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Introduction: Disease states are being characterized at finer and finer levels of
resolution via biomarker or gene expression profiles, while at the same time. Machine
learning (ML) is increasingly used to analyze and potentially classify or predict the
behavior of biological systems based on such characterization. As ML applications are
extremely data-intensive, given the relative sparsity of biomedical data sets ML training
of artificial neural networks (ANNSs) often require the use of synthetic training data.
Agent-based models (ABMs) that incorporate known biological mechanisms and their
associated stochastic properties are a potential means of generating synthetic data.
Herein we present an example of ML used to train an artificial neural network (ANN) as a
surrogate system used to predict the time evolution of an ABM focusing on the clinical
condition of sepsis.

Methods: The disease trajectories for clinical sepsis, in terms of temporal cytokine
and phenotypic dynamics, can be interpreted as a random dynamical system. The
Innate Immune Response Agent-based Model (IIRABM) is a well-established model that
utilizes known cellular and molecular rules to simulate disease trajectories corresponding
to clinical sepsis. We have utilized two distinct neural network architectures, Long
Short-Term Memory and Multi-Layer Perceptron, to take a time sequence of five
measurements of eleven IIRABM simulated serum cytokine concentrations as input and
to return both the future cytokine trajectories as well as an aggregate metric representing
the patient’s state of health.

Results: The ANNs predicted model trajectories with the expected amount of error,
due to stochasticity in the simulation, and recognizing that the mapping from a specific
cytokine profile to a state-of-health is not unique. The Multi-Layer Perceptron neural
network, generated predictions with a more accurate forecasted trajectory cone.
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Discussion: This work serves as a proof-of-concept for the use of ANNs to predict
disease progression in sepsis as represented by an ABM. The findings demonstrate
that multicellular systems with intrinsic stochasticity can be approximated with an ANN,
but that forecasting a specific trajectory of the system requires sequential updating of
the system state to provide a rolling forecast horizon.

Keywords: agent-based model (ABM), machine learning, sepsis, neural networks, time series

BACKGROUND

The characterization of the gene expression or protein level
patterns associated with clinical disease, which generally manifest
as physiological derangements, has led to attempts to use this
type of fine-grained, detailed information to forecast clinical
outcomes. This approach underlies the concepts of personalized
and precision medicine, where disease characterization in terms
of molecular-level features (microstates) are intended to more
finely define and distinguish patients who might have otherwise
similar physiology (macrostates). Increasingly, machine learning
(ML) has been investigated as a means of aiding in the ability to
predict and forecast the course of disease. Modern ML generally
involves training an artificial neural network (ANN) on a given
data set such that the ANN “learns” an underlying function that
generates the data. While a powerful method, ML-trained ANNs
can be brittle and prone to overfitting, which can lead to their
failure when applied in real-world situations (Ross and Swetlitz,
2017; Strickland, 2019; D’Amour et al., 2020). As ML is extremely
data-intensive, training is often augmented by the use of synthetic
data; however, it is crucial that the generated surrogate/synthetic
data effectively replicates the underlying generative process of
the real-world system being learned. This issue is less important
for such static tasks such as image recognition/classification
but takes on considerable importance if time-series/dynamic
processes (and therefore functions) are being analyzed. The
need to effectively generate synthetic data is accentuated in
biomedical applications, where, in general, biomedical data sets
are relatively sparse, particularly in terms of time series data
needed to predict or forecast the dynamic course of disease. This
sparsity is further accentuated when molecular-level biomarker
panels are proposed as the means of disease characterization,
as currently this information can only be acquired through
invasive blood sampling. Thus, there is an inherent tension
between the desire for a finer-grained characterization of disease
state and limitations in terms of both availability of such data
and the ability to correlate these detailed representations to the
physiological derangements present clinically.

Multi-scale simulation models that represent cellular and
molecular mechanisms can reproduce the dynamics of tissue or
system level physiology and pathophysiology have potential as
a means of generating synthetic training data, but these models
come with their own challenges and limitations. Specifically,
dealing with the high-dimensional parameter spaces of such
complex mechanism-based models presents computational
challenges in terms of calibration and validation. Additional
ML methods have been proposed as an adjunct to the
exploration of these models’ high dimensional parameter spaces

(Cockrell et al., 2019; Ozik et al., 2019; Wang et al, 2019),
including the training of artificial neural networks (ANNSs) as
surrogates for the mechanism-based model (Wang et al., 2019).
However, to our knowledge, the application of ML to train
ANN surrogates for agent-based models (ABMs), a prevalent
method for multi-scale computational modeling, has not been
previously reported in the biomedical literature. This is a
potentially significant capability, as ABMs structurally share
many of the features of biological systems (Bonabeau, 2002;
An et al., 2009; Metzcar et al., 2019) and exhibit behaviors not
necessarily represented by other types of modeling methods,
particularly in terms of their stochastic behavior and reflection of
biological heterogeneity (Cockrell and An, 2017). The ability of
ABMs to generate “emergent” phenomena (Bonabeau, 2002), i.e.,
where populations of components and their interactions lead to
system-level phenomenon that cannot be directly inferred from
the behavioral rules governing the components is particularly
relevant to being able to translate cellular and molecular
mechanisms and data into system-level behavior manifesting
as physiology. Cell-based ABMs explicitly represent existing
knowledge about cellular and molecular mechanisms, which
is the level at which modern medicine strives to characterize
patients in a precise and personalized fashion (e.g., biomarker or
-omics panels), and through their simulation are able to generate
aggregated, system-level output corresponding to the physiology
at which disease primarily manifests. Given the prevailing
interest in characterizing disease states through molecular-level
profiling and the application of ML methods to forecasting the
physiological trajectories of disease, we believe that it is important
to examine the capabilities and limitations of applying ML to
forecast trajectories that bridge microstate (mediator/molecular
profiles) and macrostate (system-level/physiological output).
Toward that end we present herein an investigation of the ability
of trained ANNSs to forecast the dynamic behavior of a complex
biomedical ABM used to simulate acute systemic inflammation
and the clinical condition of sepsis.

The Multi-Scale Challenge of Sepsis

Sepsis is a complex physiological and clinically significant
problem with approximately 1 million cases in the United States
each year, with a mortality rate between 28-50% (Wood and
Angus, 2004). Sepsis is a highly dynamic process with multi-
scale features, ranging from clinical phenotypes characterized
by features such as multi-system organ failure, down to the
molecular level with dysregulation of the body’s internal cytokine
signaling network (Cockrell and An, 2017, 2019, 2021). While
care process improvements in the treatment of sepsis, such as

Frontiers in Physiology | www.frontiersin.org

October 2021 | Volume 12 | Article 716434


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

Larie et al.

Forecasting the Behavior of ABMs

the development of treatment bundles and practice guidelines,
have improved clinical outcomes in the past few decades, the
search for new drugs to treat the biological-basis of sepsis has
been marked by complete failure: there is currently not a single
drug approved by the U.S. Food and Drug Administration
that targets the underlying pathophysiology of sepsis (Angus,
2011; Buchman et al, 2016). One of the major challenges
in designing therapies for sepsis is an inability to effectively
forecast the disease trajectories of individual patients, thereby
limiting the effective sub-stratification of this heterogeneous
population into those biologically similar enough to control.
Existing means of classifying sepsis patients, such as with the
Sequential Organ Failure Score (SOFA; Vincent et al., 1996)
or various biomarker panels (Gibot et al.,, 2012; Riedel, 2012;
Samraj et al., 2013), while potentially useful for coarse-grained
outcome risk stratification, are only able to provide population-
level projections that cannot effectively be updated to an
individual patients disease course. Adding to the limitations of
data-centric population-based scoring systems is the inherent
stochasticity of the biological processes driving sepsis. The
presence of stochasticity in the system governing inflammation
makes accurately predicting the entire trajectory of the disease,
or accurately predicting the patient state 30 days into the
future, given one point of assessment, an impossibility (see
description of Stochastic Trajectory Analysis regarding sepsis in
(Cockrell and An, 2017)).

Biological Heterogeneity, Stochasticity,
and Forecasting

Ultimately, the biological heterogeneity seen clinically is
generated from a combination of inter-patient (genetic
variability) and intra-patient (stochastic processes) effects.
The result is that it is not tractable to comprehensively
enumerate all possible biomarker states and configurations (i.e.,
phenotypes) that can be generated from a specific systemic
perturbation or injury. The challenge (and solution) is similar
to that faced by Q-Learning (Watkins and Dayan, 1992)
(now Deep Reinforcement Learning); Q-learning is a type of
reinforcement learning in which agents determine what action
to take (a) by looking up their current state (s) in the lookup
table, Q(s,a) that lists the probability of a desirable outcome
based on that decision. Because the lookup table needs to
provide this probability to guide the decision process it requires
a finite (and computationally tractable) state space. In order
to work effectively in continuous (infinite states) search spaces
Q-learning utilizes the Universal Approximation Theorem
(Barron, 1993), which states that a feed-forward neural network
can approximate, to arbitrary fidelity, a real and continuous
function. In the case of Q-learning, it is the lookup table that
is being approximated; we note that the lookup table does
not necessarily meet the strict mathematical definition for
continuity, however, the technique works in practice as long
as the density/granularity of the lookup table is sufficiently
fine. Acquiring time series data of this granularity is often not
logistically feasible, therefore we pose that mechanism-based
simulations can serve as means of generating such surrogate

data. In particular, given their structural similarity to biological
systems, ABMs are appealing candidates for this task.

In previous work, we have demonstrated that the cytokine
signaling network which controls the inflammatory process can
be modeled as a random dynamical system (Cockrell and An,
2017, 2018), which is a system that evolves in time according to
fixed rules, but also incorporates stochasticity (Bhattacharya and
Majumdar, 2003; Arnold, 2013). Knowledge of the underlying
cellular and molecular processes of acute inflammation has
been used to create a dynamic model, the Innate Immune
Response Agent-based Model (IIRABM; An, 2004), that can
serve as a proxy model for the development of more advanced
prediction and forecasting methods. The IIRABM is an ABM
of the innate immune response that represents the endothelial-
blood interface (e.g., the inside of blood vessels in the tissue
region of interest) and the response of that system to either
injury or infection. The IIRABM simulation is initiated with
the application of a simulated injury or infection to the
endothelium. The injury is defined by five parameters: injury
size, microbial virulence, microbial toxigenesis, environmental
toxicity, and host resilience. The simulated inflammatory
response is generated by the damaged endothelium, and
recruits a variety of inflammatory cells, including neutrophils,
macrophages, and a suite of T-lymphocytes, to respond to,
contain, and heal the injury/infection. The simulation then
proceeds until it reaches a terminal state — either complete
healing or death, which is triggered when the aggregate system
damage exceeds 80%. This threshold has been chosen to
represent the ability of supportive medical technology (i.e., a
ventilator) to keep people alive in situations in which they
would otherwise die.

Despite its acknowledged abstraction the IIRABM has proven
useful in examining the complexity of sepsis and the challenges
associated with trying to treat the syndrome. The IIRABM has
been used to demonstrate the use of in silico clinical trials
as a means of evaluating the plausibility of planned potential
interventions (An, 2004), provided fundamental insights into the
mathematical and dynamic properties of sepsis that account for
patient heterogeneity (Cockrell and An, 2017), demonstrating
the futility of standard biomarker-based outcome prediction
(Cockrell and An, 2017), and served as a proxy model (An et al.,
2017) for control discovery for sepsis. This most recent control
discovery work has employed advanced computational methods
such as genetic algorithms/evolutionary computing (Cockrell and
An, 2018) and deep reinforcement learning/artificial intelligence
(Petersen et al., 2019) to describe what would be required for
multi-modal treatment of sepsis. While the IIRABM is nearly
20 years old its central component structure remains valid and
has predicted a series of behaviors associated with sepsis that have
since been recognized in the subsequent years, specifically the
temporal concurrence of pro- and anti-inflammatory cytokine
responses (as opposed to sequential pro- and compensatory
responses) (Osuchowski et al., 2006; Tamayo et al., 2011) and
the importance of the immunoparalyzed recovery phase of sepsis,
particularly with respect to its prolonged duration (Ferguson
et al,, 1999; Boomer et al, 2011; Hotchkiss et al., 2013a,b).
Key to all these studies is the recognition that even though
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the IIRABM is an abstract representation far less complex
than the “real” immune system, it has structural properties
that mimic a multicellular biological system (i.e., composed of
semiautonomous components that harbor the system’s stochastic
potential), and generates the type of system dynamics that
challenges traditional methods of biomedical analysis. As such we
consider the IIRABM a useful surrogate for generating biology-
like synthetic data that bridges mediator-level microstate and
system-level microstate output that can be used to examine the
ability of ML to capture its behavior. The current work aims to
train an ANN on simulated data generated from the IIRABM
and evaluate its sufficiency as a surrogate for the IIRABM by
assessing the ability of the trained ANN for dynamic trajectory
prediction of the IIRABM.

MATERIALS AND METHODS

The foresting procedure is divided into two principal tasks: (1)
predict future cytokine trajectories in an 11-dimensional space
(microstate characterization); and (2) regress the overall “health”
of the simulation as a function of its current cytokine profile
(predicting system macrostate). Training and validation data
was generated using the IIRABM (Cockrell and An, 2017). The
training/validation set was composed of cytokine measurements
for 11 unique cytokines over 10,000 time-steps in 66,000 in silico
patients. Networks were constructed Using Keras (Gulli and Pal,
2017), a TensorFlow based deep learning library for Python.

Trajectory Forecasting

In order to forecast future values in the cytokine time series,
we utilized long short-term memory (LSTM) recursive neural
networks (RNN). RNNs are different from standard multi-
layer-perceptron networks because they have a neural network
contained within a cell which takes information from the current
input to help determine the adjusted state of the cell based on its
current cell state. This adjusted cell state becomes the new cell
state, and an output is determined for the network.

Long short-term memory networks memory cells have a
unique structure, characterized by an input gate, two update
layers, and an output gate to determine the adjusted cell state
(Hochreiter and Schmidhuber, 1997). The memory cells in
LSTM networks allow for more long term memory than typical
RNNs which make them well suited for time-series analysis and
prediction (Nelson et al., 2017). Noting this, an LSTM network
will likely be able to predict future cytokine levels, given that they
are continuous and previous cytokine levels will likely have a large
impact on near-future values.

We constructed a unique network for each cytokine that
was to be predicted; each LSTM network takes five sequential
11-dimensional cytokine profiles as input and predicts the
subsequent value(s). The first three layers of the network are 100-
node LSTM layers; the output from these layers are fed into two
fully connected layers of 300 and 200 nodes, respectively, then to
a single output node, resulting in 296,301 trainable parameters.
Training data was arranged into five sequential 11-dimensional
points as training input features and the next 11-dimensional

point as the training label. The data was then shuffled to avoid
biasing the training. After data preprocessing, 8,576,100 data
sequences and labels were used to train the network. The loss
metric used to train this network is mean absolute error (MAE),
and the Adam optimizer (Kingma and Ba, 2014). Each network
was trained until loss converged to a minimum.

For the ultimate utilization of this network, 11 cytokine values
are observed for five time steps, then a prediction for each of
the next values is made using its own LSTM network. This set
of 11 observations is combined into one 11-dimensional point,
which is then added to the original five samples as the next
sample. Predictions are made recursively in this manner for
100 time steps after the initial observation. Accuracy of this
algorithm was measured using the average MSE across the 11
cytokine values at 1, 2, 3, 4, 5, 10, 25, 50, and 100 time steps
after the initial observation. Prediction variance and error bars
were calculated through stochastic variations to the dropout layer
(Baldi and Sadowski, 2013), as demonstrated with regards to
Active Learning for regression in (Tsymbalov et al., 2018).

As a comparison of the efficacy of LSTM neural networks,
MLP prediction networks for each cytokine were also created.
Each network functionally acts the same as the LSTM networks,
accepting five sequential 11-dimensional points in cytokine space
and predicting the future value for a single cytokine. Each
network has a structure beginning with a fully connected layer
of 1000 nodes, followed by a function to flatten the output shape
from a 5 by 1000 array to a single vector of length 5000. Next is
another fully connected layer of 1000 nodes, then a 1% permanent
dropout layer, feeding into a fully connected layer of 500 nodes,
then another fully connected layer of 500 nodes, then finally to
a single output node. These networks were trained using a loss
function to minimize MSE. Eleven-dimensional cytokine profiles,
predicted either from the LSTM network the MLP network are
then fed into an MLP-regressor (described below) in order to
translate the cytokine profile into an aggregate measure of patient
health or disease state.

Health Metric Regression

The IIRABM uses the “Oxygen Deficit” metric as a measure of
health, where a low oxygen deficit is good, and a high oxygen
deficit is bad; “Oxygen Deficit” is therefore the system-level
output that corresponds to the macrostate of the IIRABM. We
note that, both in silico and in vivo, cytokine profiles provide
a non-unique mapping to state-of-health (a concept which is
more nebulously defined in vivo than in our in silico model).
As such, error is expected when attempting to regress from an
11-dimensional cytokine profile to a single health metric.

This regression was performed by using a fully connected deep
network that takes an 11-dimensional cytokine vector as input,
feeding into two fully connected layers with 1,500 nodes each,
then into a layer with 150 nodes, and finally to a single output
node. The loss metric used to train this algorithm is MSE. Using
the regression network, a prediction of oxygen deficit trajectory
can be made from the 11-dimensional matrix created by the
LSTM network. Overall accuracy was measured by comparing the
oxygen deficit path to the predicted path and calculating the MSE.
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FIGURE 1 | In panel (A), we present the variance in oxygen deficit as a function of the sum of cytokine concentrations in the whole area of simulated tissue,
effectively compressing an 11-dimensinal vector into a scalar quantity indicative of total biological activity (e.g., cells performing functions) in the simulated tissue. In
panel (B), we show the mean absolute error in the regression of the oxygen deficit as a function of cytokine profile, as a function of training epoch.

The prediction of whether an in silico patient will live or die,
or the decision on whether or not pharmacologic therapeutics
are more likely to be beneficial than detrimental, is ultimately
based on the temporal trajectory of the patient’s state of health
(in this case, a measure of systemic oxygen deficit). The predicted
trajectory in 11-dimensional cytokine space is then fed into
the health-metric regression network to forecast the most-likely
outcome, time-to-outcome, and time-horizon for potentially
effective therapeutic interventions.

Additionally, we created a multi-layer perceptron (MLP) to
predict the future oxygen deficit trajectory as a function of past
values only, effectively treating the simulation output as a Markov
chain. This network expects an input of five sequential oxygen
deficit values and will return a single future oxygen deficit value
predicted for the next time step. The structure of this MLP begins
with a fully connected layer of 1000 nodes, followed by a 1%
permanent dropout layer, then two fully connected layers of 150
nodes each, followed by a single output node. This network
was trained using a loss function to minimize MSE. Trajectory
prediction for this network is made in the same recursive manner
as the cytokine prediction networks.

RESULTS

It is important to note that the map which translates a cytokine
profile (microstate) into its associated oxygen deficit (macrostate;
and vice-versa) is non-unique, and therefore some amount of
error is expected and unavoidable. In Figure 1A, we present the
variance in oxygen deficit as a function of the sum of cytokine
concentrations in the whole area of simulated tissue. The sum of
cytokine concentrations is a coarse metric that roughly represents
the amount of inflammation (no distinction is made between
pro- and anti-inflammatory signals) and inflammatory signaling
present in the model. This is analogous to what is seen clinically -
patients that see ostensibly identical insults/infections/injuries
will invariably present a range of responses, in terms of temporal

cytokine profiles or other clinical physiological observables
(heart-rate, blood pressure, temperature, etc.).

This figure also illustrates a key difference between the
structure of the noise in the IRABM and the stochastic structure
in a stochastic differential equation; the noise present in the
ITRABM varies spatio-temporally and cannot be represented with
a closed-form analytical expression. Very generally speaking, the
reason for this is that when cell-signaling is high, there is lots
of activity in the model, and therefore lots of opportunities for
stochastic events. This can be illustrated with a simple thought
experiment: consider two system states, one with a single infected
cell and one with 10 infected cells, and each infected cell has a
probability of infecting a single neighbor, and some probability
of healing. If we evolve the simulation a single time step, system
1 can have 0, 1, or 2 infected cells, while the range of infected
cells in system 2 can vary from 0 to 20 (depending on the spatial
configuration of the infected cells). In Figure 1B, we show the
mean absolute error as a function of training epoch when training
the health regression neural net. The error quickly converges to
a minimum with a relatively constant error of approximately
200 units (on a scale of 8160), with the caveat that the predicted
error would be lower when the true oxygen deficit is lower, and
higher when the true oxygen deficit is higher.

Cytokine trajectories present similar stochastic properties as
the oxygen deficit: when levels are high, the plausible range of
cytokine expression for the subsequent time step is larger than
when levels are low. We present the mean squared error (in
arbitrary units) as a function of training epoch for TNFa, which is
representative of the full cytokine set in Figure 2. Once again, the
network quickly converges to a low and constant level of error.
We note that the total error quickly and significantly increases
as we extend the time-prediction horizon past 100 time-steps.
This distinguishes this methodology from that of ML-augmented
surrogate modeling (Cicchese et al., 2017) because we do not
claim the ability to accurately represent the entire course of a
sepsis disease trajectory (up to 90 days in our computational
model) using neural-network approximations.
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FIGURE 2 | The mean squared error (in arbitrary units) as a function of training
epoch for TNFa. The training of this cytokine prediction network was
representative of all simulated cytokine prediction networks.
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FIGURE 3| In this figure, we compare the dual-network predictor, which uses
an MLP to predict the 11-dimensional cytokine profile trajectory and then
another MLP to regress the oxygen deficit value (shaded in red), with an MLP
which is informed solely by prior values for the oxygen deficit (shaded in blue).

The use of the dropout layer allows for the simple creation of
an ensemble of predictive networks by stochastically varying the
specific node(s) in the layer that are dropped out, allowing us to
visualize probability clouds for future trajectories. In Figure 3,
we compare the dual-network predictor, which uses an MLP
to predict the 11-dimensional cytokine profile trajectory and
then another MLP to regress the oxygen deficit value (shaded
in red), with an MLP which is informed solely by prior values
for the oxygen deficit (shaded in blue); the performance of the
dual-network model is significantly more stable and accurate
when compared with the MLP using only the oxygen deficit for
prediction. In Figure 4, we have visualized the probability cloud
for future health trajectories generated using the MLP network
(shaded in red), future health trajectories generated using the
LSTM network (shaded in blue) and plotted the true trajectory
(red line). This figure visualizes a single prediction iteration

Time-step (6 min)

FIGURE 4 | Here we present trajectory clouds for the MLP and
LSTM-generated predictions. In both cases, 11-dimensional cytokine
trajectories were predicted. The predicted values were then fed into the MLP
regressor network, which regressed the future predicted oxygen deficit as a
function of the predicted cytokine profile trajectories. The future
health-trajectory probability cloud predicted using the MLP network is shaded
in red; the future health-trajectory probability cloud predicted using the LSTM
network is shaded in blue; the true trajectory is plotted in red.
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FIGURE 5 | Using the MLP Trajectory Forecast Model combined with the
MLP Oxygen-Deficit Regressor, we determined the upper and lower
boundaries for the future health-trajectory probability cone, which are
indicated by the blue lines; the actual trajectory is plotted with a red line.
Predictions began at t = 200 and were update upon every time-step.

(predict future cytokine trajectory, regress state of health) for the
above-described workflow. As new data is fed into the model
about the true trajectory of the system, the forecast cloud is
updated. The actual health trajectory typically lies in the center
of the probability cloud, which is a clear benefit of the ensemble
approach. In Figure 5, we display the probability cone for the
entire simulation run, starting at the 240th time step, and then
updating the trajectory cone on every subsequent time step.
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area. In panel (B), we present 100 stochastic replicates of the actual simulation health-trajectory, reseeded at the time of the first prediction (red) compared with the
predicted probability cone trajectories (blue). In panel (C), we generated the simulation trajectory cone through reseeding the simulation’s random number generator

at the upper and lower boundaries of the trajectory cone every 100 time steps from ¢ = 1100 to ¢t = 1800.

In Figure 6, Panel A, we contrast predictions that considered
the full time evolution of the system when training the neural
network model, shaded in red, with predictions that only used
training data collected after the 240th time step, representing
approximately 1 day. The network that only utilizes data collected
more than 24 h post-injury performs substantially better. This is
primarily due to the massive amount of stochasticity introduced
at the time of injury; the degree of this stochasticity is significantly
larger in magnitude than later in the simulation, as discussed
below. In Panel B, we display the same oxygen-deficit probability
cone as in Panel A, however, also reseed the simulation’s random
number generator at this time step to generate 100 stochastic
replicates of the time evolution of that specific instantiation of the
ITIRABM. We see that the predicted probability cone has a greater
spread than the actual probability cone, however, we note that the
MLP predictor is constantly updating its trajectory predictions:
the set of observations {t“_S, 1t 10, tﬁl}, where t? . has
the superscript, “a”, representing an actual observation, and the
subscript, “—5” to denote that the time point is five points prior
to the starting reference point, is used to predict £, where the
superscript, “p”, indicates a predicted observation. Eventually, the
set of points used to generate the prediction will consist entirely
of previously predicted points, allowing for the compounding of
any errors. In Panel C, we show the same probability cone as in
Panel A, however, this time, we have re-seeded the simulation
every 100 time steps at t = 1100 to ¢ = 1800, for 100 stochastic
replicates each. This is a more direct comparison since the MLP
predictor effectively reseeds itself every time step. We observe
that the actual probability cone is significantly wider than in Panel
B, but still not as wide as the predicted cone. This is discussed
in detail below.

DISCUSSION

The MLP predictor which predicts cytokine trajectories and uses
those to regress the oxygen deficit performs better than using an

LSTM to predict future state-of-health trajectories, however, this
does not represent a failure of the LSTM method (or indicate
superiority over the MLP). This is best illustrated in Figure 1,
which illustrates the non-unique mapping between a specific
cytokine profile and a physiological state of health, which is well-
known clinically (Bergquist et al., 2019). The accuracy of the
cytokine trajectory predictions, shown in Figure 2, is high, but
even with an accurate prediction of the future cytokine profile,
turning that profile into an informative state of health prediction
is not possible. Additionally, this predictor also outperforms
the NN model which used an MLP to predict future oxygen
deficit from previous values of oxygen deficit, not incorporating
any cytokine data (see Figure 3). This indicates that, while a
static cytokine profile can be correlated with a wide range of
health-state, the dynamics/trajectories of these mediators provide
actional information regarding system state.

Additionally, we note that the predictor performs better
when using training data starting 1 day after the simulated
injury perturbs the system, and the reasoning for this is similar
to that above, in that the cytokine and spatial dynamics are
dominated by stochasticity. When the simulated injury occurs,
a large, contiguous, area of tissue is injured with a homogenous
injury, representing a significant perturbation to the system;
thus, early simulation behaviors contain a significant amount
of stochasticity, leading the training data to be less informative
as to the true mechanisms which underlie the dynamics
of the simulation.

Recognizing that there are configurations in which the system
is more or less strongly influenced by randomness can also help
to explain why treating the global simulation output as a Markov
chain (or full cytokine trajectory output as a Markov random
field, as we have described in (Cockrell and An, 2017)) is only an
approximation. The full simulation, which takes place on a two-
dimensional grid, is memoryless, and begins with a homogenous
injury. However, as the injury evolves, the spatial distribution
of damage or of various cytokine concentrations begins to
vary, due to both stochastic and deterministic influences. All
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this information about spatial heterogeneity is lost when it is
collapsed into a single trajectory. A Markov Transition Matrix
(or kernel) could be constructed for the simulation output that
would be true in the comprehensive sense, e.g., when considering
all possible trajectories and model configurations, however, the
utility of this information becomes more limited the farther out
the prediction goes, as seen in Figure 5.

The model reseedings in Figure 6 indicate to use that
the model is in a very deterministic configuration. Due to
the spatial distribution of the injury, there is essentially no
chance that it will heal the in silico patient back to full
health, while also being in no danger of an immediate/near-
term death. Essentially, the simulations are entirely under the
influence of a single Probabilistic Basin of Attraction; this
is discussed in detail in Cockrell and An (2017). Therefore,
while the fully spatially realized simulation does not have a
memory (and can safely be treated as a Markov process), the
historical paths of the aggregate cytokine/health trajectories do
provide some predictive ability; while information regarding the
spatial distribution of tissue damage and systemic response is
washed away when considering the trajectory of the system
as a whole, features that describe the time evolution of
the trajectory (i.e., temporal derivatives) play a role in the
future predictions.

The failure to identify effective drugs to treat sepsis is due in
significant part to a failure to account for the heterogeneity of
the state space for sepsis and the non-uniqueness of mapping
from state space to trajectory space: without understanding
the potential future histories of an individual patient from
any point in time there can be no rationally justified attempt
at controlling or steering that patient’s eventual outcome. We
have proposed that mechanism-based multi-scale computational
models (as defined by the National Institutes of Health
Interagency Modeling and Analysis Group') can serve as proxy
systems that can address the “Denominator Problem” that arises
out of the non-uniqueness of the mapping between system
state and behavior and the inevitable sparsity of biological
data (An, 2018); we pose that the IIRABM represents one
example of a proxy model for sepsis. However, for multiscale
modeling and simulation to be deployed in clinical practice,
it must be practical to utilize the models in a clinical setting.
As we have shown in previous work (Cockrell and An,
2017), this requires an immense amount of computational
power as the simulation must be repeated for many stochastic
replicates. Compressing/approximating the information and
dynamics contained within the computational model using
an ANN allows for a computationally cheap and tractable
method of rapidly updating predictions about patient disease
trajectory as new information becomes available. Therefore,
ability to predict requires an additional layer of surrogate
models to render such prediction clinically tractable, and the
complexity of the dynamic structure of inflammation/sepsis
calls for the use of ANNs for this purpose. While there have
been some attempts to use ANNs to serve as surrogates for

Uhttps://www.imagwiki.nibib.nih.gov/content/multiscale-modeling-msm-
consortium

multiscale models (Lagaris et al., 1998; Wang et al, 2019),
these approaches involve the approximation of models that
are based on known and explicitly described functions. Given
that the Universal Approximation Theorem states that an
ANN can be trained to reproduce any function, knowing the
target function beforehand provides a greater likelihood of
success. This is in direct contrast to ABM, which are generally
explicitly used because they have no equivalent equation-based
formulation. In particular, it is the ability to generate more
biologically realistic probability distributions of behavior, as
seen in Figure 1A and Ref (Cockrell and An, 2017). We
posit that this is due to the nature of the noise in ABM’s
compared to stochastic differential equation methods. In contrast
to a differential equation, an ABM does not typically have
closed form expression describing the randomness in the
simulation; rather, randomness in the execution of the ABM
is biologically motivated and incorporates aspects of observed
biological heterogeneity (i.e., the spatial distribution of tissue
resident macrophages in our prior sepsis simulations). Therefore,
ANNs trained on ABMs inherently have a forecast horizon
and prediction/forecasting applications of such ANNs need to
account for updates of system state in order to provide a
“rolling” forecasting cone. The concept is similar to that as
seen in weather prediction, with the notable difference that in
weather models the future uncertainty is due to deterministic
chaos whereas in the ABM/biological system it is due to intrinsic
aleatory stochasticity.

This current work the first step of the development of a
workflow that integrates mechanism-based ABMs with ML in
order to train predictive ANNs that can inform what sort of
sensing technology and capabilities need to be developed in
the real world. The demonstration of the non-unique mapping
between system-microstate (in terms of cytokine profiles) and an
overall metric of system macrostate (e.g., system health) suggests
that data-centric attempts to develop predictive models, which
at their root involve reverse engineering causal relationships
between microstate and macrostate, are futile. We assert that it
is only through mechanism-based, generative simulations that
the sufficient density of time series data can be made available
to parse the multiple trajectories that can arise from a particular
system state. The basis for this assertion lies in the fact that the
computational mechanistic model (as opposed to a data-driven
statistical model) limits the future possibility space to one that
can evolve from experimentally validated biological (microstate)
mechanisms, whereas a statistical model with a sufficient number
of terms can fit any data set arbitrarily well. While this space or
the number of potential configurations a biological system can
exist in is combinatorially/astronomically large, it is not infinite.

Our simulations also demonstrate the crucial role that
aleatory stochasticity plays in the time evolution of these
multi-agent/cellular systems, thereby necessitating a “rolling
forecast” approach in which the update interval is informed
by the simulations. Integrating mechanism-based, multi-scale
simulations with ML provides a means of training predictive
ANNSs “off-line,” circumventing the need to run high-fidelity
simulations in real time. Freed from the constraint of execution
time, this in turn allows for more detailed mechanistic simulation
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models able to generate synthetic data that more closely matches
that produced by the real world system, and, crucially, performed
in a fashion that more comprehensively captures the range of
biological heterogeneity seen in the clinical setting and has the
ability to potentially falsify the model’s underlying structure (for
a full description of this process see Ref (Cockrell and An, 2021)).
We hope that this work can provide a starting point for additional
investigations into the integration of ML and agent-based models.
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