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The myocardium is capable of utilizing different energy substrates, which is referred to
as “metabolic flexibility.” This process assures ATP production from fatty acids, glucose,
lactate, amino acids, and ketones, in the face of varying metabolic contexts. In the
normal physiological state, the oxidation of fatty acids contributes to approximately
60% of energy required, and the oxidation of other substrates provides the rest. The
accumulation of lactate in ischemic and hypoxic tissues has traditionally be considered
as a by-product, and of little utility. However, recent evidence suggests that lactate
may represent an important fuel for the myocardium during exercise or myocadiac
stress. This new paradigm drives increasing interest in understanding its role in cardiac
metabolism under both physiological and pathological conditions. In recent years, blood
lactate has been regarded as a signal of stress in cardiac disease, linking to prognosis
in patients with myocardial ischemia or heart failure. In this review, we discuss the
importance of lactate as an energy source and its relevance to the progression and
management of heart diseases.

Keywords: myocardium, cardiac metabolism, energy substrate, lactate, lactate shuttle theory, myocardial
ischemia, heart failure, diabetic cardiomyopathy

INTRODUCTION

The heart is an efficient bio-pump of high energy demand. Adenosine triphosphate (ATP) is the
direct source of energy that supports the contraction and relaxation of the myocardium. ATP can
be derived through the processes of oxidation and fermentation, during which the intermediate
pyruvate is transformed into lactate. The latter has long been considered to be a by-product of
glucose metabolism. Over the last several decades, amounting research has demonstrated that
lactate is a major energy substrate for skeletal muscle, heart and brain (Gertz et al., 1988; Bergman
et al., 1999b; Glenn et al., 2015), as well as a main gluconeogenesis precursor (Bergman et al.,
2000; Meyer et al., 2002a,b; Emhoff et al., 2013b) and a signaling molecule (Hashimoto et al.,
2007). Increased levels of blood lactate are also associated with poor outcomes in critical systemic
diseases, including severe trauma, hypoxemia, septic shock and so forth (Cerovic et al., 2003;
Nguyen et al., 2004; Khosravani et al., 2009). However, the biochemical and clinical significance
of lactate within the field of myocadiac metabolism remains under-appreciated, reflecting an
incomplete understanding of its production, transport, metabolism and biological functions
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(Garcia-Alvarez et al., 2014). Herein, we discuss myocardial
energy metabolism, with an emphasis on the role of lactate
metabolism and its relevance to the progression and management
of heart diseases, including acute myocardial ischemia, and heart
failure, and on diabetic state.

HISTORICAL VIEW ON MYOCARDIAL
ENERGY METABOLISM

The initial understanding of cardiac function was first described
by a Greek philosopher Aristotle. According to the latter, the
heart produces necessary heat to maintain life, and cessation of
the heartbeat means absence of life (Beloukas et al., 2013). This
philosophy led to the recognition of energy metabolism being
central to cardiac function and the capacity of cardiomyocyte to
utilize various substrates to provide energy.

Oxygen was identified as a basic element of cardiac
metabolism and function as early as in the 18th century (Gh,
2006). Subsequently, carbohydrate was described as an energy
substrate during cardiac contraction (Locke and Rosenheim,
1907), but contributed no more than a third to the total cardiac
energy demand (Evans, 1914). This observation stimulated
the search of other energy substrates for myocadiac energy
metabolism, which had been advanced rapidly since the
introduction of coronary sinus catheterization technique (Bing
et al., 1947). In this way, the oxygen extraction ratios can be
computed to reflect the aerobic catabolism of different substrates.
In 1954, Bing and his colleagues assessed the utilization of
glucose, lactate, pyruvate, fatty acids, ketones and amino acids of
the heart in vivo (Bing et al., 1947; Bing, 1954), and showed that
fatty acids were the major energy substrate of the human heart,
accounting for 67% of the total usage of oxygen. Surprisingly,
lactate, formerly known as a metabolic waste product and fatigue
agent, contributed 16.5% to the total usage of oxygen, in a
comparable degree to glucose (17.9%) (Bing, 1954).

Subsequent studies concentrated on energy substrate usage
of the heart under different circumstances. Keul et al. (1965a,b)
found that, in humans during moderate intensity exercise,
the contribution of fatty acids fell from 34 to 21%, while
the contribution of lactate increased from 29 to 62%. In
anesthetized dogs, the contribution of lactate to cardiac oxidative
energy production increased to 87% when the arterial lactate
concentration exceeded 4.5 mmol/L (Drake et al., 1980). These
studies suggest that lactate competes with fatty acids for cardiac
oxygen consumption. In recent years, the emergence of dual
carbon-labeled carbohydrate isotope technique has allowed
myocardial substrate utilization to be quantified precisely in
humans. Based on this technique, it was observed that the
myocardial isotopic lactate uptake increased from 34.9 µmol/min
at rest to 120.4 µmol/min at 5 min of moderate intensity exercise
in healthy male subjects (Gertz et al., 1988). This result further
confirmed lactate as an important energy substrate for the heart,
particularly under stress. It is now widely accepted that the
heart uses various energy substrates to generate ATP, which
is key to the maintenance of normal cardiac function under
different circumstances.

MYOCARDIAL LACTATE METABOLISM

As discussed, in addition to fatty acids, carbon sources,
including glucose and lactate, are important energy substrates
of the myocardium. Traditionally, it has been thought that full
oxidation of glucose to CO2 provides most cells energy in human
body, and lactate is only a product of incomplete oxidation in
the face of urgent energy demands. However, if this was the case,
whole-body glucose consumption would dominate over lactate
consumption, and lactate production would be equivalent to its
clearance (as a precursor of hepatic and renal gluconeogenesis).
Rather, lactate has a circulatory turnover flux approximately twice
that of glucose on a molar basis during fasting (Dunn et al.,
1976; Katz et al., 1981; Stanley et al., 1986; Wolfe, 1990). Modern
studies have proved that lactate could be produced continuously
under aerobic conditions, and be used as an important energy
source for the heart (Brooks, 2018). Accordingly, “lactate shuttle
theory” was proposed to describe the transport and function of
lactate within the body: lactate could act as the vehicle linking
glycolysis and oxidative metabolism, and the linkages between
lactate “producer” and “consumer” exist within and among cells,
tissues, and organs (Brooks, 2018). In this section we will discuss
the development of lactate shuttle theory in the context of
myocardial energy metabolism.

Tissue-Tissue and Cell-Cell Lactate
Transport
Benefiting from the development of differential arterio-venous
metabolite analysis and radiotracer techniques, the whole process
of circulating lactate production and disposal was characterized
in several animal studies (Brooks et al., 1984). In rats, intravenous
injection of 14C-lactate resulted in exhaled breath gas containing
14CO2, providing early evidence for the concept of circulating
lactate in contributing to energy metabolism (Brooks et al., 1973;
Brooks and Gaesser, 1980). To better explore the production and
disposal of circulating lactate across diverse physiological states,
Donovan CM and Brooks GA subsequently recorded rates of
lactate disposal in rodent models both at rest and during exercise
with radiotracer techniques (Brooks and White, 1978; Brooks
and Donovan, 1983; Donovan and Brooks, 1983). By measuring
the quantity and activity of O2, CO2, circulating carbon sources
(glucose and lactate) and other metabolites during resting and
exercise (Brooks et al., 1977), the authors observed in rats that
the rates of lactate flux in circulating peripheral blood were
unanticipatedly high in the resting state, although to a lesser
extent when compared to glucose flux. However, during exercise,
the rates of lactate flux in circulating blood were observed to
increase above those of glucose flux.

These phenomena are likely to have reflected the breakdown
of glycogen and an increase in the production of lactate
during exercise. However, the latter was not necessarily
accompanied by increased blood lactate concentrations (Brooks
and Donovan, 1983; Donovan and Brooks, 1983), which can be
attributed to the markedly increased lactate metabolic clearance
rate during exercise. Hence, relatively stable blood lactate
concentration during exercise can be explained by a greater
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lactate metabolic clearance rate due to increased lactate oxidation
and gluconeogenesis. Such adaption can avoid metabolic acidosis
during exercise. As technology improves, non-invasive and
non-radiating methods are available for evaluation of glucose and
lactate metabolism in the human body, and the aforementioned
effects of exercise on glucose and lactate flux rates have also
been consistently replicated (Stanley et al., 1985; Mazzeo et al.,
1986; Bergman et al., 1999a,b, 2000; Emhoff et al., 2013a,b).
Fluctuations of lactate in the blood indicate that lactate transport
between different tissues via the circulatory system. However, the
main producers and consumers of blood lactate underlying these
changes remain unknown.

In the following research, investigators attempted to assess
tissue specificity of lactate metabolism (Katz et al., 1981; Stanley
et al., 1986; Gertz et al., 1988; Bergman et al., 1999a,b). Two
earlier studies in the 1970s found that lactate concentrations in
red skeletal muscles in motion were lower than white skeletal
muscles and their blood supplies (Mole et al., 1973; Hooker and
Baldwin, 1979). Although these phenomena seemed unexplained
at that time, this provided early evidence to suggest working
skeletal muscles as a source of the circulating lactate. In 1988,
the utilization of lactate released from working muscles by
heart as a carbon source was observed (Gertz et al., 1988),
which marked an important milestone for research in lactate
metabolism. Subsequently, lactate transport between white and
red skeletal muscles (Stanley et al., 1986; Bergman et al., 1999a),
and between working skeletal muscles and heart were gradually
identified (Katz et al., 1981; Gertz et al., 1988; Bergman et al.,
2009). It is now well-documented that the beating heart takes
up, and oxidizes lactate as a consumer in the process of the
lactate transport.

The potential for lactate to transport across neighboring
cells and tissues has been reported over two decades.
It was initially found to occur in astrocytes-neurons in
brain and fibroblasts-cancer cells in tumors (Lisanti et al.,
2013; Magistretti and Allaman, 2015). Recently, mouse
cardiomyocytes and fibroblasts co-culture models have shown
the fibroblasts-cardiomyocytes lactate transport (Wisniewski
et al., 2015; Gizak et al., 2020), supporting the concept that
cardiomyocytes and fibroblasts form metabolic syncytia to
share energy substrates, including lactate, and exchange
molecular signals. Neighboring lactate transport improves
energy metabolism efficiency and orchestrates substrate
utilization in tissues. Such a metabolic architecture enables
metabolic adaptability and plasticity. Nevertheless, accurate
mechanisms of lactate transport between cardiomyocytes and
fibroblasts are still unclear.

Transmembrane and Intracellular
Lactate Transport
The increasing recognition of tissue-tissue and cell-cell lactate
transport has provided a strong impetus to understand the
metabolic fate of lactate transport and utilization within the
cell. The discovery of membrane lactate transporters provided
a plausible explanation of the transmembrane lactate transport.
Lactate oxidation rates comply with Michaelis-Menten kinetics,

suggesting that cellular uptake and release of lactate are facilitated
by membrane transporters. The membrane lactate transporter
was first observed on rat sarcolemmal vesicles in 1990 (Roth
and Brooks, 1990), and subsequently named as monocarboxylate
transport (MCT) (Garcia et al., 1994).

Hitherto, various isoforms of MCT have been identified to
account for intracellular lactate transport, but how is lactate
utilized in the cell, and the site at which the intracellular lactate
utilization takes place remains debated. Previous studies on
humans and various mammals demonstrated that intracellular
lactate metabolism consumes oxygen (Depocas et al., 1969;
Donovan and Brooks, 1983; Stanley et al., 1985; Mazzeo
et al., 1986). Lactate oxidation for energy supply especially
prominent when heart or muscle is in load condition (Gertz
et al., 1981, 1988; Stanley et al., 1986; Bergman et al., 1999b).
With this in mind, issues arose about exactly where lactate
oxidation happened within a working cardiomyocyte. Given that
lactate dehydrogenase (LDH), a key enzyme to catalyze the
inter-conversion of lactate and pyruvate, is widely present in
the cytosol, lactate oxidation was first considered to take place
in the cytosol. However, the results from some studies were
inconsistent (Laughlin et al., 1993; Chatham et al., 2001). In
working muscles-beating heart lactate syncytium, increased rates
of lactate flux were found to accompany by augmented blood flow
and oxygen consumption. In addition, when 13C-pyruvate was
injected into myocardial blood circulation, the peaks of cytosolic
13C-pyruvate and 13C-lactate were observed. However, when
13C-lactate was injected directly, 13C-pyruvate was not detected
in the cytosol (Chatham et al., 2001).

If not in the cytosol, where does intracellular lactate
oxidation occur? Another candidate location for intracellular
lactate oxidation is the mitochondria, the pivotal organelle
for energy metabolism. Lactate oxidation was observed in
several mitochondrial preparations (Kline et al., 1986; Brandt
et al., 1987; De Bari et al., 2004; Passarella et al., 2014), of
which mitochondrial preparations from human skeletal muscles
provided the strongest evidence (Jacobs et al., 2013). Lactate
oxidative capacity of muscle mitochondria was subsequently
confirmed by magnetic resonance spectroscopy imaging (MRSI)
(Park et al., 2015; Chen et al., 2016). However, some studies
using the same experimental settings showed inconsistent
results, challenging the lactate oxidative capacity in the
mitochondria (Popinigis et al., 1991; Sahlin et al., 2002).
This discrepancy might be related to the separation process
of mitochondria (Kirkwood et al., 1986; Glancy et al.,
2017), which is highly dependent on the isolated system
and susceptible to be contamination and/or disturbance.
Therefore, confirmation by more reliable experiments is still
required due to its conceptual importance. More recently,
identification of the mitochondrial lactate oxidation complex
(mLOC) with techniques of organelle purification and magnetic
resonance spectroscopy imaging has provided solid evidence on
mitochondrial transmembrane transport of lactate mitochondria
as a key site of intracellular lactate oxidation (Figure 1; Park et al.,
2015; Chen et al., 2016). Components of the mLOC include the
MCT1, CD147, LDH, terminal electron transport chain element
cytochrome oxidase (COX), pyruvate dehydrogenase (PDH),
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FIGURE 1 | The intracellular lactate shuttle. Both extracellular uptake and glycolytic production make up the cytosolic lactate pool. Intracellular lactate is shuttled
from the cytoplasm to mitochondria for subsequent oxidization, facilitated by the mitochondrial lactate oxidation complex (mLOC). Monocarboxylate transporter 1
(MCT1) is inserted into the inner mitochondrial membrane, and CD147 is an indispensable chaperone protein of MCT1. Mitochondrial LDH (mLDH) is distributed on
the surface of the inner mitochondrial membrane, and oxidizes lactate to pyruvate. In addition, terminal electron transport chain element cytochrome oxidase (COX)
is responsible for the endergonic lactate oxidation. Mitochondrial pyruvate carrier (mPC) is distributed in the inner mitochondrial membrane, which is responsible for
the mitochondrial transmembrane transport of pyruvate.

Krebs cycle related-enzymes, and mitochondrial respiratory
chain (De Bari et al., 2004; Hashimoto et al., 2006, 2008; Atlante
et al., 2007; Sonveaux et al., 2008; Passarella et al., 2014).
Mitochondrial MCT1 is located in the inner membrane and
is responsible for mitochondrial transmembrane transport of
lactate, and CD147 is an indispensable chaperone protein of
MCT1 (Park et al., 2015; Chen et al., 2016). Mitochondrial LDH
was initially discovered in the sperm, but is now revealed to also
exist in the liver, kidney and heart (Kline et al., 1986; Brandt et al.,
1987; Tempia et al., 1988). Lactate oxidative capacity is strongly
associated with the expression of mitochondrial LDH (Tempia
et al., 1988), and is also associated with COX (Hashimoto
et al., 2006). Finally, lactate is transformed to the end product
(CO2) by PDH, Krebs cycle related-enzymes, and mitochondrial
respiratory chain catalysis. Future research in order to better
define the mLOC is eagerly anticipated.

Another issue regarding intracellular lactate metabolism is
why cells generate and consume lactate at the same time. For
example, cardiomyocytes release glycolytically derived lactate
and take up extracellular lactate simultaneously (Goodwin
et al., 1998; Bartelds et al., 1999; Emhoff et al., 2013a).
Although some studies indicated that glycolytically derived
pyruvate is preferentially shifted to lactate rather than to
acetyl-CoA, pyruvate derived from exogenous lactate tends
to form acetyl-CoA (Barnard et al., 1971; Chatham et al.,
1999). To account for these observations, one plausible
explanation is that pathways of glycolytic lactate production
and oxidation of exogenous lactate are functionally separate in
the cardiomyocyte, i.e., compartmentation of intracellular lactate
metabolism (Barnard et al., 1971; Mowbray and Ottaway, 1973;
Sinniah, 1978; Lewandowski, 1992). LDH reversibly catalyzed the
conversion of pyruvate to lactate or lactate to pyruvate. Given
that the equilibrium constant for LDH is far in the direction

of lactate and the change in free energy is large, glycolytically
derived pyruvate can easily shift to lactate, rather than enter
the TCA cycle (Barnard et al., 1971; Rabinowitz and Enerback,
2020). In addition, myocardial mitochondrial abundance is
greatest at the subsarcolemmal surface (Palmer et al., 1977).
Therefore, when exogenous lactate enters cardiomyocytes, it is
expected to be readily transported into the mitochondria and
enters the TCA cycle. This explanation reconciles in vivo and
in vitro observations relating to myocardial lactate generation
and consumption (Wisneski et al., 1985; Gertz et al., 1988;
Mazer et al., 1990; Goodwin et al., 1998; Bartelds et al.,
1999), and is in keeping with the lactate shuttle theory
(Brooks et al., 1999; Brooks, 2000). It is recently proposed a
hypothesis that characteristics of intracellular lactate metabolism
enables the uncoupling of mitochondrial energy generation from
glycolysis, and confers cells with increased metabolic flexibility
(Rabinowitz and Enerback, 2020). Future studies of intracellular
lactate metabolism are needed to investigate the regulation of
lactate uptake and efflux and assess the exact value of the
compartmentation of lactate metabolism.

LACTATE METABOLISM IN
MYOCARDIAL DISEASES

In order to be compatible with complicated and volatile
physiological and pathological states, the heart has evolved into
an “omnivore” to consume different energy substrates in varying
proportions. In myocardial diseases, there are universal disorders
in energy substrate utilization and metabolic flexibility. While
ATP production in the myocardium is often impaired in different
pathological states, there is less consensus as to what actual
switches in energy substrate preference occur. Traditionally,
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lactate has been regarded as an undesirable metabolite and has,
accordingly, been used to as a biomarker of myocardial injury.
However, later studies suggests that lactate is of greater relevance
than other metabolic substrates, to the maintenance of metabolic
flexibility in the metabolically unhealthy heart (Hutter et al., 1984;
Lopaschuk et al., 2010; Garcia-Alvarez et al., 2014), raising a
fundamental question: is lactate in heart disease a savior or a
devil? This section will discuss lactate oxidation in the context of
acute myocardial ischemia, heart failure and diabetes.

Acute Myocardial Ischemia
Acute myocardial ischemia is a common feature of acute critical
cardiac events including acute coronary syndrome, cardiogenic
shock, and cardiac arrest. There is usually a clear etiology and
the course of disease is often brief. Sudden heart attacks lead
to drastic changes of cardiac metabolic environment within a
short period of time. Myocardium death is mainly caused by
deprivation of oxygen and energy substrates in acute myocardial
ischemia (Ong et al., 2010). While fatty acids remain the
main energy substrate in the ischemic myocardium (Stanley,
2001), respiration and oxidative phosphorylation functions of
mitochondria are markedly impaired during ischemia. There
is evidence that the number of mitochondria is augmented
in acute myocardial ischemia (Ide et al., 2001), which might
represent a compensatory response for acute ischemia and
hypoxia. It has been proved that the most striking metabolic
switch event in the ischemic myocardium relates to increased
glycolysis (Trueblood et al., 2000; Askenasy, 2001; Russell et al.,
2004; Carvajal et al., 2007). However, the raw materials for
glycolysis in acute myocardial ischemia are in association with
the extent of ischemia. During low-flow conditions, glucose
uptake and lactate release may be maintained in ischemic
myocardium, and increased glycolysis depends on higher influx
of glucose and increased activity of glycolytic enzymes (King
and Opie, 1998a,b; Horman et al., 2012; Herzig and Shaw,
2018). When blood flow is completely interrupted, glucose is
replaced by glycogenolysis (Smeele et al., 2011; Wu et al.,
2011). Despite profound differences in the sources of glycolytic
substrates, activating or prolonging glycolysis has been shown
to be beneficial for myocardial salvage in both conditions
(Vanoverschelde et al., 1994; Lochner et al., 1996; Fiolet and
Baartscheer, 2000; Trueblood et al., 2000; Askenasy, 2001; Russell
et al., 2004; Carvajal et al., 2007; Kim et al., 2011; Smeele et al.,
2011; Wu et al., 2011; Timmermans et al., 2014; Vanoverschelde
et al., 1994; Lochner et al., 1996; King and Opie, 1998a,b; Fiolet
and Baartscheer, 2000; Trueblood et al., 2000; Askenasy, 2001;
Russell et al., 2004; Carvajal et al., 2007; Kim et al., 2011; Smeele
et al., 2011; Wu et al., 2011; Horman et al., 2012; Timmermans
et al., 2014; Herzig and Shaw, 2018).

The accumulation of lactate in the ischemic myocardium
provides an important source of energy; both uptake and
use of lactate by the myocardium increase significantly in
the acute ischemic heart (Hutter et al., 1984; Lopaschuk
et al., 2010). In animal shock models, lactate deprivation
is related to increased mortality, while exogenous
lactate infusion is associated with myocardial salvage
(Barbee et al., 2000; Revelly et al., 2005; Levy et al., 2007).

Several observational studies have demonstrated that
hyperlactatemia is associated with a poor prognosis in patients
with acute coronary syndrome (Lazzeri et al., 2010; Vermeulen
et al., 2010; Kossaify et al., 2013). In patients who received
percutaneous coronary intervention, plasma lactate measured
after percutaneous coronary intervention is a reliable predictor
for mortality (Lazzeri et al., 2009; Valente et al., 2012). In
cardiogenic shock, the prognostic value of lactate has been
controversial. Some studies identified increased lactate as an
independently prognostic factor (Weil and Afifi, 1970; Chiolero
et al., 2000; Koreny et al., 2002; Attana et al., 2013b), however,
others did not (Geppert et al., 2006). Moreover, elevated lactate
levels are positively associated with mortality in cardiac arrest
(Donnino et al., 2007; Nolan et al., 2008; Cocchi et al., 2011;
Andersen et al., 2013). Accordingly, a large body of research is
in support of lactate as a prognostic factor in acute myocardial
ischemia. It is regrettable that there is yet no consensus about
the cut-off values for lactate that would be associated with
worse outcome. In some recent observational studies, serial
measurements of lactate have been shown to be more efficient
than a single measurement for outcome prediction in acute
myocardial ischemia (Attana et al., 2013a).

Based upon the evidence to date, it appears that lactate
has the potential to act both as an “energy substrate” and a
“prognostic factor.” Numerous studies have shown benefits in
preserving the function of ischemic myocardium by modifying
cardiac energy substrates and increasing ATP production (Dyck
et al., 2004, 2006; Ussher and Lopaschuk, 2008; Lionetti et al.,
2011). Both promoting the utilization of glucose and reducing the
β-oxidation of fatty acids have been proposed as anti-ischemic
strategies (Stanley et al., 2005; Dyck et al., 2006). However, there
is a lack of clinical evidence to support treatment with lactate
supplementation or deprivation in patients with acute cardiac
events. It should also be noted that observational studies do not
allow to conclude on the causal relationship between lactate and
clinical outcomes.

Heart Failure
Heart failure is a complex disease which represents the end-
stage outcome for many cardiac and systemic diseases (Savarese
and Lund, 2017). Despite the heterogeneity of etiology (Jessup
and Brozena, 2003), heart failure is associated with a marked
reduction in the production of energy (Hearse, 1979; Neubauer
et al., 1997; Neubauer, 2007). Impaired mitochondrial structure
and oxidative function have been reported in the failing heart
(Casademont and Miro, 2002; Neubauer, 2007; Aubert et al.,
2013; Fukushima et al., 2015). Along with these changes,
alterations of energy substrates were also detected (Krahe
et al., 1993; Collins-Nakai et al., 1994; Lopaschuk et al., 2010).
For example, decreasing ratio of fatty acids oxidation was
observed in pressure overload-induced rat failing heart as well as
mouse gene-knockout failing heart models (Allard et al., 1994;
Casademont and Miro, 2002; Neubauer, 2007; Bugger et al.,
2010), and ketone body was reported to be an alternative fuel
in advanced human heart failure (Aubert et al., 2016; Bedi,
Snyder et al., 2016). Although the myocardial glucose uptake
is augmented, glucose oxidation and its contribution to ATP
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production is markedly decreased (Paolisso et al., 1994; Moravec
et al., 1996; Funada et al., 2009; Mori et al., 2013; Zhabyeyev et al.,
2013; Zhang et al., 2013). Where does the glucose go? In both
humans and animals, there is increased flux of glycolysis (Allard
et al., 1994; Degens et al., 2006; Akki et al., 2008; Symons and
Abel, 2013) and plasma concentrations of lactate during heart
failure (Diakos et al., 2016; Fillmore et al., 2018). It is therefore
apparent that mitochondrial oxidation shifts to glycolysis as a
major metabolic reprogramming event in the failing heart.

Increased glycolysis is linked to augmented production of
endogenous lactate. In addition, the intracellular lactate shuttle
process is inhibited by impaired activity of mLOC, manifested
by the progressive impairment of PDH (Funada et al., 2009;
Zhabyeyev et al., 2013; Zhang et al., 2013; Dodd et al., 2014;
Diakos et al., 2016; Fillmore et al., 2018) and low expression of
MCT (Gupte et al., 2014). Taken together, these events would
give rise to the accumulation of intracellular lactate in the
myocardium. This however, does not allow to conclude whether
high level of intracellular lactate is good or bad! On the one hand,
it has been indicated that intracellular lactate overload is able to
trigger the influx of Na+ and Ca2+, which can induce a decrease
in the systolic function of myocardium (Fiolet and Baartscheer,
2000; Jaswal et al., 2011). On the other hand, both basic science
and clinical evidence have pointed toward an important role
of lactate as a key energy substrate in the failing heart (Schurr
et al., 1997; Chiolero et al., 2000; Luptak et al., 2005). A recent
study described heart metabolomics profiling of the uptake and
release of metabolites in patients with or without heart failure.
This study showed that the failing heart nearly doubled lactate
consumption compared to the normal heart (Murashige et al.,
2020). The mRNA expression of MCT4 (which mediates the
transmembrane transport of lactate) increased 2.5–3.5 times
higher of its original level during myocardial injury (Zhu et al.,
2013; Gabriel-Costa et al., 2015). Promoting the lactate transport
from cytoplasm to mitochondria improved energy deficiency
in heart failure (Wilson et al., 1998; McClelland and Brooks,
2002; Zhu et al., 2013). Furthermore, inhibition of MCT4 and
hence lactate export in a cell model of heart failure led to
further accumulation of intracellular lactate and increased lactate
transport for mitochondrial oxidization (Cluntun et al., 2021).

Hyperlactatemia and lactic acidosis reflect an unbalanced state
of lactate production and disposal. In long-term clinical practice,
lactate is regarded as a risk factor of heart failure. In patients
who suffer from heart failure and have elevated blood lactate,
many clinicians may empirically consider pharmacotherapeutic
interventions with agents that may modulate lactate metabolism,
and vasodilators or positive inotropic drugs. However, systemic
lactate deprivation is disadvantageous to myocardial energy
supply in pathological conditions (Levy et al., 2007). Given
that lactate concentrations in capillary, arterial, and venous
blood are insufficient to distinguish excess lactate production
from impaired lactate clearance, it would be imprudent to treat
abnormal blood lactate levels in patients with heart failure.

Lactate Metabolism in Diabetic State
Adaptations to long-term diabetic state induce changes in
cardiac energy substrate preference. Rising circulating fatty acids

(Reaven et al., 1988; Young et al., 2002; Atkinson et al., 2003),
high myocardial uptake of fatty acids (Avogaro et al., 1990;
Sampson et al., 2003; Bonen et al., 2004; Peterson et al., 2008),
and increased myocardial fatty acid β-oxidation (Belke et al.,
2000; Aasum et al., 2003; Carley and Severson, 2005; How et al.,
2007; Bugger and Abel, 2014; Riehle and Abel, 2016; Kenny and
Abel, 2019) are important metabolic characteristics in diabetes.
In addition, there are studies reporting hyperketonemia and
high myocardial ketone body utilization in poorly controlled
diabetes (Lommi et al., 1996, 1997; Kodde et al., 2007). The
so-called “ketone body metabolic pathway” doesn’t really exist
in the cell, because ketone bodies can cross the mitochondrial
membrane and the cell membrane directly through the MCTs
and enter the TCA cycle (Halestrap, 2013; Felmlee et al., 2020).
The flow of ketone bodies into the TCA cycle is expected
to inhibit mitochondrial oxidation of glucose and lactate in
cardiomyocytes. Compared to studies on fatty acid and ketone
body metabolism in heart, very few studies have assessed
myocardial glucose and lactate utilization in the diabetic state. It
is generally accepted that acceleration of fatty acid β-oxidation
and insulin resistance are related to the reduction of glucose
oxidation (Randle et al., 1963; Randle, 1995, 1998; Peterson et al.,
2004). With regard to myocardial lactate metabolism, several
studies observed the rate of lactate efflux was greater than lactate
uptake under diabetic condition (Chatham et al., 2001). Given
that MCT expression in cardiomyocytes is not influenced by
diabetes in rat models (Chatham et al., 1999), decreased lactate
uptake might be related to the increased cytosolic NADH/NAD+

ratio in the diabetic state (Puckett and Reddy, 1979; Ramasamy
et al., 1997; Trueblood and Ramasamy, 1998; Chatham et al.,
1999). Taken together, myocardial glucose and lactate metabolism
are impaired on diabetic state. Impaired insulin signaling was
reported to impel the deterioration of cardiac function (Abel
et al., 1999; Peterson et al., 2004; Zhang et al., 2013; Byrne
et al., 2016). Patients with diabetes exhibited an increased risk
of heart failure, and cardiac hypertrophy is the main pathologic
change of the myocardial remodeling. As discussed, substrate
switch of heart failure generally appeared as a decreased fatty
acid oxidation and an increased uptake of glucose and lactate
(Neubauer, 2007; Casademont and Miro; 2002, Allard et al.,
1994; Krishnan et al., 2009; Bugger et al., 2010). By contrast,
diabetic heart failure exhibits different substrate switch—an
increase in fatty acid metabolism and a decrease in glucose and
lactate metabolism (Bugger and Abel, 2014; Riehle and Abel,
2016; Kenny and Abel, 2019). It is also intriguing that these
divergent cardiac energy substrate preferences result in similar
myocardial remodeling.

Metformin is the most widely used oral agent for the
management of type 2 diabetes. In the landmark UKPDS
study, the use of metformin was reported to reduce the
risk of myocardial infarction by 39% (No Authors listed.,
1998). Metformin is associated with a modest increase plasma
lactate levels, but the risk of lactate acidosis is rare (Abbasi
et al., 2000; Liu et al., 2009; Shen et al., 2012; Koren et al.,
2017). Metformin does not appear to affect myocardial lactate
utilization, but has been shown to reduce the intracellular lactate
shuttle and increase lactate accumulation (Madiraju et al., 2014;
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Duca et al., 2015; Lu et al., 2017). Given that metformin is
associated with increased lactate production, and tissue hypoxia
is always present during heart failure. Metformin has previously
been believed to increase the risk of lactic acidosis in heart failure
patients. However, in recent years, metformin has been exhibited
to be safe and effective in patients with heart failure in several
large retrospective studies (Misbin et al., 1998; Aguilar et al.,
2011). Based on these studies, metformin has been recommended
for patients with diabetes mellitus and chronic heart failure
(Eurich et al., 2005, 2013). Taken together, the effects of
metformin on lactate metabolism do not outweigh its the benefits
in diabetic cardiomyopathy. But we have to pay more attention
to metformin-associated lactic acidosis (MALA), a symptom that
may occur in the clinic. The exact mechanism of MALA is still
unknown, but it would be necessary to elevated blood metformin
concentration and secondary obstacles of lactate production
and clearance (Lucis, 1983; Owen et al., 2000; Almirall et al.,
2008; Frid et al., 2010; Bridges et al., 2014). As these secondary
events may be unpredictable and heterogeneous, current clinical
application of metformin may be too conservative. Given that
fatal consequence of MALA, metformin must be used with
caution, particularly in patients with circulatory dysfunction
(Buse et al., 2016).

CONCLUSION

In the pursuit of an understanding of myocardial metabolism,
lactate was once considered as a metabolic waste, and the
metamorphosis from “ugly duckling” to “white swan” was full of
frustration and ordeals. Up to time now, it is apparent that lactate

has multiple identities in myocardial metabolism, including
energy substrate, metabolite, signal molecule, and prognostic
factor. Cardiac lactate metabolism is a dynamic process that
can rapidly shift to adapt to alterations in cardiac energy
requirements or changing environment. Lactate is also very
important as an energy substrate in acute myocardial ischemia,
heart failure, and diabetic state, and abnormal myocardial lactate
metabolism is closely related to diseases. Characterization of the
lactate metabolic profile of myocardium in physiological and
pathological conditions may help direct future pharmacological
therapies to harmonize the metabolic flexibility of the heart.
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