0.000

Lower extremity atherosclerosis 39 (8.14%) 7 (5.47%) 32 (9.12%) 0.196

Inspection index – – – –

Leukocyte, X10ˆ 9/L 6.37 ± 1.74 6.15 ± 1.65 6.44 ± 1.77 0.100

Neutrophils, X10ˆ 9/L 3.93 ± 1.50 3.58 ± 1.36 4.06 ± 1.53 0.002

Lymphocytes, X10ˆ 9/L 1.88 ± 0.62 2.02 ± 0.66 1.83 ± 0.60 0.003

Neutrophils/Lymphocytes 2.32 ± 1.29 1.94 ± 0.93 2.47 ± 1.37 0.000

Monocytes, X10ˆ 9/L 0.39 ± 0.18 0.39 ± 0.12 0.39 ± 0.20 0.708

RDW-SD 40.99 ± 3.76 40.77 ± 4.60 41.07 ± 3.39 0.429

RDW-CV 12.7 ± 1.37 12.69 ± 1.61 12.71 ± 1.27 0.903

Platelet, X10ˆ 9/L 232.11 ± 71.74 232.42 ± 69.07 231.99 ± 72.8 0.953

PDW, % 12.74 ± 2.34 12.84 ± 2.26 12.70 ± 2.37 0.555

MPV, fl 10.54 ± 1.64 10.43 ± 1.13 10.57 ± 1.79 0.402

Fasting plasma glucose, mmol/L 9.15 ± 4.02 8.94 ± 4.29 9.24 ± 3.91 0.349

ALT, IU/L 27.09 ± 54.71 27.17 ± 30.77 27.06 ± 62.33 0.980

AST, IU/L 37.8 ± 80.77 38.56 ± 83.9 37.47 ± 79.45 0.865

ALP, IU/L 76.01 ± 30.77 77.59 ± 40.98 75.32 ± 25.09 0.437

γ-GT, IU/L 45.83 ± 122.27 48.63 ± 115.36 44.62 ± 125.23 0.678

ALB, g/L 39.18 ± 5.09 39.37 ± 5.11 39.09 ± 5.08 0.485

BUN, mmol/L 5.75 ± 2.78 5.13 ± 1.72 6.02 ± 3.09 0.000

Cr, µmol/L 72.81 ± 32.46 66.25 ± 22.61 75.66 ± 35.54 0.000

eGFR, ml/min/1.73 m2 95.31 ± 28.26 108.98 ± 22.67 89.37 ± 28.41 0.000

Stage of CKD, n(%) – – – –

1 493 (64.87%) 186 (80.87%) 307 (57.92%) –

2 181 (23.82%) 39 (16.96%) 142 (26.79%) –

3 62 (8.16%) 4 (1.74%) 58 (10.94%) –

4 18 (2.37%) 1 (0.43%) 17 (3.21%) –

5 6 (0.79%) 0 (0.00%) 6 (1.13%) 0.000

(Continued)
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TABLE 1 | Continued

Total Non-EAS EAS P

UA, umol/L 336.05 ± 107.19 332.5 ± 108.39 337.6 ± 106.73 0.548

TG, mmol/L 2.96 ± 5.53 3.00 ± 5.87 2.94 ± 5.38 0.906

TC, mmol/L 5.02 ± 1.86 5.02 ± 1.72 5.02 ± 1.92 0.991

HDL-C, mmol/L 1.18 ± 0.43 1.17 ± 0.46 1.18 ± 0.41 0.880

LDL-C, mmol/L 3.02 ± 1.14 3.04 ± 1.08 3.01 ± 1.17 0.666

LDH, IU/L 183.8 ± 46.76 167.42 ± 42.04 189.86 ± 47.01 0.000

CK, IU/L 101.21 ± 86.17 100.86 ± 108.6 101.34 ± 76.45 0.957

CKMB, IU/L 16.14 ± 7.27 16.01 ± 5.51 16.19 ± 7.83 0.812

CRP, mg/L 6.19 ± 15.44 4.70 ± 13.29 6.74 ± 16.14 0.205

TSH, mI/UL 1.99 ± 1.78 1.97 ± 1.59 1.99 ± 1.85 0.896

FT3, pmol/L 5.16 ± 1.53 5.41 ± 1.93 5.07 ± 1.34 0.030

FT4, pmol/L 12.69 ± 5.20 13.12 ± 5.91 12.53 ± 4.90 0.267

BMI, Body mass index; RDW, Red blood Cell distribution width; PDW, Platelet volume distribution width; MPV, Mean platelet volume; ALT, Alanine aminotransferase;
AST, Aspartate aminotransferase; ALP, Alkaline phosphatase; γ-GT, γ-glutamyl transpeptidase; ALB, Albumin; BUN, Blood urea nitrogen; Cr, Creatinine; eGFR,
Estimated glomerular filtration rate; UA, Uric acid; TG, Triacylglycerol; TC, Total cholesterol; HDL-C, High density lipoprotein cholesterol; LDL-C, Low density lipoprotein
cholesterol; LDH, Lactate dehydrogenase; CK, Creatine Kinase; CKMB, Creatine Kinase MB Subtype; CRP, High sensitivity C-reactive protein; TSH, thyrotropin; FT3, free
triiodothyronine; FT4, free thyroxin.

FIGURE 1 | Feature selection based on the LASSO binary logistic regression analysis. (A) Optional lambda (λ) value of 0.024 with log(λ) of −3.72 was obtained
based on a 10-fold cross-validation and minimum criteria. Dotted vertical line shows the optional λ value. (B) LASSO coefficient profiles of 15 features. Vertical line
shows the optional λ value that resulted in 15 features with non-zero coefficients.

machine learning to identify EAS. To our knowledge, this is
the first time that machine learning methods have been applied
to develop an EAS predictor. Moreover, this model has been
packaged into a user-friendly web application to encourage
further study of its clinical utility.

Given that the clinical data we collected are relatively
complete, including 99 features, we first narrowed down all
features into 15 features based on the LASSO algorithm and
15 features based on the SVM-RFE algorithm. Four features
(age, SBP, DBP, and BMI) from either the LASSO or SVM-
RFE were further selected as the predictors in that they are
easily accessible in clinical practice. Evidence suggests that the
increase in age, SBP, and DBP are the important risk factors
of artery stiffness (Papaioannou et al., 2019; Sang et al., 2020).
Consistently, we observed a significant increase in age, SBP,
and DBP in the EAS group compared to the non-EAS group.

Furthermore, Baier et al. (2018) reported that age and SBP
could explain 18% of the changes in PWV. Therefore, when
predicting EAS and VA, age, SBP, and DBP are indispensable
predictors. BMI was also determined as a diagnostic predictor
of EAS by the SVM-RFE algorithm. Although no statistically
significant difference in BMI between the EAS and non-EAS
groups was observed, the multivariate logistic regression analysis
with age, SBP, and DBP adjustments showed that BMI was an
independent protective factor for EAS (p = 0.001, OR = 0.890;
Supplementary Table 7). This result was similar to that of
previous studies, which indicated that a high BMI was a
protective factor for EAS and a higher BMI was associated
with a lower baPWV (Lurbe et al., 2012; Huang et al., 2019;
Yang et al., 2019).

Recently, the SAGE scoring system (including SBP, age,
glycemia, and eGFR predictors) was established to predict EAS,
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FIGURE 2 | Boxplots of AUPRC and AUROC on the testing data for four different machine learning algorithms. P values were calculated through a one-way analysis
of variance with Tukey’s post hoc test.

which was an important step for the EAS surveillance and
identification (Xaplanteris et al., 2019; Tomiyama et al., 2020).
However, SAGE requires the predictors, i.e., glycemia and eGFR,
to be obtained by an invasive blood test. Moreover, the LG-based
SAGE system is not capable of obtaining interactions between
predictors, which may affect the performance of SAGE. On
the contrary, machine learning algorithms capable of capturing
complicated interactions perform well in disease and prognosis
prediction. For example, Alvin et al. pointed out that the
predictive model based on machine learning could reliably

TABLE 2 | Comparison of clinical and demographical characteristics between the
discovery and validation cohorts.

Discovery set Validation set

Non-EAS EAS Non-EAS EAS P

Total Num 230 530 507 405

Age 48 ± 13 60 ± 9 48 ± 9 55 ± 9* <0.001

Gender – – – – 0.003

Male 153 (66.5%) 304 (57.4%) 314 (61.9%) 278 (68.6%) –

Female 77 (33.5%) 226 (42.6%) 193 (38.1%) 127 (31.4%) –

SBP 115 ± 11 139 ± 19 114 ± 12 128 ± 15* <0.001

DBP 70 ± 8 81 ± 11 72 ± 8# 81 ± 10 <0.001

BMI 24.16 ± 3.96 24.31 ± 3.42 22.96 ± 3.33# 23.34 ± 2.84* <0.001

baPWV 1,219 ± 129 1,767 ± 305 1,259 ± 97# 1,612 ± 236* <0.001

Num, number; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI,
body mass index; baPWV, brachial-ankle pulse wave velocity.
#p < 0.05 nonVA in discovery set vs. nonVA in validation set; *p < 0.05 VA in
discovery set vs. VA in validation set.

identify patients who have high-risk diseases and increase
the utilization of healthcare services (Rajkomar et al., 2019).
David et al. used machine learning algorithms to improve the
cardiovascular risk prediction of patients with end-stage renal
disease on hemodialysis (de Gonzalo-Calvo et al., 2020). Michalis
et al. also found that, based on machine learning algorithms,
using volatile organic compounds in exhaled gas as predictors
distinguishes lung cancer from other lung diseases or healthy
individuals well (Zhang Z. et al., 2021). We used the four
machine learning algorithms to develop the EAS predictive
model. The results showed that all the models performed well
with AUROC > 0.85 and AUPRC > 0.90, and particularly, GB
outperformed other methods in terms of the AUROC, AUPRC,
and variance. Owing to the limitations of the algorithm, DT
constructs the model based on a single tree, and often suffers
from overfitting (Katardjiev et al., 2019). Furthermore, if a certain
correlation exists between the variables in the data, DT may
cause a loss of associated information and reduction of accuracy.
Thus, DT showed the relatively poor performance compared to
other methods in this study. SVM maps data from low to high
dimensional space using a kernel function to handle non-linearly
separable data (Li et al., 2020). In the mapping process, if the
kernel function does not discretize the data, that is, the data are
sensitive to the kernel function, SVM may lead to a decrease
in accuracy. However, ensemble learning algorithms such as RF
and GB do not rely on a kernel function for data preprocessing,
which integrate multiple prediction models that are trained
on independent datasets and combined in a certain manner
to make an overall prediction (Che et al., 2011). This yields
more accurate results than those predicted by a single model.
Therefore, these two methods performed better in this study.
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FIGURE 3 | Classification performance of the GB model. (A) ROC curves of the GB model on the discovery and validation datasets. (B) PR curves of the GB model
on the discovery and validation datasets.

FIGURE 4 | GB scores on the discovery and validation datasets between non-EAS and EAS. P values were calculated using Student’s t-tests.
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FIGURE 5 | Screenshot of the web-based application (elevated arterial stiffness predictor).

RF with a strong anti-interference ability can handle missing
data especially in biomedical research. RF parallelly combines the
results of multiple DTs to obtain the final model and does not
further optimize the training results of different DTs, which may
be the reason why the performance of RF is lower than that of
GB. Unlike RF, which is based on bagging strategy and DT, GB
is a combination of boosting strategy and DT. Boosting uses the
residual value obtained in each iteration as the target value of
the next iteration to further build the classification tree, whereas
bagging parallelly trains multiple models based on training data
randomly and independently sampled with replacement from the
original dataset (Hall et al., 2011). GB keeps track of model’s
errors, and assigns a higher weight to a good model. With the
increase of number of iterations, the predictive ability of the GB
model gradually improves and becomes stable. The advantages
of the GB algorithm may be the reason why GB performed best
in our dataset. Thus, we selected the GB model to predict EAS.
The GB model showed good performance in the discovery and
external verification datasets with AUROC and AUPRC values
of 0.928/0.821 and 0.964/0.798, respectively. Compared to the
SAGE, the GB scoring system not only has easier accessible
predictors (age, SBP, DBP, and BMI vs. age, SBP, fasting glucose,
and eGFR) but also higher AUROC values (0.928/0.821 vs.
0.85/0.77) in the discovery and external validation cohorts,
respectively (Xaplanteris et al., 2019), further suggesting that the
machine learning model outperforms the LG-based model.

Another point that needs to be discussed is the cutoff values
of the GB model. Compared to the discovery cohort, there
was a trend for lower GB scores in the EAS group of the
validation cohort (Figure 4), which might be a result of the
relatively higher age, SBP, and baPWV values in the EAS group
of the discovery cohort than those of the validation cohort
(Table 2). Differences in demographic and clinical characteristics
may contribute to differences in the optional cutoff value, which
prompted us to select a lower cutoff value to achieve a more
rational classification performance. The first cutoff value (0.75)

of the GB model was an optional trade-off point in the discovery
cohort, whereas the second cutoff value (0.46) showed a better
classification performance in the validation cohort. For the GB
scoring system, we observed that the best trade-off point (0.75)
for the discovery cohort showed biased classification in the
validation cohort. After changing the trade-off point from 0.75
to 0.46, we observed better sensitivity (from 0.677 to 0.738;
6) without drastically decreasing the specificity (from 0.797 to
0.761; Supplementary Table 6). Thus, the demographic and
clinical characteristics should be considered when determining
the cutoff value.

Certain limitations of this study should be noted. First, the
training sample size was limited. We plan to recruit more subjects
from multiple center sites in the future to further increase
the robustness of the model. Second, although this study was
based on a Chinese cohort and validated using a Japanese
cohort, prospective studies in different countries are required
to further validate the results. Lastly, limitations in clinical
data sharing infrastructure and mechanisms hinder further
validation of cutting-edge machine learning methods (Geifman
et al., 2015). We have packaged our GB model into a web-
based application to encourage its dissemination for independent
testing by other researchers.

In summary, we applied a cutting-edge machine learning
method, GB, to establish an EAS scoring system for the
identification of patients with EAS. We also validated the
predictive performance of our GB model in an independent
cohort from Japan. This GB model may help predict individual
EAS risk and help clinicians manage patients with EAS.
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